cis- And trans-Influences in Platinum(iI) Complexes. X-Ray Crystal Structure Analysis of Tetraethylammonium Trichloro(triethylphosphine)platinate(II)

By Gordon W. Bushnell,* Alan Pidcock, and Martin A. R. Smith, Department of Chemistry, University of Victoria, British Columbia, Canada

Crystals of the title compound are monoclinic, space group $P 2_{1} / c$, with $Z=4$ in a unit cell of dimensions $a=$ $1.03232(17), b=0.92006(20), c=2 \cdot 27101(55) \mathrm{nm}, \beta=97.33(3)^{\circ}$. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques to $R 3.9 \%$. The anion has bond angles at platinum within 1.4° of 90° and perturbations by interionic forces appear negligible. The 4° fold about the approximately linear $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$ axis and the orientation of the PC_{3} moiety with respect to the complex plane are explained by $\mathrm{C} \cdots \mathrm{Cl}$ repulsions. The bond lengths $\mathrm{Pt}-\mathrm{P}[221 \cdot 5(4)]$. $\mathrm{Pt}-\mathrm{Cl}$ (trans to P) [238.2(4)]. and $\mathrm{Pt}-\mathrm{Cl}$ [230.2(4). $229 \cdot 9(4) \mathrm{pm}]$ are compared with those in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ and the $\mathrm{Pt}-\mathrm{P}$ lengths are consistent with n.m.r. coupling constants ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$. Complexes of form [$\mathrm{PtCl}_{3} \mathrm{~L}$] are shown to be suitable as a basis for measurements of cis- and trans-influences of ligands L .

Although the existence of weaker bonds trans to certain ligands was formalised as the trans-influence in the context of platinum(II) compounds, ${ }^{1}$ and many bond-length determinations have been made for platinum(II) complexes, there is still no extensive set of measurements of lengths cis and trans to ligands (L) in otherwise identical complexes. The bond lengths $\mathrm{Pt}-\mathrm{Cl}$ for both terminal and bridging chlorine ligands cis to L in sym-trans$\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}\right]$ are not significantly dependent on L ($\mathrm{L}=$ $\mathrm{Pr}_{3} \mathrm{P},{ }^{2} \mathrm{Me}_{3} \mathrm{As}^{3}$), but the $\mathrm{Pt}-\mathrm{Cl}$ bond trans to P is slightly longer than that trans to As. Such compounds are, however, not ideal as a basis for a standard set of measurements, because the bridging chlorine atoms are subject to the cis-influence of one L and the transinfluence of the other L . Also, in the complex $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}-\right.$ $\left.\left(\mathrm{Et}_{2} \mathrm{~S}\right)_{2}\right]$ the $\mathrm{Et}_{2} \mathrm{~S}$ ligands occupy bridging rather than terminal positions. ${ }^{4}$

Other possibly suitable complexes are trans-[PtClLY_{2}] ($\mathrm{Y}=$ phosphine) which are cationic with neutral ligands L , and uncharged with anionic ligands L. However, this series would have the disadvantage that the ligands cis and trans to L are different, and the crystal structure determination ${ }^{5}$ of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ has shown that there would generally be considerable steric interaction between L and the organic groups of the phosphine ligands. Accordingly, we decided to examine the suitability of compounds of type $\left[\mathrm{PtCl}_{3} \mathrm{~L}\right]^{-}$using $\mathrm{Et}_{4} \mathrm{~N}^{+}$as counter ion in the hope of reducing ionic interactions to minor proportions, and, to facilitate comparisons with as many other structures as possible, we selected the complex with $\mathrm{L}=\mathrm{Et}_{3} \mathrm{P}$ for initial study. A wide range of compounds containing ions $\left[\mathrm{PtCl}_{3} \mathrm{~L}\right]^{-}$is known ($\mathrm{L}=\mathrm{NH}_{3}$, RNH_{2}, py, $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NO}, \mathrm{CO}, \mathrm{Me}_{2} \mathrm{~S}$, thiourea, $\mathrm{R}_{3} \mathrm{P}$, and $\left.\mathrm{R}_{3} \mathrm{As}\right)^{6}$ as well as $\left[\mathrm{PtCl}_{3} \mathrm{~L}\right]^{--}\left(\mathrm{L}=\mathrm{Cl} \text { or } \mathrm{NO}_{2}\right)^{7}$ and there is little doubt that crystals could be obtained for tetraethylammonium or similar salts.

EXPERIMENTAL

Preparation.-The complex was prepared by addition of tetraethylammonium chloride to a dichloromethane solution

[^0]of sym-trans- $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2}\right]$ and recrystallised from a solution of dichloromethane and acetone (Found: $\mathrm{C}, 30.3$; $\mathrm{H}, 6 \cdot 25 ; \mathrm{N}, 2 \cdot 60$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{35} \mathrm{Cl}_{3} \mathrm{NPPt}: \mathrm{C}, 30 \cdot 58$; H , 6.42 ; N, 2.55%).

Crystal Data.- $\mathrm{C}_{14} \mathrm{H}_{35} \mathrm{Cl}_{3}$ NPPt, $M=549 \cdot 86$, Monoclinic, $a=1.03232(17), \quad b=0.92006(20), \quad c=2.27101(55) \mathrm{nm}$, $\alpha=\gamma=90^{\circ}, \quad \beta=97.33(3)^{\circ}, \quad U=2 \cdot 1394(8) \mathrm{nm}^{3}, \quad D_{\mathrm{m}}=$ $1.73 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $Z=4, D_{\mathrm{c}}=1.707, F(000)=$ 1080. Space group $P 2_{1} / c$ (No. 14). Mo- K_{α} radiation, $\lambda=$ $0.071069 \mathrm{pm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=73.4 \mathrm{~cm}^{-1}$. Boundary planes of the crystal in the form (h, k, l), length of perpendicular from the origin to the face: $(0,0, \pm 1), 0.105 \mathrm{~mm} ;(\pm 1,0,0)$, 0.183 mm ; ($1,0,2$), $0.152 \mathrm{~mm} ;(\overline{1}, 0, \overline{2}), 0.180 \mathrm{~mm} ;(\overline{1}, 0,2)$, 0.149 mm ; ($1,0, \overline{2}$), 0.159 mm ; ($0, \pm 1,0$), 0.25 mm .

Crystallographic Measurements.-A set of 5720 measurements was obtained on a Picker four-cycle diffractometer and used for cell refinement by least-squares. The crystal was mounted on its b axis. Diffractometer measurements were obtained manually, in the bisecting position with ω centred at zero. Each measurement was obtained by scanning ω for 1 min at $1^{\circ} \mathrm{min}^{-1}$. For reflections $>10^{\circ}$ in 2θ, background counts were collected for 30 s at the extremities of the scan. For reflections $<10^{\circ}$ in 20 the X-ray photographs showed that this method would have been unsatisfactory due to streaking effects, and the background readings were taken with $\omega=0$ and $2 \theta \pm 1^{\circ}$ from the reflection centre. This procedure was adopted when the $\theta-2 \theta$ scan motor failed during the first few measurements. Three axial reflections were used for checking the crystal orientation, and reflection ($2,1,2$) was measured hourly as the standard reflection. All measurements were scaled using the current value of the standard reflection. A total of 1401 reflections was measured up to $2 \theta 35^{\circ}$. Lorentz and polarisation corrections were applied and a list of F_{o} derived. Estimates of the standard deviations of the measurements and F_{o} were made using the formulae given in ref. 8, and an instrument instability constant of 0.04 . The data-reduction programme assigned unobserved status to 42 reflections by use of the criterion that the net count was less than the standard deviation of the background count (σ). Measurements between $-\sigma$ and σ were squeezed by a factor of 0.5 into the 0 to σ range. Measurements below $-\sigma$ were given a value very close to zero. The unobserved reflections were

[^1]included in the structure-factor calculations but not in the least-squares refinement. Absorption corrections were calculated by Gaussian grid numerical integration using 8,10 , and 6 points in the a, b, and c directions.

Structure Determination.-Calculations were performed with an IBM 370/145 computer at the University of Victoria. The position of the platinum atom was obtained from the three-dimensional Patterson function. Scatteringfactor curves for uncharged atoms were taken from ref. 9, and the anomalous dispersion correction for platinum from ref. 10. The phosphorus and chlorine atoms were placed by means of a Fourier map phased by platinum. The five heavy atoms were refined by least-squares to $R 0 \cdot 169$. The light atoms were located from a difference map and the structure was refined by three cycles of full-matrix leastsquares with isotropic temperature factors, and introducing an algebraic weighting scheme ($R 0.059$). The five heavy atoms were then given anisotropic temperature factors and three more least-squares cycles gave $R 0.042$ and $R^{\prime} 0.052$. Two final refinement cycles were performed with all atoms anisotropic, giving $R 0.039$ and $R^{\prime} 0.044$. In the final cycle of refinement the greatest change-to-error ratio was 0.21 , and the largest atom shift was 0.2 pm for carbon. The final weighting scheme was determined from: $\sigma^{2}\left(F_{0}\right)=26.44-$ $0.3941 F_{0}+0.00246 F_{0}{ }^{2}$ using $\omega=1 / \sigma^{2}$. The quantity $\left(\Sigma \omega \Delta^{2}\right) /(\mathrm{NO}-\mathrm{NV})$ was $c a .1 \cdot 0$ and did not vary with F_{o}. Hamilton's R^{\prime} ratio test ${ }^{11}$ showed the best model to be that with all atoms anisotropic.

The final difference synthesis indicated that no atoms were misplaced or had been omitted. The maximum positive and negative peak heights were 0.65 and $0.69 \times 10^{-6} \mathrm{e} \mathrm{pm}^{-3}$. The full variance-covariance matrix was used in estimating the standard deviations in bond lengths and angles.

A mean-plane calculation ${ }^{12}$ was carried out for the five heavy atoms using an orthogonal axis system with X along a, Y in the a, b plane, and Z along c^{*}. The equation of the plane was $0.5310 X+0.8262 Y+0.1883 Z=322 \cdot 12$. Distances from the plane were Pt $-0.21(6), \mathrm{Cl}(1)-1 \cdot 3(5)$, $\mathrm{Cl}(2) 7 \cdot 2(5), \mathrm{Cl}(3) 7 \cdot 0(5)$, and $\mathrm{P}-0 \cdot 9(4) \mathrm{pm}$. The significant non-planarity of this set of atoms is due to a fold along the $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(1)$ line, of $c a .4^{\circ}$.

RESULTS AND DISCUSSION

Final atomic parameters are given in Table 1 and a diagram of the structure is given in Figure 1. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21185 (2 pp., 1 microfiche).* Bond lengths and angles are listed in Table 2, and interionic distances to chlorine of $<400 \mathrm{pm}$ in Table 3.

Examination of the non-bonded distances from points in the $\mathrm{Et}_{4} \mathrm{~N}^{+}$ion to $\mathrm{Cl}(1), \mathrm{Cl}(2)$, and $\mathrm{Cl}(3)$ (Table 3) clearly shows that there are no significant differences in the (interionic) environments of the chlorine atoms, and the excellent agreement obtained between the values of $\mathrm{Pt}-\mathrm{Cl}(2)$ and $\mathrm{Pt}-\mathrm{Cl}(3)$ (Table 2) is a further indication that perturbation of the ion $\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{-}$by interionic forces has been reduced to an insignificant level by use of $\mathrm{Et}_{4} \mathrm{~N}^{+}$as counter ion.

The deviation from planarity of the platinum and coordinated atoms of the complex may be described as a

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1974, * For deta
Index issue.
fold of ca. 4° about the $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(\mathrm{l})$ axis, and a further feature of the structure of the ion is that the $\mathrm{P}-\mathrm{C}$ bonds of the phosphine all lie out of the plane of the complex

Figure 1 The crystal structure of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]$

Figure 2 Non-bonded intramolecular distances in the anion nearest to the origin in Figure 1. The z axis is perpendicular to the paper and down, the x axis lies above the plane of the page
(Figure 2). Both phenomena are clearly derived from repulsion between the carbon atoms attached to phosphorus and the chlorine ligands $\mathrm{Cl}(2)$ and $\mathrm{Cl}(3)$: the fold is derived from the imbalance about the plane of the complex of the repulsions between the carbon and chlorine atoms, and the orientation of the PC_{3} group with respect to the plane is such that there are no very short

[^2]$\mathrm{C} \cdots \mathrm{Cl}$ distances and the distances $\mathrm{C}(1) \cdots \mathrm{Cl}(2)$ and $\mathrm{C}(3) \cdots \mathrm{Cl}(3)$ are equal (Figure 2). That these interactions, between the phosphine and the ligands in cispositions, are relatively weak is evident from the small degree of folding and from the closeness of the $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(2)$ and $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(3)$ angles to 90° (Table 2).

Table 1
(a) Fractional atomic co-ordinates $\times 10^{4}$, with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c
Pt	2312(1)	2149(1)	$1195(0 \cdot 3)$
$\mathrm{Cl}(1)$	2109(5)	1944(5)	2224(2)
$\mathrm{Cl}(2)$	4134(4)	686(5)	1340(2)
$\mathrm{Cl}(3)$	409(4)	3474(5)	1060(2)
P	2493(4)	2368 (4)	237(2)
N	-2435(11)	1909(13)	2494(5)
$\mathrm{C}(1)$	4170(15)	2239(19)	56(7)
C(2)	4285(18)	2391 (23)	-617(9)
C(3)	1814(16)	4042(17)	--119(7)
C(4)	2514(22)	5376(19)	143(9)
C(5)	1537(16)	999(16)	-234(7)
C(6)	2055(19)	-587(18)	-116(8)
$\mathrm{C}(7)$	- 1975(18)	3259(18)	2173(8)
C(8)	-2817(19)	3633(24)	1584(8)
C(9)	-3822(16)	2236(21)	2681(7)
$\mathrm{C}(10)$	-4317(18)	1040(22)	3035(8)
C(11)	-1422(17)	1621(20)	3039(7)
$\mathrm{C}(12)$	-1418(19)	2803(21)	3527 (8)
C(13)	-2529(16)	540(18)	2108(7)
$\mathrm{C}(14)$	-1254(18)	199(20)	1861(8)

(b) Anisotropic temperature parameters $\left(\times 10^{4}\right)^{*}$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Pt	96(1)	100(1)	$17(0 \cdot 2)$	$-7(0 \cdot 7)$	$3(0 \cdot 3)$	$-0 \cdot 2(0 \cdot 3)$
$\mathrm{Cl}(1)$	214(7)	165(7)	19(1)	$-19(6)$	$11(2)$	-2(2)
$\mathrm{Cl}(2)$	117(6)	206(8)	27(1)	36(5)	-8(2)	10(3)
$\mathrm{Cl}(3)$	124(6)	195(8)	28(1)	34(5)	18(2)	$11(3)$
P	87(5)	95(6)	19(1)	$2(5)$	$8(2)$	$-3(2)$
N	87(16)	120(22)	19(3)	12(14)	$3(6)$	9(8)
C(1)	117(21)	202(31)	26(5)	-15(22)	12(8)	7(10)
$\mathrm{C}(2)$	158(26)	291(41)	38(7)	30 (27)	39(10)	20(13)
C(3)	171(24)	$92(27)$	18(4)	32(20)	18(8)	15 (8)
C(4)	328(39)	86(28)	36(6)	-33(27)	48(13)	$-10(11)$
C(5)	156(23)	79(27)	25(5)	$-17(19)$	-4(8)	$-6(8)$
C(6)	246(31)	92(29)	$31(5)$	-3(24)	22(10)	-8(9)
$\mathrm{C}(7)$	196(28)	100(28)	$35(6)$	$-11(22)$	19(11)	17(10)
$\mathrm{C}(8)$	$210(30)$	269(39)	22(5)	43(28)	11(10)	31(12)
$\mathrm{C}(3)$	113(24)	268(37)	23(5)	22(25)	14(9)	4(11)
$\mathrm{C}(10)$	175(27)	249(37)	$30(5)$	-80(27)	37(10)	14(12)
C(11)	144(24)	$232(35)$	19(5)	$5(23)$	$-17(9)$	0(11)
$\mathrm{C}(12)$	$204(28)$	211(34)	27(5)	--40(26)	$-2(10)$	$-35(12)$
$\mathrm{C}(13)$	153(26)	$130(28)$	$26(5)$	3(21)	14(9)	$-29(10)$
$\mathrm{C}(14)$	159(26)	209(34)	$30(5)$	40(24)	25(10)	$-24(11)$
* In the form: $T=\exp \left[-h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k b_{12}+\right.$ $\left.\left.2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$.						

Table 4 lists $\mathrm{Pt}-\mathrm{Cl}$ distances for structures having approximately linear arrangements $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ with terminal chlorine ligands and with different cis groups. Application of Cruickshank's test ${ }^{13}$ shows that there is no significant difference in bond lengths between neutral and anionic complexes (a further indication of negligible interionic perturbations), and it is also clear that any influence of cis ligands on the $\mathrm{Pt}-\mathrm{Cl}$ bond lengths is smaller than the uncertainties in the X-ray determinations.

The $\mathrm{Pt}-\mathrm{P}$ bond $[221.5(4) \mathrm{pm}]$ in $\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{-}$is shorter than the mean, $[224 \cdot 7(8) \mathrm{pm}]$ in cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right] .{ }^{5}$ This result is consistent with an analysis
${ }^{13}$ D. W. J. Cruickshank, Acta Cryst., 1950, 3, 72.
${ }^{14}$ G. G. Mather, A. Pidcock, and G. J. N. Rapsey, J.C.S. Dalton, 1973, 2095.
of n.m.r. coupling constants, ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$, in similar compounds, which are 3704 for $\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{-}$and 3520 Hz for cis $-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right] \cdot{ }^{14} \quad$ Larger values of ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ can, for similar complexes, generally be associated with

Table 2
(a) Bond lengths (pm) and their standard deviations
(i) Ptco -ordination

$\mathrm{Pt}-\mathrm{P}$	$221 \cdot 5(4)$	$\mathrm{Pt}-\mathrm{Cl}(1)$	$238 \cdot 2(4)$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$230 \cdot 2(4)$	$\mathrm{Pt}-\mathrm{Cl}(3)$	$229 \cdot 9(4)$
(ii) $\mathrm{Et}_{3} \mathrm{P}$ ligand			
$\mathrm{P}-\mathrm{C}(1)$	$183 \cdot 4(16)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$155 \cdot 5(25)$
$\mathrm{P}-\mathrm{C}(3)$	$183 \cdot 7(15)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$150 \cdot 8(24)$
$\mathrm{P}-\mathrm{C}(5)$	$185 \cdot 4(15)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$156 \cdot 6(23)$
(iii) $\mathrm{Et} \mathrm{t}_{4} \mathrm{~N}$			
$\mathrm{~N}-\mathrm{C}(7)$	$154 \cdot 5(19)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$153 \cdot 8(24)$
$\mathrm{N}-\mathrm{C}(9)$	$157 \cdot 4(19)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$149 \cdot 1(24)$
$\mathrm{N}-\mathrm{C}(11)$	$153 \cdot 9(19)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$155 \cdot 2(24)$
$\mathrm{N}-\mathrm{C}(13)$	$153 \cdot 1(19)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$152 \cdot 7(23)$

(b) Bond angles (${ }^{\circ}$) with standard deviations
(i) Pt co-ordination

$\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(1)$	$179 \cdot 29(15)$	$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(3)$	$176 \cdot 14(16)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$89 \cdot 19(17)$	$\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(3)$	$89 \cdot 92(15)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(2)$	$91 \cdot 37(15)$	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{Cl}(1)$	$89 \cdot 55(16)$
(i) PEt			
Pt ligand			
$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(1)$	$114 \cdot 5(6)$	$\mathrm{P}-\mathrm{C}(3)-\mathrm{C}(4)$	$111 \cdot 8(12)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$114 \cdot 1(12)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(5)$	$113 \cdot 6(5)$
$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(3)$	$115 \cdot 7(5)$	$\mathrm{P}-\mathrm{C}(5)-\mathrm{C}(6)$	$112 \cdot 9(11)$
ii) $\mathrm{Et} \mathrm{E}_{4} \mathrm{~N}$ ion			
$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(9)$	$108 \cdot 6(12)$	$\mathrm{C}(11)-\mathrm{C}-\mathrm{C}(13)$	$107 \cdot 8(12)$
$\mathrm{C}(9)-\mathrm{N}-\mathrm{C}(11)$	$111 \cdot 3(12)$	$\mathrm{N}-\mathrm{C}(9)-\mathrm{C}(10)$	$113 \cdot 0(14)$
$\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(8)$	$114 \cdot 6(15)$	$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(13)$	$113 \cdot 1(11)$
$\mathrm{N}-\mathrm{C}(13)-\mathrm{C}(14)$	$112 \cdot 6(13)$	$\mathrm{C}(13)-\mathrm{N}-\mathrm{C}(9)$	$108 \cdot 6(11)$
$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(11)$	$107 \cdot 5(12)$	$\mathrm{N}-\mathrm{C}(11)-\mathrm{C}(12)$	$113 \cdot 2(14)$

Table 3
Interionic distances (pm)* to chlorine $<400 \mathrm{pm}$

Atom	Symmetry position	y Distance from $\mathrm{Cl}(1)$	Symmetry position	Co-ordinates \dagger	
C(13)	a	364	a	$\bar{x}, \frac{1}{2}+$	$y,\left(\frac{1}{2}-z\right)$
C(7)	b	367	b	$\bar{x}, y-$	$\frac{1}{2},\left(\frac{1}{2}-z\right)$
C(14)	a	381	c	x, y, z	
C(14)	c	382	d	$1+x$,	y, z
$\mathrm{C}(10)$	d	399	,	$1-x$,	\bar{y}, \bar{z}
			f	$\bar{x}, 1-$	y, \bar{z}
	Symmetry 1	Distance		mmetry	Distance
Atom	position fr	from $\mathrm{Cl}(2)$	Atom po	sition	from Cl (3)
$\mathrm{C}(13)$	d	366	C(11)	a	362
$\mathrm{C}(2)$	e	375	$\mathrm{C}(8)$	c	368
$\mathrm{C}(9)$	d	376	C(3)	f	372
$\mathrm{C}(12)$	b	390	C(7)	${ }^{\text {c }}$	375
$\mathrm{C}(9)$	b	391	C(4)	f	395
C(10)	d	399			

* Standard deviations all 2 pm . \dagger With respect to x, y, z in Table 1.
shorter $\mathrm{Pt}^{-} \mathrm{P}$ bonds and explanations ${ }^{1,14}$ in terms of changes in the s components of the bonds now appear to have gained acceptance. ${ }^{15}$ Theory of trans-influence ${ }^{15}$ predicts that the shorter. $\mathrm{Pt}-\mathrm{P}$ bond in $\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{-}$ should utilise a greater share of platinum σ-orbitals and cause some lengthening of the trans- $\mathrm{Pt}-\mathrm{Cl}$ bond compared with that in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$. In fact the $\mathrm{Pt}-\mathrm{Cl}$ trans to phosphorus in $\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{-}$is $238 \cdot 2(4) \mathrm{pm}$, not significantly different from the average value $237 \cdot 6(8) \mathrm{pm}$

[^3]for $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right],{ }^{5}$ so it seems probable that the metal-ligand bond lengths in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ are affected by steric factors. In particular, the distortion away from a square-planar structure towards a tetrahedral form, ${ }^{5}$ which is mainly a consequence of steric

Conclusions.-The complexes of type $\left[\mathrm{PtCl}_{3} \mathrm{~L}\right]-$ appear to be very suitable for the determination of cis- and transinfluences based on measurements of $\mathrm{Pt}-\mathrm{Cl}$ bond lengths. The simplicity of structure of the complexes facilitates the recognition of intramolecular steric interactions, and

Table 4
Lengths (pm) of $\mathrm{Pt}-\mathrm{Cl}$ bonds

Compound	$\begin{gathered} \mathrm{Pt}-\mathrm{Cl} \\ \text { trans to } \mathrm{Cl} \text {) } \end{gathered}$	cis-Groups	$\begin{gathered} \mathrm{Pt}-\mathrm{Cl} \\ (\text { trans to } \mathrm{L}) \end{gathered}$
$\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]{ }^{\text {a }}$	231.7(2)	Cl, Cl	
$\left[\mathrm{Pt}\left(\mathrm{MeNH}_{2}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]^{b}$	229(14)	Cl, Cl	
$\left[\mathrm{Pt}\left(\mathrm{EtNH}_{2}\right)_{4}\right]^{4}\left[\mathrm{PtCl}_{4}\right]^{4}$	233(1)	Cl, Cl	
	241(4)		
$\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right], \mathrm{H}_{2} \mathrm{O}^{\text {c }}$	$231 \cdot 4(7)$ $229 \cdot 6(7)$	$\mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{4}$	$232 \cdot 7(5)$
$\left[\mathrm{NMe}_{3} \mathrm{Et}\right]_{2}\left[\mathrm{Cl}_{3} \mathrm{PtC}_{4} \mathrm{H}_{6} \mathrm{PtCl}_{3}\right]^{\text {d }}$	$\begin{aligned} & 232(1) \\ & 229(1) \end{aligned}$	$\mathrm{Cl}, \mathrm{C}_{4} \mathrm{H}_{6}$	229(1)
$\left[\mathrm{Ph}_{4} \mathrm{P}\right]\left[\mathrm{PtCl}_{3}(\text { cis-but-2-ene-1,4-diol) }]^{\text {c }}\right.$	$\begin{aligned} & 229 \cdot 1(9) \\ & 230 \cdot 1(8) \end{aligned}$	Cl , olefin	229•6(9)
$\left[\mathrm{PtCl}_{3}\right.$ (trans-but-2-ene-1,4-diammonium) $] \mathrm{Cl}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}^{\prime}$	$231 \cdot 1(2)$	Cl , olefin	$234 \cdot 2(2)$
	$229 \cdot 3(2)$		
$\left[\mathrm{PtCl}_{3}\left(\text { trans }-\mathrm{McCH}: \mathrm{CHCH}_{2} \mathrm{NMe}_{3}\right)\right]^{g}$	$\begin{aligned} & 230 \cdot 7(6) \\ & 228 \cdot 8(7) \end{aligned}$	Cl , olefin	$233 \cdot 9$ (7)
$\left[\mathrm{PtCl}_{3}\left(\mathrm{cis} \text { - } \mathrm{MeCH}: \mathrm{CHCH}_{2} \mathrm{NMe}_{3}\right)\right]^{g}$	$230 \cdot 1(6)$	Cl , olefin	$232 \cdot 0(6)$
	229•3(6)		
$\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{h}$	230.2(4)	$\mathrm{Cl}, \mathrm{PEt}_{3}$	238.2(4)
	229.9(4)		
trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NHMe}_{2}\right)\right]^{i}$	$\begin{aligned} & 230(4) \\ & 233(4) \end{aligned}$	$\mathrm{C}_{2} \mathrm{H}_{4}$, amine	
trans-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{C}: \mathrm{CBu}^{\mathrm{t}}\right)\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right]^{j}$	$230 \cdot 0(2)$	Amine, acetylene	
trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \text { (pyridinium propylide) }\right]^{\text {k }}$	$235(2)$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, ylide	
	$230(2)$		
trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{C}\left(\mathrm{NPhCH}_{2}\right)_{2}\right\}\right]^{l}$	230(1)	PEt_{3}, carbene	
	232(1)		
trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{m}$	230.0(19)	$\mathrm{PEt}_{3}, \mathrm{PEt}_{3}$	

${ }^{a}$ R. H. B. Mais, P. G. Owston, and A. M. Wood, Acta Cryst., 1972, B28, 393. ${ }^{\text {b }}$ M. E. Cradwick, D. Hall, and R. K. Phillips, Acta Cryst., 1971, B2', 48. c J. A. J. Jarvis, B. T. Kilbourn, and P. G. Owston, Acta Cryst., 1971, B2', 366. dV. C. Adam, J. A. J. Jarvis, B. T. Kilbourn, and P. G. Owston, Chem. Comm., 1971, 467. e M. Calapietro and L. Zambonelli, Acta Cryst., 1971, B27, 734. f R. Spagna and L. Zambonelli, J. Chem. Soc. (A), 1971, 2544. g R. Spagna, L. M. Venanzi, and L. Zambonelli, Inorg. Chim. Acta, $1970,4,283,475 .{ }^{h}$ Present work. 'P. R. H. Aldeman, P. G. Owston, and J. M. Rowe, Acta Cryst., 1960, 13, 149. ; G. R. Davies, W. Hewertson, R. H. B. Mais, and P. G. Owston, J. Chem. Soc. (A), 1970, $1873 .{ }^{k}$ M. Keeton, R. Mason, and D. R. Russell, J. Organometallic Chem., 1971, 33, 259. ' D. J. Cardin, B. Çetinkaya, M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, Chem. Comm., 1971, 400. ${ }^{m}$ G. G. Messmer and E. L. Amma, Inorg. Chem., 1966, 5, 1775.
interactions involving the methyl groups of the phosphines, may cause the platinum σ orbitals to be distributed between the metal-ligand bonds in a way that is significantly different from that for a relatively undistorted square-planar complex. It would thus be of considerable interest to obtain structural data for the analogous platinum(Iv) compounds $\left[\mathrm{PtCl}_{5}\left(\mathrm{PR}_{3}\right)\right]^{-}$and cis- $\left[\mathrm{PtCl}_{4}\left(\mathrm{PR}_{3}\right)_{2}\right]$, since for these, the coupling constants ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ are closely similar, ${ }^{14}$ and the extra ligands and the longer $\mathrm{Pt}-\mathrm{P}$ bonds of $\mathrm{Pt}^{\mathrm{IV}}$ complexes ${ }^{16}$ may reduce distortion in the cis-complex.
it is clear that the relative importance of steric compared with electronic effects is much greater for the cis- than for the trans-influence. The trans-influence order, as determined from $\mathrm{Pt}-\mathrm{Cl}$ bond lengths in complexes $\left[\mathrm{PtCl}_{3} \mathrm{~L}\right]$, is: $\mathrm{R}_{3} \mathrm{P}>$ olefin, Cl^{-}(Table 4).
A. P. thanks the University of Victoria for a visiting appointment and the University of Sussex for leave of absence.
[4/1282 Received, 27th June, 1974]
${ }^{16}$ L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, Chom. Comm., 1970, 30.

[^0]: ${ }^{1}$ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.
 ${ }_{2}$ M. Black, R. H. B. Mais, and P. G. Owston, Acta Cryst., 1969, B25, 1760.
 ${ }^{3}$ S. F. Watkins, J. Chem. Soc. (A), 1970, 168.
 4 P. L. Goggin, R. J. Goodfellow, D. L. Sales, and P. Woodward, Chem. Comm., 1968, 31.

[^1]: ${ }^{5}$ G. G. Messmer, E. L. Amma, and J. A. Ibers, Inovg. Chem., 1967, 6, 725.
 ${ }^{6}$ Gmelin, ' Handbuch der Anorganischen Chemie,' 8th edn., no. 68, Platinum (D), pp. 419-445.

 7 Ref. 6, Platinum (C), pp, 187, 213.
 ${ }^{8}$ G. H. Stout and L. H. Jensen, ‘ X-Ray Structure Determination,' Macmillan, New York, 1968, p. 456.

[^2]: ${ }^{9}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }^{10}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
 ${ }_{11}$ W. C. Hamilton, Acta Cryst., 1965, 18, 502.
 12 D. M. Blow, Acta Cryst., 1960, 13, 168.

[^3]: 15 T. G. Appleton, H. C. Clark, and L. E. Manzer, Co-ordination Chem. Rev., 1973, 10, 335; A. Pidcock,'Transition-Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands,' ed. C. A. McAuliffe, Macmillan, London, 1973, Part 1.

