Crystal Structure of an Eight-co-ordinate Manganese Complex: Bis-(3,4-di-2-pyridylpyridazine)dinitratomanganese(II)

By John E. Andrew, Antony B. Blake,* and Louis R. Fraser, Department of Chemistry, The University, Hull HU6 7RX

The crystal and molecular structures of the compound [$\mathrm{Mn}(\mathrm{dppn})_{2}\left(\mathrm{NO}_{3}\right)_{2}$] (dppn $=3.6$-di-2-pyridylpyridazine) have been determined by single-crystal X-ray diffraction photography, and refined anisotropically by the method of least squares to $\mathrm{R} 6.6 \%$ for 1816 independent observed reflections. The yellow crystals are triclinic, and the unit cell, of dimensions $a=8.88, b=11 \cdot 95, c=14.20(\pm 0.03) ~ \AA, \alpha=107 \cdot 0, \beta=87 \cdot 6, \gamma=103.0(\pm 0 \cdot 3)^{\circ}$, contains two enantiomorphous molecules. All four ligands are bidentate, giving an eight-co-ordinate complex roughly approximating to C_{2} symmetry. The dppn molecules are nearly planar, and the two non-co-ordinating N atoms in each ligand are mutually trans. The four $\mathrm{Mn}-\mathrm{N}$ bond lengths are all close to 2.30 A . The co-ordination of one nitrate ion is symmetrical ($\mathrm{Mn}-\mathrm{O} 2.46 \AA$), that of the other is unsymmetrical ($\mathrm{Mn}-\mathrm{O} 2.30$ and 2.47 A). This compound and its cadmium analogue are isomorphous. The i.r. spectra in the region of nitrate vibrations are reported.

As part of an attempt to compare the superexchange behaviour of different metal ions in similar binuclear situations, the reactions of various first-row transition-metal ions with $3,6-\mathrm{di}$-2-pyridylpyridazine (dppn) and related ligands were studied. ${ }^{1}$ With $\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$, and $\mathrm{Cu}^{2+}, \mathbf{1}: 1$

dppn
complexes, e.g. $\left[\mathrm{M}(\mathrm{dppn})\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Co}$ or Ni$)$, were obtained, which appeared from their magnetic and other properties to be binuclear, ${ }^{2}$ but with Mn^{2+} and Zn^{2+} only 1:2 complexes could be isolated.

The yellow manganese complex $\left[\mathrm{Mn}(\mathrm{dppn})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ was magnetically normal ($\mu_{\text {eff }} .5 \cdot 96$ B.M. at 80 and 300 K) and hence presumably mononuclear, and, as would be expected, its i.r. spectrum showed evidence of nitrate coordination. It is evidently analogous to the compound $\left[\mathrm{Mn}(\mathrm{bipy})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$, for which Addison and Kilner pro-
posed a cis-octahedral structure with two unidentate nitrate ligands. ${ }^{3}$ The number of i.r. bands suggests, however, the presence of more than one kind of nitrate ion, possibly both uni- and bi-dentate.

In order to ascertain the mode of nitrate bonding and the manganese co-ordination geometry, and if possible to find some reason for the failure of dppn to act as a binucleating ligand towards Mn^{2+} and Zn^{2+}, we have determined the crystal structure of $\left[\mathrm{Mn}(\mathrm{dppn})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$. We have also prepared the remaining eight compounds in the series $\left[\mathrm{M}(\mathrm{biL})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Mn}, \mathrm{Zn}$, or Cd ; biL = bipy, phen, or dppn) in order to compare their i.r. spectra.

EXPERIMENTAL

Yellow air-stable crystals of $\left[\mathrm{Mn}(\mathrm{dppn})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ were prepared by the method previously described for [$\mathrm{Ni}(\mathrm{dppn})$ $\left.\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O},{ }^{2 b}$ i.e. mixing hot solutions of dppn and the
${ }^{1}$ P. W. Ball, Ph.D. Thesis, University of Hull, 1968.
${ }^{2}$ (a) J. E. Andrew, P. W. Ball, and A. B. Blake, Chem. Comm., 1969, 143 ; (b) P. W. Ball and A. B. Blake, J. Chem. Soc. (A), 1969, 1415.
${ }^{3}$ C. C. Addison and M. Kilner, J. Chem. Soc. (A), 1966, 1249.
metal nitrate hexahydrate in a mixture of methanol and triethyl orthoformate and setting the solution aside overnight. Preliminary Weissenberg and precession photographs revealed a triclinic unit cell. Integrated precession photographs of the levels $0-4 k l, h 0-5 l$, and $h \hbar l$ to $h, \bar{h}+5, l$ were taken with various exposure times, and the intensities were measured by means of a Joyce-Loebl double-beam recording
symmetry were applied to the intensities, but the results were ambiguous, and the centrosymmetric space group $P I$ was therefore assumed for convenience. The subsequent successful refinement indicates that any deviation from centric symmetry of the unit cell must be very small.

Structure Determination and Refinement.-The position of the Mn atom was determined from a three-dimensional

Table 1
Atomic fractional co-ordinates and vibrational parameters $\left(\AA^{2}\right), *$ with estimated standard deviations in parentheses

Atom	$10^{4} x$	$104 y$	$10^{4} z$	$10^{3} U_{11}$	$10^{3} U_{22}$	$10^{3} U_{33}$	$10^{3} U_{12}$	$10^{3} U_{23}$	$10^{3} U_{31}$
Mn	2515(3)	3451 (3)	2330(2)	29(1)	33(1)	40(1)	5(2)	19(2)	-3(2)
$\mathrm{C}(1)$	18(26)	933(17)	1499(16)	61(13)	32(10)	64(12)	8(19)	28(18)	7 (22)
C (2)	- 1436(27)	125(18)	1168(15)	$69(14)$	47(12)	54(12)	-9(22)	35(19)	-25(22)
$\mathrm{C}(3)$	-2760(26)	582(19)	1447(16)	57(13)	$51(12)$	57(12)	-4(22)	$21(20)$	-26(22)
$\mathrm{C}(4)$	-2583(24)	1770(19)	2063(16)	42(11)	46(11)	63(13)	$-8(20)$	14(20)	$-24(20)$
$\mathrm{C}(5)$	-1115(22)	2485(15)	2338(13)	42(11)	$32(9)$	41(10)	-3(17)	32(15)	-2(17)
$\mathrm{C}(6)$	-856(20)	3728(17)	3023(13)	31 (9)	54(10)	44(10)	26(17)	33(17)	-13(17)
$\mathrm{C}(7)$	-2050(23)	4256(18)	3447(16)	40(10)	47(11)	59(12)	35(18)	5(19)	2(20)
$\mathrm{C}(8)$	-1679(23)	5376(18)	4092(16)	41(11)	42(10)	72(13)	19(18)	23(19)	-24(20)
$\mathrm{C}(9)$	-95(23)	5960(17)	4217(14)	45(11)	41(11)	43(10)	-4(19)	15(18)	-2(19)
$\mathrm{C}(10)$	425(25)	7212(17)	4887(14)	61(12)	40(10)	39(10)	17(19)	13(17)	$-11(19)$
C(11)	1935(24)	7725(19)	5158(15)	47(12)	$59(12)$	52(11)	-6(21)	31(19)	$-24(20)$
$\mathrm{C}(12)$	2407(31)	8917(23)	$5742(18)$	87(18)	$73(15)$	65(14)	$-8(28)$	30(24)	-51(26)
C(13)	1235(32)	9558(20)	6028(18)	100(19)	48(12)	71(15)	23(25)	15(23)	-16(28)
C (14)	-326(32)	8952(21)	5721(18)	98(19)	50(13)	67(15)	4(27)	18(23)	$2(29)$
N(1)	191(17)	2092(13)	2056(11)	$35(8)$	40 (8)	$50(9)$	29(13)	12(14)	1(15)
$\mathrm{N}(2)$	637(17)	4327(13)	3186(11)	40(8)	$35(8)$	43(8)	11(14)	7(14)	- 10(15)
N(3)	1020(18)	5455(14)	3798(12)	43(9)	45(9)	51(9)	20(15)	10(16)	3(16)
$\mathrm{N}(4)$	-712(21)	7809(15)	$5151(14)$	59(11)	43(9)	$72(11)$	20(17)	15(17)	24(19)
$\mathrm{C}\left(\mathbf{1}^{\prime}\right)$	4836(25)	6079(19)	3243(16)	45(12)	44(12)	66(13)	-30(21)	10(21)	-24(22)
$\mathrm{C}\left(2^{\prime}\right)$	5903(28)	7138(21)	3213(18)	64(14)	57(13)	77(15)	-9(24)	24(23)	-48(24)
$\mathrm{C}\left(3^{\prime}\right)$	5971 (30)	7532(20)	2377(18)	83(16)	58(13)	82(15)	$22(24)$	54(22)	-11(27)
$\mathrm{C}\left(4^{\prime}\right)$	4960(28)	6848(19)	1568(19)	62(14)	$43(12)$	92(17)	7(22)	19(24)	-6(27)
C(5')	3938(23)	5770(17)	1650(14)	42(11)	47(11)	52(11)	17(19)	27(18)	26(19)
$\mathrm{C}\left(6^{\prime}\right)$	2833(21)	5027(16)	831(14)	38(10)	38(9)	53(11)	24(16)	33(16)	20(18)
$\mathrm{C}\left(7^{\prime}\right)$	2705(26)	5317(18)	-44(15)	64(13)	47(11)	46(11)	$8(20)$	25(18)	-22(21)
$\mathrm{C}\left(8^{\prime}\right)$	1641(26)	4544(19)	-748(15)	58(13)	54(12)	53(11)	-15(22)	42(19)	16(21)
$\mathrm{C}\left(9^{\prime}\right)$	727(23)	3511 (18)	-517(14)	48(11)	60(12)	42(11)	28(19)	23(18)	-5(19)
$\mathrm{C}\left(10^{\prime}\right)$	-516(23)	2619(16)	-1212(13)	53(11)	42(10)	39(10)	20(18)	32(16)	-1(18)
$\mathrm{C}\left(11^{\prime}\right)$	$-1545(24)$	1745(18)	-913(16)	47(12)	47(11)	66(12)	2(20)	46(19)	12(21)
$\mathrm{C}\left(12^{\prime}\right)$	-2640(25)	899(20)	-1591(16)	56(12)	$75(13)$	52(12)	44(20)	30(20)	-13(21)
$\mathrm{C}\left(13^{\prime}\right)$	-2657(27)	1021(20)	-2525(17)	73(14)	53(12)	60(13)	26(23)	$-1(22)$	-39(23)
$\mathrm{C}\left(14^{\prime}\right)$	$-1630(38)$	1923(25)	-2768(19)	133(25)	$79(16)$	66(15)	-79(35)	59(25)	-48(32)
$\mathrm{N}\left(\mathbf{1}^{\prime}\right)$	3909(17)	5396(13)	2458(11)	40(9)	41 (8)	50(9)	28(14)	12(14)	7 (15)
$\mathrm{N}\left(2^{\prime}\right)$	1951(19)	4035(14)	997(11)	46(9)	47(9)	46(9)	13(15)	19(15)	-4(16)
$\mathrm{N}\left(3^{\prime}\right)$	876(18)	3288(14)	326(11)	46(10)	49(9)	41(9)	$-5(16)$	24(14)	$-1(16)$
$\mathrm{N}\left(4^{\prime}\right)$	-583(27)	2721(18)	-2105(13)	102(16)	84(13)	57(10)	-54(25)	69(18)	-45(21)
$\mathrm{O}(1)$	5001 (18)	3306(12)	1537(11)	81(10)	43 (8)	69(10)	18(15)	$-4(15)$	-10(17)
$\mathrm{O}(2)$	3094(18)	1882(15)	893(13)	57(10)	96(11)	97(11)	$9(17)$	81(17)	8(18)
$\mathrm{O}(3)$	5305(19)	1878(14)	253(12)	92(11)	77(10)	70(10)	65(17)	5(17)	78(17)
N(5)	4495(19)	2359(15)	881(12)	53(10)	57(9)	47(9)	23(16)	33(15)	31(17)
$\mathrm{O}\left(1^{\prime}\right)$	3291 (22)	1936(16)	2950(13)	92(12)	78(11)	$72(10)$	0(20)	8(18)	$-9(19)$
$\mathrm{O}\left(2^{\prime}\right)$	3742(19)	3718(13)	3803(12)	78(10)	54(8)	84(10)	$13(16)$	38(15)	36(18)
$\mathrm{O}\left(3^{\prime}\right)$	4500(19)	2423(17)	4341(12)	80(10)	165(12)	95(10)	85(17)	148(15)	-38(16)
$\mathrm{N}\left(5^{\prime}\right)$	3880(18)	2673(14)	3734(12)	38(9)	50(9)	55(10)	18(15)	23(15)	2(16)

- The temperature factor is given by $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{39} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*} \cos \gamma^{*}+2 U_{23} k l b^{*} c^{*} \cos \alpha^{*}+\right.\right.$ $\left.2 U_{31} l h c^{*} a^{*} \cos \beta^{*}\right) 7$.
microdensitometer. After application of Lorentz and polarisation corrections, the relative scale factors of the levels were determined from common reflections by the logarithmic least-squares method. ${ }^{4}$ Merging the seventeen levels gave 1816 unique reflections, the conventional R factor of this process being 0.043 . No absorption corrections were applied, since it was estimated that the transmission factor varied by only ca. 1% over the range of data collected.

Crystal Data. $-\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{MnN}_{10} \mathrm{O}_{6}, \quad M=647 \cdot 5$, Triclinic, $a=8.88, \quad b=11.95, \quad c=14.20(\pm 0.03) \quad \AA, \quad \alpha=107.0$, $\beta=87 \cdot 6, \gamma=103 \cdot 0(\pm 0 \cdot 3)^{\circ}, U=1404 \pm 11 \AA^{3}, D_{\mathrm{m}}=$ $1.53 \pm 0.02, \quad Z=2, \quad D_{\mathrm{c}}=1.53, \quad F(000)=662 . \quad$ Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=5.6 \mathrm{~cm}^{-1}$.

Several statistical tests for the presence of a centre of
sharpened Patterson map, and two cycles of phase calculation and Fourier synthesis (assuming an overall temperature factor of $3 \cdot 0 \AA^{2}$) then revealed all the remaining atom positions (other than hydrogen), with $R 0 \cdot 30$.

Atomic parameters were refined by the method of least squares, first assuming individual isotropic temperature factors for all non-hydrogen atoms, then with anisotropic temperature factors, convergence being reached at $R 0.0675$. After rescaling the data so that $\Sigma\left|F_{\mathrm{c}}\right|$ and $\Sigma\left|F_{\mathrm{o}}\right|$ were equal for each level, refinement was continued, and reached final

4 A. B. Blake and R. C. Elder, X-Ray Crystallographic Intensity Treatment Program (MIXCIT) for the IBM 709/7090, SHARE Distribution No. 3352, IBM Corporation, New York 1965 ; A. D. Rae, Acta Cryst., 1965, 19, 683.
convergence at $R 0.0658$. The maximum co-ordinate shift in the last cycle was $0 \cdot 2 \sigma$, the average shift being much smaller. The quantity minimised was $\Sigma w \Delta^{2}$, where $\Delta=$ $\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|$ and $w=\left\{1+\left[\left(F^{*}-F_{0}\right) / G^{*}\right]^{2}\right\}^{-1}$, the values $F^{*}=16, G^{*}=30$ being chosen so that $w \Delta^{2}$ showed no systematic dependence on $\left|F_{0}\right|$.
A final three-dimensional difference-Fourier synthesis was essentially flat. No attempt was made to locate hydrogen atoms.
Atomic scattering factors were taken from ref. 5. No corrections were made for anomalous dispersion. Computation was done on the Hull University I.C.L. 1905E computer, using programs of ref. 6.

RESULTS AND DISCUSSION

Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21259 (5 pp ., 1 microfiche).* Table 1 gives the final fractional coordinates and vibrational parameters of the atoms, with their estimated standard deviations. Figure 1 shows a general view of the molecule, with the atomic numbering scheme, and Table 2 gives the bond lengths and angles. Table 3 lists the equations of weighted least-squares planes passing through certain groups of atoms, the distances of various atoms from these planes, and the angles between the planes. Table 4 gives some distances between non-bonded atoms.

Figure 1 The molecule viewed from the [111] direction
Table 2
Bond lengths (\AA) and angles (${ }^{\circ}$)

(a) $\mathrm{MnN}_{4} \mathrm{O}_{4}$ Co-ordination sphere			
$\mathrm{Mn}-\mathrm{N}(1)$	$2 \cdot 289(13)$	$\mathrm{Mn}-\mathrm{N}\left(\mathrm{l}^{\prime}\right) \quad 2 \cdot 333(10)$	
$\mathrm{Mn}-\mathrm{N}(2)$	$2 \cdot 286(14)$	$2 \cdot 308(14)$	
$\mathrm{Mn}-\mathrm{O}(1)$	$2 \cdot 454$ (16)	$\mathrm{Mn}-\mathrm{O}\left(1^{\prime}\right) \quad 2.465(11)$	
$\mathrm{Mn}-\mathrm{O}(2)$	$2 \cdot 460$ (15)	$\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right) \quad 2 \cdot 304(16)$	
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{N}(2)$	70.3(4)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{N}\left(2^{\prime}\right)$	69.7(5)
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{N}\left(2^{\prime}\right)$	88.6(5)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{N}(2)$	86.4(4)
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{N}\left(\mathrm{l}^{\prime}\right)$	148.5(4)	$\mathrm{N}(2)-\mathrm{Mn}-\mathrm{N}\left(2^{\prime}\right)$	89.1 (5)
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{O}(1)$	129.9 (4)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{O}\left(1^{\prime}\right)$	127.5(5)
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{O}\left(\mathrm{l}^{\prime}\right)$	82.7(5)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{O}(1)$	72.2(4)
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{O}(2)$	$78 \cdot 9(5)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right)$	84•8(4)
$\mathrm{N}(1)-\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right)$	114.7(5)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{O}(2)$	115-3(5)
$\mathrm{N}(2)-\mathrm{Mn}-\mathrm{O}(1)$	158.5 (3)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{Mn}-\mathrm{O}\left(1^{\prime}\right)$	148.3(5)
$\mathrm{N}(2)-\mathrm{Mn}-\mathrm{O}\left(1^{\prime}\right)$	$116 \cdot 0$ (5)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{Mn}-\mathrm{O}(1)$	84-7(5)
$\mathrm{N}(2)-\mathrm{Mn}-\mathrm{O}(2)$	146•1(5)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right)$	154.4(4)
$\mathrm{N}(2)-\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right)$	$89 \cdot 1$ (5)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{Mn}-\mathrm{O}(2)$	75.9(4)
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(2)$	$51 \cdot 3(5)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right)$	51.5(4)
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}\left(2^{\prime}\right)$	87.7(5)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Mn}-\mathrm{O}(2)$	72.5(5)
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}\left(1^{\prime}\right)$	77-9(5)	$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{O}(2)^{\prime}$	117.2(5)

Table 2 (Continued)

(b) MnN_{6} Pseudo-octahedron			
$\mathrm{N}(5)-\mathrm{Mn}-\mathrm{N}(1)$	104.6(5)	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Mn}-\mathrm{N}\left(\mathbf{1}^{\prime}\right)$	106.3(4)
$\mathrm{N}(5)-\mathrm{Mn}-\mathrm{N}\left(1^{\prime}\right)$	93.5(4)	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Mn}-\mathrm{N}(1)$	99•8(4)
$\mathrm{N}(5)-\mathrm{Mn}-\mathrm{N}(2)$	167.1(5)	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Mn}-\mathrm{N}\left(2^{\prime}\right)$	166.3(5)
$\mathrm{N}(5)-\mathrm{Mn}-\mathrm{N}\left(2^{\prime}\right)$	78.8(4)	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Mn}-\mathrm{N}(2)$	103.9(5)
$\mathrm{N}(5)-\mathrm{Mn}-\mathrm{N}\left(5^{\prime}\right)$	88-5(4)		

(c) Dipyridylpyridazine ligands

$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$
$\mathrm{C}(1)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$
$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{N}(2)$
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(6)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(4$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$
$\mathrm{N}(4)-\mathrm{C}(10)-\mathrm{C} 11)$
$\mathrm{N}(4)-\mathrm{C}(10)-\mathrm{C}(11)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(4)$
(d) Nitrate ligands
$\mathrm{N}(5)-\mathrm{O}(1)$
$\mathrm{N}(1) \mathrm{O}(2)$
$\mathrm{N}(5)-\mathrm{O}(3)$
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(2)$
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{O}(3$
$\mathrm{O}(3)-\mathrm{N}(5)-\mathrm{O}(1)$
$\mathrm{O}(3)-\mathrm{N}(5)-\mathrm{O}(1)$

[^0]The compound consists of molecules in which the manganese atom is in eightfold co-ordination, with two bidentate nitrate groups and two bidentate dppn ligands, each of the latter having one pyridine and one pyridazine nitrogen atom not involved in co-ordination. The

Figure 2 View of the molecule along a line approximately bisecting the two chelating $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ angles, illustrating the deviation from two-fold symmetry

Table 3
Planes of best (least-squares) fit to selected groups of atoms
(a) Atoms defining the planes ${ }^{\text {a }}$

Plane	Group	Atoms ${ }^{b}$
(A)	Ligand pyridyl	$\mathrm{C}(1)-(5), \mathrm{N}(1), \mathrm{N}(3)$
(B)	Pyridazine	$\mathrm{C}(6)-(9), \mathrm{N}(2), \mathrm{N}(3)$
(C)	Free pyridyl	$\mathrm{C}(10)-(14), \mathrm{N}(4)$
(D)	$\mathrm{Nitrate}^{2}$	$\mathrm{~N}(5), \mathrm{O}(1),(3)$
(E)	MnN_{2}	$\mathrm{Mn}, \mathrm{N}(1), \mathrm{N}(2)$
(F)	MnO_{2}	$\mathrm{Mn}, \mathrm{O}(1), \mathrm{O}(2)$

(b) Equations of planes ${ }^{c}$ in the form

$l X+m Y+n Z=p$				
	$10^{3} l$	$10^{3} m$	$10^{3} n$	$10^{3} p$
(A)	-49	-570	820	-1382
(B)	33	-639	769	-962
(C)	-151	-546	824	-1880
(D)	192	-785	589	-232
(E)	166	-597	785	-1246
(F)	178	-776	605	-227
$\left(A^{\prime}\right)$	-705	602	375	-1740
$\left(B^{\prime}\right)$	-695	592	408	-1793
$\left(C^{\prime}\right)$	-654	701	287	-2426
$\left(D^{\prime}\right)$	884	122	-452	-670
$\left(E^{\prime}\right)$	-761	416	499	-1087
$\left(F^{\prime}\right)$	899	101	-427	-802

(c) Distances $(\AA)^{d}$ of the Mn atom from the planes (A) $-0.40,\left(A^{\prime}\right)-0.43,(B)-0.16,\left(B^{\prime}\right)-0.39,(C)-1.04$, $\left(C^{\prime}\right)-1.03,(D)-0.05,\left(D^{\prime}\right) 0.08$
(d) Angles between planes $\left({ }^{\circ}\right)$

$(A)-(B)$	$6 \cdot 8$	dppn
$(B)-(C)$	$12 \cdot 2$	$2 \cdot 1$
$(A)-(C)$	$6 \cdot 0$	$9 \cdot 6$
	$8 \cdot 1$	

$(E)-\left(E^{\prime}\right) 89,(E)-(F) 15,(E)-\left(F^{\prime}\right) 104,(F)-\left(F^{\prime}\right) 100,\left(E^{\prime}\right)-\left(F^{\prime}\right) 149$, $\left(E^{\prime}\right)-(F) 99$
a Atoms defining the planes were given weights proportional to their atomic numbers. b In planes $(A)-(D)$, the deviation of each component atom from its plane is less than the root-mean-square standard deviation (ca. $0.03 \AA$) of its co-ordinates. - Orthogonal co-ordinates X, Y, Z are related to the fractional co-ordinates of Table 1 as follows: $X=a x \sin \gamma-c z \sin \alpha$ $\cos \beta^{*}, Y=b y+a x \cos \gamma+c z \cos \alpha, Z=c z \sin \alpha^{*} \sin \beta$. l, m, n Are the direction cosines of the plane normal, and p is in \AA. The root-mean-square standard deviation of the Mn co-ordinates is $0.004 \AA$.

Table 4
Selected distances (\AA) between non-bonded atoms
(a) Intramolecular

$\mathrm{N}(1) \cdot \cdots \mathrm{N}(2)$	$2 \cdot 63$	$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 13$
$\mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{N}\left(2^{\prime}\right)$	$2 \cdot 65$	$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 08$
$\mathrm{N}(1) \cdots \mathrm{N}\left(2^{\prime}\right)$	$3 \cdot 21$	$\mathrm{O}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	3.30
$\mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{N}(2)$	$3 \cdot 16$	$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}(2)$	2.91
$\mathrm{N}(2) \cdots \mathrm{N}\left(2^{\prime}\right)$	$3 \cdot 22$	$\mathrm{O}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	3.09
$\mathrm{N}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 15$	$\mathrm{N}(1) \cdots \mathrm{O}(2)$	3.02
$\mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{O}(1)$	$2 \cdot 82$	$\mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 13$
$\mathrm{N}(2) \cdots \mathrm{O}\left(2^{\prime}\right)$	3.22	$\mathrm{N}\left(2^{\prime}\right) \cdots \mathrm{O}(1)$	$3 \cdot 21$
$\mathrm{N}\left(2^{\prime}\right) \cdots \mathrm{O}(2)$	2.93	$\mathrm{N}\left(3^{\prime}\right) \cdots \mathrm{O}(2)$	$3 \cdot 13$
$\mathrm{C}(1) \cdots \mathrm{O}(2)$	2.91	$\mathrm{C}\left(1^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	3.09
$\mathrm{C}\left(5^{\prime}\right) \cdots \mathrm{O}(1)$	$3 \cdot 25$		
(b) Intermolecular ${ }^{\text {a,b }}$			
$\mathrm{C}\left(11^{\prime}\right) \cdots \mathrm{C}\left(1^{1}\right)$	$3 \cdot 62$	$\mathrm{C}(11) \cdots \mathrm{C}\left(5^{\text {III }}\right)$	3.67
$\mathrm{C}\left(12^{\prime}\right) \cdots \mathrm{C}\left(1^{1}\right)$	$3 \cdot 57$	$\mathrm{C}(11) \cdots \mathrm{C}\left(6^{\text {III }}\right)$	$3 \cdot 50$
$\mathrm{C}\left(14^{\prime}\right) \cdots \mathrm{C}\left(10^{\text {II }}\right.$)	$3 \cdot 51$	$\mathrm{C}(12) \cdots \mathrm{C}\left(\mathrm{IIII}^{\text {I }}\right.$	$3 \cdot 47$
$\mathrm{C}\left(14^{\prime}\right) \cdots \mathrm{C}\left(11^{\text {II }}\right.$)	3.57	$\mathrm{C}(12) \cdots \mathrm{C}\left(5^{\text {III }}\right)$	$3 \cdot 62$
$\mathrm{C}\left(7^{\prime}\right) \cdots \mathrm{C}\left(9^{\prime \prime}\right)^{\prime \prime}$	$3 \cdot 60$	$\mathrm{C}(9) \cdots \mathrm{C}\left(9^{\text {III }}\right)$	$3 \cdot 66$
$\mathrm{C}\left(7^{\prime}\right) \cdots \mathrm{C}\left(10^{\prime \mathrm{II}}\right)$	$3 \cdot 51$	$\mathrm{C}\left(8^{\prime}\right) \cdots \mathrm{C}\left(9^{\prime} \mathrm{I}\right)$	$3 \cdot 53$
$\mathrm{C}(4) \cdots \mathrm{N}\left(5^{\text {IV }}\right.$)	$3 \cdot 45$	$\mathrm{C}\left(4^{\prime}\right) \cdots \mathrm{C}\left(13^{\prime \mathrm{I}}\right)$	$3 \cdot 55$
$\mathrm{C}(3) \cdots \mathrm{O}\left(3^{\text {rv }}\right)$	$3 \cdot 35$	$\mathrm{C}(14) \cdots \mathrm{N}\left(5^{\prime \mathrm{III}}\right)$	3.50
$\mathrm{C}(4) \cdots \mathrm{O}\left(3^{\text {rv }}\right)$	$3 \cdot 29$	$\mathrm{C}(2) \cdots \mathrm{O}\left(2^{\text {I }}\right.$)	$3 \cdot 34$
$\mathrm{C}(4) \cdots \mathrm{O}\left(1^{\text {IV }}\right.$)	$3 \cdot 35$	$\mathrm{C}\left(4^{\prime}\right) \cdots \mathrm{O}\left(3^{\mathbf{V}}\right)$	$3 \cdot 40$
$\mathrm{C}(14) \cdots \mathrm{O}\left(1^{\prime \prime \mathrm{III}}\right)$	$3 \cdot 33$	$\mathrm{C}\left(7^{\prime}\right) \cdots \mathrm{O}\left(1^{\mathbf{V}}\right)$	$3 \cdot 39$
$\mathrm{C}(11) \cdots \mathrm{O}\left(3^{\prime 7}\right)$	$3 \cdot 33$	$\mathrm{C}\left(11^{\prime}\right) \cdots \mathrm{O}\left(3^{\text {IV }}\right.$)	$3 \cdot 20$
$\mathrm{C}\left(1^{\prime}\right) \cdots \mathrm{O}\left(3^{\prime} \mathrm{VI}\right)$	$3 \cdot 38$	$\mathrm{C}\left(12^{\prime}\right) \cdots \mathrm{O}\left(3^{\text {IV }}\right.$)	$3 \cdot 21$
$\mathrm{C}\left(2^{\prime}\right) \cdots \mathrm{O}\left(3^{\prime \prime} \mathrm{II}\right)$	$3 \cdot 37$	$\mathrm{C}\left(12^{\prime}\right) \cdots \mathrm{O}\left(1^{\prime 1}\right)$	$3 \cdot 31$
$\mathrm{N}(4) \cdots \mathrm{N}\left(5^{\prime} \mathrm{II}\right)$	$3 \cdot 19$	$\mathrm{C}\left(13^{\prime}\right) \cdots \mathrm{O}\left(1^{\prime} \mathrm{I}\right)$	$3 \cdot 33$

a Distances not included are $\mathrm{C} \cdots \mathrm{C}>3 \cdot 7, \mathrm{C} \cdots \mathrm{N}>3.5$, $\mathrm{C} \cdots \mathrm{O}>3 \cdot 4, \mathrm{~N} \cdots \mathrm{~N}>3 \cdot 7$, and $\mathrm{N} \cdots \mathrm{O}>3 \cdot 3 \AA$. ${ }^{\text {b }}$ Roman numeral superscripts denote equivalent positions relative to x, y, z :

$$
\begin{array}{cr}
\text { I }-x,-y,-z & \text { IV } x-1, y, z \\
\text { II }-x, 1-y,-z & \text { V } 1-x, 1-y,-z \\
\text { III }-x, 1-y, 1-z & \text { IV } 1-x, 1-y, 1-z
\end{array}
$$

molecules possess no symmetry, the extent to which they deviate from C_{2} symmetry being evident from Figure 2, which is a view along a line approximately bisecting the $\mathrm{N}(1)-\mathrm{Mn}-\mathrm{N}\left(1^{\prime}\right)$ and $\mathrm{N}(2)-\mathrm{Mn}-\mathrm{N}\left(2^{\prime}\right)$ angles. Two enantiomorphous molecules occupy the unit cell in the arrangement shown in Figure 3.

Figure 3 Arrangement of molecules in the unit cell
The co-ordination sphere is filled fairly uniformly by the eight ligand atoms, the distances between adjacent atoms belonging to different ligands lying in the ranges $2 \cdot 9-3 \cdot 3$ for $\mathrm{O} \cdots \mathrm{O}\left\{c f .3 \cdot 1-3 \cdot 3\right.$ in $\left[\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$, ref. 7$\}$,
${ }^{7}$ J. Drummond and J. S. Wood, J. Chem. Soc. (A), 1970, 226.
$2 \cdot 8-3 \cdot 2$ for $\mathrm{O} \cdots \mathrm{N}$, and $3 \cdot 1-3 \cdot 2 \AA$ for $\mathrm{N} \cdot \mathrm{N}$ contacts. Not surprisingly, however, the geometrical arrangement is not particularly close to either of the common regular eightfold co-ordination polyhedra ($D_{4 d}$ square antiprism and $D_{2 d}$ dodecahedron), though it can be viewed as a distorted form of either. Alternatively, it is possible to regard each nitrate ligand as occupying only a single co-ordination site, ${ }^{8}$ the resulting pseudooctahedron being distorted in consequence of the 70° angles subtended at Mn by the dppn groups, but not much more so than would be expected in a cis-octahedral bis-chelate $\left\{\right.$ e.g. $\left[\mathrm{Ga}(\text { bipy })_{2} \mathrm{Cl}_{2}\right]^{+}$, ref. 9$\}$.

The four $\mathrm{Mn}-\mathrm{N}$ and one of the $\mathrm{Mn}-\mathrm{O}$ bond lengths are close to $2 \cdot 30 \AA$, the other three $\mathrm{Mn}-\mathrm{O}$ bonds being ca. $2 \cdot 46$ \AA long. All these bonds are rather longer than those commonly observed in six-co-ordinate manganese(II) complexes (ca. $2 \cdot 1-2 \cdot 2 \AA$), ${ }^{10}$ though bonds of similar length have also been found in the seven-co-ordinate ion $\left[\mathrm{Mn}(\mathrm{edta}) \mathrm{H}_{2} \mathrm{O}\right]^{2-}[\mathrm{Mn}-\mathrm{O}$ ca. $2 \cdot 24, \mathrm{Mn}-\mathrm{N}$, ca. $2 \cdot 38 \AA$ (ref. 1I)] and eight-co-ordinate $\left[\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}[\mathrm{Mn}-\mathrm{O}$ $2 \cdot 28-2 \cdot 40 \AA$ (ref. 7)]. This expansion of the co-ordination sphere is less common with ions such as Ni^{2+} for which ligand-field effects tend to favour an octahedral arrangement, but presumably a spherical ion like Mn^{2+} can achieve as much stability with seven or eight ligand atoms at somewhat greater distances as with six at the ' normal ' distance.

The two dppn ligands show no significant differences in internal geometry, and the six-membered rings are all planar, with bond lengths and angles as expected. In each ligand the pyridine and pyridazine rings involved in chelation are approximately coplanar, the dihedral angles of 2 and 7° being within the range commonly encountered in complexes of $2,2^{\prime}$-bipyridyl. ${ }^{12}$ The non-co-ordinating pyridine rings also make rather small angles (10 and 12°) with their respective pyridazine rings; the approximate overall planarity is doubtless favoured by molecular packing requirements. The two non-co-ordinating nitrogen atoms in each dppn molecule are mutually trans (as are the nitrogen atoms in $2,2^{\prime}$-bipyridyl itself ${ }^{13}$), presumably to minimise steric interactions between hydrogen atoms.

The nitrate ligands are planar. One is symmetrically bidentate ($\mathrm{Mn}-\mathrm{O} 2 \cdot 46 \AA$), and its geometry does not differ significantly from that of free nitrate ($\mathrm{N}-\mathrm{O} \mathbf{1 . 2 5}$ \AA). ${ }^{14}$ The other co-ordinates unsymmetrically [$\mathrm{Mn}-\mathrm{O}$ $2 \cdot 47(1)$ and $2 \cdot 30(2) \AA, \mathrm{N}-\mathrm{O}-\mathrm{Mn} 94(1)$ and $\left.102(1)^{\circ}\right]$, and its terminal $\mathrm{N}-\mathrm{O}$ bond is shorter and the chelating $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle smaller than in the free ion by amounts which are probably significant. The difference in the co-ordination geometry of the two nitrate ligands, together with the low overall symmetry of the complex, is doubtless responsible

[^1]for the complexity of the i.r. absorption attributed to nitrate vibrations (see later).

We have also prepared similarly the compounds $\left[\mathrm{M}(\mathrm{dppn})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Zn}$ or Cd$) . \quad X$-Ray powder photographs indicate that the Mn and Cd compounds are isomorphous, but the Zn compound has a different crystal structure. Possibly this is because the smaller size of Zn^{2+} does not allow both nitrate ligands to be bidentate.

On the question of why, under similar conditions, Ni, Co , and Cu nitrates gave binuclear complexes with dppn whereas Mn and Zn nitrates failed to do so, we can only suggest that perhaps this is one of those marginal cases where ligand-field effects make the critical difference: when dppn and nitrate share the co-ordination sphere of a spherical cation, the cis-arrangement with irregular seven- or eight-co-ordination is preferred, but the transbinuclear structure becomes slightly more stable when the shape of the cation electron cloud favours octahedral geometry.
I.r. Spectra and Nitrate Co-ordination.-The nitrate ion (symmetry $D_{3 h}$) has four normal modes of vibration,

Table 5
Infrared absorption spectra in the regions 1500-1250, $1050-1000$, and $850-800 \mathrm{~cm}^{-1}$

dppn	$\mathrm{M}(\mathrm{dppn})_{\mathbf{2}}\left(\mathrm{NO}_{8}\right)_{\mathbf{8}}$	
	Mn	Cd
1475 m	1480 m ,sh	1480 m
1463 mw	1475 m , sh	1475 m , sh
1455 mw ,sh	1460s, br *	1460s*
1441 m	1453 s *	1450s *
1427 m	1435s	1432s
1414s	1419s	1419 s
1376w	1379m	1377 m
1347w	1355w	1352w
	1325s, br *	
	1310s,sh *	1316s, br *
1296w	1296 ms *	$1297 \mathrm{~m}, \mathrm{sh}$ *
		$1290 \mathrm{~m}, \mathrm{sh}$
		1284 m
	1270w	1270sh
1048m	1056mw	1052 mw
1043w,sh	1044w	1041w
1038w	1039w	1037mw
	1032 mw	1033mw
	1026mw,sh *	1029m*
	1008m*	1007m*
837 vw		84.2 vw
	823mw *	821 m *
	818m*	817 m *
812w	813w	810w
799w	804vw	801w

$\mathrm{w}=$ Weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=\mathrm{broad}, \mathrm{sh}=$ shoulder, $\mathrm{v}=$ very.

* Bands assigned to nitrate vibrations. All spectra were recorded on a Perkin-Elmer 457 instrument, by use of Nujol mulls.
$v_{1}-v_{4}$, of which v_{3} and v_{4} are doubly degenerate. On coordination the symmetry decreases to $C_{2 v}$ or C_{s} and six non-degenerate vibrations become allowed in i.r. absorption: v_{1} and v_{2} of NO_{3}^{-}at $c a .1000$ and $800 \mathrm{~cm}^{-1}$, the two components of v_{3} in the ranges $1250-1350$ and $1450-$
${ }^{12}$ E. D. McKenzie, Co-ordination Chem. Rev., 1971, 6, 187.
${ }^{13}$ L. L. Merritt, jun., and E. D. Schroeder, Acta Cryst., 1956, 9, 801.
${ }_{14}$ C. C. Addison, N. Logan, S. C. Wallwork, and C. D. Garner, Quart. Rev., 1971, 25, 289.
$1550 \mathrm{~cm}^{-1}$, and those of v_{4}, with a smaller splitting, in the range $700-750 \mathrm{~cm}^{-1} .{ }^{15,16}$

The i.r. spectra of dppn and the Mn and Cd complexes in the regions of interest are given in Table 5. The presence of dppn vibrations makes assignment of the nitrate bands difficult, but there appear to be at least three bands in the v_{3}, and two each in the v_{1} and v_{2} regions. (We were unable to find any bands which could definitely be assigned to v_{4} of $\mathrm{NO}_{3}{ }^{-}$.) The number of bands observed can be explained as a result of the presence of two distinctly different kinds of co-ordinated nitrate. A similar situation occurs in [$\mathrm{Ni}($ dien $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$, where three co-ordination sites are available to $\mathrm{NO}_{3}{ }^{-}$ ions, and two sets of nitrate bands are observed. ${ }^{16}$ The pattern of v_{2} and v_{3} bands in this compound ($v_{3} 1480$ and 1300, and $v_{2} 808$ assigned to bidentate $\mathrm{NO}_{3}{ }^{-} ; v_{3} 1440$ and 1315 , and $v_{2} 816 \mathrm{~cm}^{-1}$ assigned to unidentate $\mathrm{NO}_{3}{ }^{-}$)
${ }^{15}$ B. O. Field and C. J. Hardy, Quart. Rev., 1964, 18, 361.
${ }_{16}{ }^{16}$ N. F. Curtis and Y. M. Curtis, Inorg. Chem., 1965, 4, 804.
${ }_{17}$ A. B. Blake and J. Lockyer, unpublished work.
in fact resembles that in the dppn complexes, suggesting that the asymmetry of the co-ordination of one nitrate ion in the latter is sufficient to have a fairly marked effect on the force constants involved.

We have also prepared in a similar manner the six compounds $\left[\mathrm{M}(\mathrm{biL})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Mn}, \mathrm{Zn}$, or Cd ; biL $=$ $2,2^{\prime}$-bipyridyl or 1,10 -phenanthroline) and examined their X-ray powder diffraction patterns and i.r. spectra. ${ }^{17}$ In both cases the Mn and Cd i.r. spectra resemble each other more than the Zn spectrum, but no isomorphisms are observed. As with the dppn complexes, there is evidence for more than one set of nitrate i.r. bands, and we surmise that at least one nitrate ion is bidentate in these compounds also.

We thank Mrs. J. Lockyer for preparative assistance, and the University of Hull and the S.R.C. for studentships. All computing was carried out at the Centre for Computer Studies, University of Hull.
[4/1912 Received, 18th September, 1974]

[^0]: * See Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.

 5 ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962.

 - Structure-factor, Fourier-synthesis, and anisotropic (blockdiagonal) least-squares programs by Dr. C. H. Morgan, Centre for Computer Studies, University of Hull; data-reduction, statistical-analysis, and molecular-geometry programs by A. B. Blake and L. R. Fraser; molecule-drawing program PAMOLE by A. J. Cole and P. G. Adamson, Acta Cryst., 1969, A25, 535.

[^1]: ${ }^{8}$ F. A. Cotton and J. G. Bergman, J. Amer. Chem. Soc., 1964, 86, 2941; Inorg. Chem., 1966, 5, 1208.
 ${ }^{1}$ R. Restivo and G. J. Palenik, Chem. Comm., 1969, 867.
 ${ }^{10}$ A. Braibanti, A. Tiripicchio, A. M. Manotti Lanfredi, and M. Camellini, Acta Cryst., 1967, 23, 248; H. Montgomery and E. C. Lingafelter, ibid., 1968, B24, 1127; M. I. Kay, I. Almodovar, and S. F. Kaplan, ibid., p. 1312.
 ${ }_{11}$ S. Richards, B. Pedersen, J. V. Silverton, and J. L. Hoard, Inorg. Chem., 1964, 3, 27.

