Structural Studies in Main Group Chemistry. Part VIII. ${ }^{1}$ The Crystal and Molecular Structure of $\mathrm{Bis}(\mathbf{N}$-methyl- N -acetylhydroxylamino)dimethyltin(Iv)

By Philip G. Harrison,* Trevor J. King, and John A. Richards, Department of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD
The crystal structure of $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}$ has been determined by X-ray methods. The crystals are monoclinic. space group $P 2_{1} / c$ with $a=8.8933(8), b=7.2861(7), c=20.5352(14) A, \beta=104.472(5)^{\circ}$. The geometry at tin is distorted octahedral, the overall symmetry approximating to $C_{2 v}$. The two N -acetylhydroxylamine residues function as bidentate ligands forming one short covalent and one long co-ordinate bond to tin, whilst the $\mathrm{Me}-\mathrm{Sn}-\mathrm{Me}$ group is not linear, the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle being $145 \cdot 8^{\circ}$. Bond distances within the two ligand residues indicate significant multiple-bond character for the $\mathrm{C}-\mathrm{N}$ bonds and single bond zwitterionic character for the $\mathrm{C}=\mathrm{O}$ bonds.

Bifunctional diorganotin(iv) derivatives possessing potentially bridging or bidentate groups are known to be able to assume either four-co-ordinate tetrahedral or six-co-ordinate octahedral structures, or a structure intermediate between these extremes, depending on the nature of the groups bonded to tin. Thus, whereas diphenyltin dichloride consists of isolated molecules in the solid, ${ }^{2}$ both dimethyltin ${ }^{3}$ and bis(chloromethyl)tin ${ }^{4}$ dichlorides exhibit weak chloride bridging, which leads to stereochemistries at tin which are best described as intermediate between tetrahedral and octahedral. Strong fluoride bridging in dimethyltin difluoride results in octahedral co-ordination at tin and the formation of
${ }^{1}$ Part VII, P. G. Harrison and T. J. King, J.C.S. Dalton, 1974, 2298.
${ }^{2}$ P. T. Green and R. F. Bryan, J. Chem. Soc. (A), 1971, 549.
3 A. G. Davies, H. J. Milledge, D. C. Puxley, and R. J. Smith, J. Chem. Soc. $(A), 1970,2862$.
${ }^{4}$ N. G. Bokii, Yu. T. Struchkov, and A. K. Prokof'ev, J. Strukt. Chem., 1972, 18, 665.
${ }_{5}$ E. O. Schlemper and W. C. Hamilton, Inovg. Chem., 1966, 8, 995.
${ }_{6}$ J. Hilton, E. K. Nunn, and S. C. Wallwork, J.C.S. Dalton, 1973, 173.
linear $\left(\mathrm{SnF}_{2}\right)_{n}$ chains with methyl groups above and below the plane of the chain. ${ }^{5}$ A similar range of co-ordination is exhibited by potentially bidentate oxygen ligands. Dimethyltin dinitrate ${ }^{6}$ and bis(oxinate) ${ }^{7}$ have co-ordination polyhedra which may be described as distorted octahedral with trans- and cismethyl groups, respectively. Bis(pentane-2,4-dionato)dimethyltin ${ }^{8}$ and bis(fluorosulphato)dimethyltin ${ }^{9}$ are regularly octahedral with linear $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ groupings. In the latter compound, however, the fluorosulphatoligands bridge adjacent tin atoms, whilst the former compound consists of discrete monomeric units.
As part of our study into derivatives with the $\mathrm{M}-\mathrm{O}-\mathrm{N}$ grouping ${ }^{\mathbf{1 , 1 0 , 1 1}}$ and the relationship between spectro-
${ }^{7}$ E. O. Schlemper, Inorg. Chem., 1967, 6, 2012.
${ }^{8}$ G. A. Miller and E. O. Schlemper, Inorg. Chem., 1973, 12, 677.
${ }_{9}$ F. A. Allen, J. A. Lerbscher, and J. Trotter, J. Chem. Soc. (A), 1971, 2507.
${ }_{10}$ P. G. Harrison, Inorg. Chem., 1973, 12, 1545.
${ }_{11}$ P. G. Harrison and J. J. Zuckerman, Inorg. Chem., 1970, 9, 175; P. G. Harrison and J. J. Zuckerman, Inorg. Nuclear Chem. Letters, 1970, 6, 5.
scopic properties and structure, ${ }^{1,12}$ we report in this paper the crystal structure of $\operatorname{bis}(N$-methyl- N-acetylhydroxylamino)dimethyltin(Iv).

Table 1

Final positional atomic parameters (estimated standard deviations are given in parentheses)

Atom	x / a	y / b	z / c
$\mathrm{Sn}(1)$	$0 \cdot 31857(4)$	$0 \cdot 51188(5)$	$0 \cdot 38994(2)$
$\mathrm{O}(1)$	$0 \cdot 42208(46)$	$0 \cdot 65174(61)$	$0 \cdot 32250$ (19)
$\mathrm{O}(2)$	$0.57285(44)$	$0 \cdot 60496(58)$	$0 \cdot 44935(19)$
$\mathrm{O}(3)$	$0.08973(49)$	$0 \cdot 36042(77)$	$0 \cdot 40085(21)$
$\mathrm{O}(4)$	$0 \cdot 15442(46)$	$0 \cdot 51026$ (57)	$0 \cdot 29482(20)$
$\mathrm{N}(1)$	$0.56424(50)$	$0 \cdot 73262(62)$	0.34986(21)
$\mathrm{N}(2)$	$0.00811(49)$	$0 \cdot 45002(64)$	$0 \cdot 29451$ (23)
C(1)	$0 \cdot 63410$ (58)	$0 \cdot 70533$ (72)	$0 \cdot 41286$ (26)
C(2)	$0 \cdot 78923$ (77)	$0 \cdot 79095(120)$	$0 \cdot 44258(36)$
$\mathrm{C}(3)$	$0 \cdot 61412(90)$	$0 \cdot 84280$ (108)	$0 \cdot 30033(34)$
C(4)	-0.01821(63)	$0 \cdot 37501$ (76)	$0 \cdot 34881$ (28)
C(5)	$-0.09831(83)$	$0 \cdot 47582(98)$	$0 \cdot 22991$ (39)
C(6)	$-0.17790(74)$	$0 \cdot 30374(100)$	$0 \cdot 34665(39)$
C(7)	$0 \cdot 24293$ (81)	$0 \cdot 72569(99)$	$0 \cdot 44295(34)$
C(8)	$0 \cdot 41434(74)$	$0 \cdot 24515(84)$	$0 \cdot 39581(32)$

EXPERIMENTAL

Crystals of bis(N-methyl- N-acetylhydroxylamino)dimethyltin(IV) were prepared by the azeotropic dehydration
the preliminary cell data and subsequent intensity measurements.

Crystal Data. $-\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Sn}, M=324 \cdot 93$, space group $P 2_{1} / c, a=8.8933(8), \quad b=7.2861(7), \quad c=20.5352(14) \AA$, $\beta=104.472(5)^{\circ}, U=1288.4 \AA^{3}, D_{\mathrm{m}}=1.66$ (by flotation), $Z=4, D_{\mathrm{c}}=1 \cdot 675, F(000)=648$.

The space group was uniquely determined as $P 2_{1} / c$ by the systematic absences $k 0 l$ for $l=2 n+l$ and $0 k 0$ for $k=2 n+l$ from zero and first layer equi-inclination Weissenberg photographs. Intensity data up to $\theta=29.99^{\circ}$ were collected using Mo- K_{α} radiation ($\lambda=0.71069 \AA$) on a Hilger-Watt four-circle diffractometer. Accurate cell parameters were obtained by least-squares refinement using ca. 25 reflections. Each reflection was counted for 30 s and the associated two background counts for 10 s . The reflections were brought to the same relative intensities by reference reflections taken for every 100 reflections recorded; the diffractometer was referenced every 200 reflections recorded. The background counts were low and were included in the usual manner. Intensities varied from 1 to 7.85×10^{5}. All reflections with a corrected intensity less than 2.5 times the estimated standard deviation of the total counts were considered as nonobserved and were not used, reducing the total number of

Table 2
Final anisotropic thermal parameters * (estimated standard deviations are given in parentheses)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Sn}(1)$	4.23(2)	5.44(2)	3.93(2)	-0.75(2)	$0 \cdot 71(1)$	0.18(2)
$\mathrm{O}(1)$	$5 \cdot 41(22)$	$7 \cdot 72(26)$	3-96(19)	$2 \cdot 34(20)$	$0 \cdot 41$ (16)	-0.45(18)
$\mathrm{O}(2)$	$4 \cdot 82(20)$	6.90(25)	4-25(19)	1-62(18)	$0.72(15)$	-0.92(17)
$\mathrm{O}(3)$	5.08(23)	10.99(37)	$4 \cdot 94(23)$	-2.45 (23)	$0 \cdot 52(18)$	1-62(23)
$\mathrm{O}(4)$	$4 \cdot 45$ (18)	8-22(29)	$4 \cdot 34(18)$	1-85(19)	$0 \cdot 32(15)$	-0.47 (18)
N(1)	4.75(23)	5-21(24)	4.27(21)	1.22(19)	1.07(18)	$-0.25(18)$
$\mathrm{N}(2)$	3.84(21)	$5 \cdot 01(22)$	5.07(24)	-0.68(17)	$0 \cdot 04(18)$	$-0.03(19)$
$\mathrm{C}(1)$	4.02(24)	$4 \cdot 97(26)$	$4 \cdot 80(27)$	$0 \cdot 90$ (20)	$1.06(20)$	$0 \cdot 35(21)$
$\mathrm{C}(2)$	5.78(38)	$11 \cdot 15(57)$	6.48(40)	$4 \cdot 57(39)$	$-0.09(30)$	$-1 \cdot 26(38)$
$\mathrm{C}(3)$	8.89(50)	8.77(49)	5.53(36)	$3 \cdot 80(40)$	1.43(33)	-1.54(32)
C(4)	$4 \cdot 63$ (28)	$4 \cdot 86(27)$	$5 \cdot 39(31)$	$-0.68(22)$	$0 \cdot 85(23)$	-0.46 (23)
C(5)	5.79(35)	8.26(46)	6.64(39)	$-1.69(32)$	-1.48(29)	$1 \cdot 73$ (33)
C(6)	$4 \cdot 61(31)$	7-47(41)	8.94(49)	$-1.60(29)$	$1.74(31)$	$0 \cdot 20(35)$
C(7)	6.57(38)	7-32(40)	6.01(36)	-1.34(31)	$1.55(29)$	$0 \cdot 13(30)$
$\mathrm{C}(8)$	6.37(36)	$5 \cdot 58(33)$	$5 \cdot 68(33)$	-0.25(27)	0.81(27)	-0.62(26)

of a mixture of dimethyltin(iv) oxide and N-methyl $-N$ acetylhydroxylamine in a 1:2 ratio in boiling benzene,

Table 3
Bond distances with standard deviations

Bonded atoms	Bond length (\AA)	Bonded atoms	Bond length (\AA)
$\mathrm{Sn}(1)-\mathrm{C}(7)$	$2 \cdot 105(8)$	$\mathrm{Sn}(1)-\mathrm{O}(4)$	$2 \cdot 126(4)$
$\mathrm{Sn}(1)-\mathrm{C}(8)$	$2 \cdot 113(6)$	$\mathrm{Sn}(1)-\mathrm{O}(3)$	$2 \cdot 374(5)$
$\mathrm{Sn}(1)-\mathrm{O}(1)$	$2 \cdot 107(4)$	$\mathrm{Sn}(1)-\mathrm{O}(2)$	$2 \cdot 384(4)$
$\mathrm{N}(1)-\mathrm{O}(1)$	$1 \cdot 331(6)$	$\mathrm{C}(1)-\mathrm{O}(2)$	$1 \cdot 264(7)$
$\mathrm{N}(1)-\mathrm{O}(3)$	$1 \cdot 450(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.498(8)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 303(6)$		
$\mathrm{N}(2)-\mathrm{O}(4)$	$1 \cdot 372(6)$	$\mathrm{C}(4)-\mathrm{O}(3)$	$1 \cdot 250(6)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1 \cdot 436(8)$	$\mathrm{C}(4)-\mathrm{C}(6)$	$1 \cdot 502(9)$
$\mathrm{N}(2)-\mathrm{C}(4)$	$1.314(8)$		

followed by recrystallisation from diethyl ether. ${ }^{13}$ A suitable crystal of dimensions ca. $0.8 \times 0.6 \times 0.5 \mathrm{~mm}$ was mounted directly onto a fine glass fibre, and used to obtain
${ }^{12}$ P. G. Harrison, T. J. King, and J. A. Richards, J.C.S., Dalton, 1974, 1723.
the reflections from 3756 to 2710 . The number of reflections was further reduced to 2178 by elimination of the lower intensity reflections, to enable adequate computer storage for refinement. The intensities were corrected for Lorentz and polarisation effects but not for absorption.

Structure Determination and Refinement.-The positional parameters of the tin atom in the asymmetric unit were obtained from a Patterson synthesis $P(u v w)$, and these were used to phase the initial structure factor calculation resulting in an R value of 0.81 . A Fourier synthesis employing the rejection test $\left(F_{o} \times 0.25-F_{c}\right) \geqslant 0$ produced 29 unique peaks where the value of the function at any point was >35. The majority of these peaks were not chemically acceptable and were rejected save for six peaks situated within acceptable bonding distance of the tin atom. Four cycles of isotropic full-matrix least-squares refinement failed to produce a satisfactory subsequent Fourier synthesis, convergence being obtained at $R=$ $0 \cdot 272$. Examination of positional and isotropic thermal parameters resulted in the rejection of two further peaks.
${ }^{13}$ P. G. Harrison and J. A. Richards, manuscript in preparation.

Two cycles of isotropic full-matrix refinement and subsequent Fourier synthesis with rejection conditions as before using the tin and the four remaining light atom positions (using carbon scattering factors) reduced the R-value to 0.226 and produced 17 unique peaks with a maximum

Table 4
Bond angles with standard deviations

Atoms defining angle	Bond angle $\left(^{\circ}\right)$	Atoms defining angle	Bond angle $\left({ }^{\circ}\right)$
(a) With central tin atom			
$\mathrm{C}(8)-\mathrm{Sn}(1)-\mathrm{C}(7)$	145.84(26)	$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}(2)$	144.07(14)
$\mathrm{O}(4)-\mathrm{Sn}(1)-\mathrm{O}(1)$	73.22(15)	$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{C}(8)$	84.83(23)
$\mathrm{O}(4)-\mathrm{Sn}(1)-\mathrm{C}(7)$	104.15(21)	$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{C}(7)$	84-43(24)
$\mathrm{O}(4)-\mathrm{Sn}(1)-\mathrm{C}(8)$	102.81(20)	$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{O}(1)$	71-61(14)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(7)$	103.33(24)	$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(8)$	72-16(19)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(8)$	104.25(23)	$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(7)$	74•10(20)
$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}(4)$	$71 \cdot 11(15)$		
(b) Within the ligands			
$\mathrm{Sn}(1)-\mathrm{O}(4)-\mathrm{N}(2)$	116.02(32)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(4)$	128.46(51)
$\mathrm{Sn}(1)-\mathrm{O}(3)-\mathrm{C}(4)$	111.91 (41)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{N}(2)$	119.95 (53)
$\mathrm{O}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	111.57(50)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	120.95 (58)
$\mathrm{O}(4)-\mathrm{N}(2)-\mathrm{C}(4)$	119.93(40)	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{N}(2)$	119.09(48)
$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{N}(1)$	116.42(29)	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	111.13(41)
$\mathrm{Sn}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	110.82(29)	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	119.99(46)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)$	128.88(48)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	119.27(48)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	120.52(45)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	120.20(54)

value of $\geqslant 35 \cdot 0,14$ of which gave a chemically acceptable model. Atom types were ascribed to the peaks and two cycles of isotropic full-matrix followed by two cycles of anisotropic block-diagonal least-squares refinement reduced the R-value to 0.051 . The weighting scheme $w=1 /\{1+$ $\left.\left.\left(F_{\mathrm{o}}-6 \cdot 00\right) / 24 \cdot 0\right)^{2}\right\}$ was then introduced, and two further cycles of block and two of full-matrix anisotropic leastsquares refinement yielded an R-value of 0.048 . At this stage 34 reflections with $F_{\mathrm{c}}>1 / 4 F_{\mathrm{o}}$ were discarded, and two cycles of anisotropic full-matrix refinement failed to reduce the R-value although the atomic parameters continued to settle. Rejection of a further 27 reflections using the same rejection conditions produced a final R value of 0.045 with the shift/error ratio for all positional and thermal parameters being $\ngtr 0 \cdot 003$. A difference Fourier synthesis indicated negligible residual electron density. The scattering factors used were those for neutral atoms.

RESULTS AND DISCUSSION

The structure and atomic numbering scheme for bis(N-methyl- N-acetylhydroxylamino)dimethyltin(Iv) is depicted in the Figure. The geometry at tin is that of a distorted octahedron, the overall symmetry of the molecule approximating to $C_{2 v}$. The $\mathrm{Me}^{-} \mathrm{Sn}-\mathrm{Me}$ group deviates significantly from linearity ($\mathrm{C}-\mathrm{Sn}-\mathrm{C}=145 \cdot 8^{\circ}$), with the $\mathrm{Sn}-\mathrm{C}$ bond distances falling within the range observed for similar derivatives (Table 7). The two anisobidentate hydroxylamino-residues are almost equivalent and form two heterocyclic $\sqrt{\mathrm{Sn} \leftarrow} \leftarrow \mathrm{O}: \mathrm{C} \cdot \mathrm{N} \cdot \mathrm{O}$ rings which are each essentially planar, but are inclined
${ }^{14}$ T. Kimura, N. Yasuoka, N. Kasai, and M. Kakudo, Bull. Chem. Soc. Japan, 1979, 45, 1649.

15 B. H. Bracher and R. W. H. Small, Acta Cryst., 1970, B26, 1705
at an angle of 9° with respect to each other. The rings both contain one short covalent $\mathrm{Sn}-\mathrm{O}$ bond (2.107, $2 \cdot 126 \AA$) and one longer co-ordinate bond (2.374, $2 \cdot 384 \AA$), these distances being very similar to those observed for the analogous bonds in $\mathrm{Ph}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{NPh} \cdot \mathrm{COPh},{ }^{1}$ and demonstrate that the distortion from regular octahedral co-ordination results from the steric demands of the

Atomic numbering in $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}$
ligands. The co-ordination at tin thus resembles very closely that in dimethyltin dinitrate ${ }^{6}$ and dimethyltin bis(dimethyldithiocarbamate). ${ }^{14}$

As in $\mathrm{Ph}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{NPh} \cdot \mathrm{COPh},{ }^{1}$ the bond distances of the N-acetylhydroxylamine residue are consistent with a significant contribution of the zwitterionic canonical form (II) to the electronic distribution. Ligand bond distances for $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}, \mathrm{Ph}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{NPh} \cdot \mathrm{COPh}$, and $\mathrm{HO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{Me} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}^{15}$ are compared in Table 6

and are not unexpectedly very similar. The two $\mathrm{C}=\mathrm{O}$ bond distances in $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}$ differ slightly ($1 \cdot 250,1 \cdot 264 \AA$), but both are longer than that generally found in simple carbonyl compounds such as esters, aldehydes, and ketones ($1.23 \AA$), ${ }^{16}$ and compare with the distances found in zwitterionic compounds such as DL-serine ($1 \cdot 26 \AA$). The endocyclic $\mathrm{C}-\mathrm{N}$ bond distances $(1.303,1.314 \AA)$ are significantly shorter than the normal single-bond values found for the exocyclic $\mathrm{C}-\mathrm{N}$ bonds $(1.450,1.436 \AA)$, but are longer than $C=N$ bond distances found in hydroximate derivatives ($1 \cdot 26-1 \cdot 29 \AA$). ${ }^{17,18}$ The $\mathrm{N}-\mathrm{O}$ bond distances in the two tin derivatives are slightly shorter than in HONH $\cdot \mathrm{COMe} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O},{ }^{15}$ but this difference is attributable

[^0]Table 5
Weighted least-squares equations $(w=z)$ in their normal form of the mean planes through groups of atoms and deviations of the atoms from these planes (in \AA) *
(a) Equation: $p I+q J+r K=s$, where I, J, K are orthogonal co-ordinates in \AA, related to the monoclinic co-ordinates in the following way: $I=X+Z \cos \beta ; J=Y ; K=Z \sin \beta$.

Plane		p	q	r	s	Plane		p	q	r	s
(1) $\mathrm{C}(8$	$\mathrm{C}(7), \mathrm{Sn}(1)$	0.8931	- 0.3909	0.2227	3.92757	(6) C	$\mathrm{N}(1), \mathrm{O}(1)$	-0.5433	3 0.7995	0.2562	4-2992
(2) $\mathrm{O}(4$	O(3), $\mathrm{N}(2)$,	-0.3652	2-8896	$0 \cdot 2743$	5.0510	(7) $\mathrm{C}(4)$	$\mathrm{N}(2), \mathrm{O}(4)$	-0.3055	$5 \quad 0.9001$	$0 \cdot 3106$	$5 \cdot 2100$
	6), C(5), C(4),					(8) $\mathrm{C}(2)$	$\mathrm{C}(1), \mathrm{O}(2)$	-0.5358	$8 \quad 0.8011$	0.2670	$4 \cdot 4219$
Sn(1)						(9) $\mathrm{C}(3$	$\mathrm{N}(1), \mathrm{O}(1)$	-0.5448	$8 \quad 0.7962$	$0 \cdot 2631$	$4 \cdot 3245$
(3) $\mathrm{O}(2), \mathrm{O}(1), \mathrm{N}(1)$,		-0.5072	72 0.8229	$0 \cdot 2563$	4.5567	(10) $\mathrm{C}(6$	$\mathrm{C}(4), \mathrm{O}(3)$	-0.3365	$5 \quad 0.8869$	$0 \cdot 3165$	$5 \cdot 2753$
$\begin{aligned} & \mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \\ & \mathrm{Sn}(1) \end{aligned}$						(11) $\mathrm{C}(5$	$\mathrm{N}(2), \mathrm{O}(4)$	-0.3083	$3 \quad 0.9089$	$0 \cdot 2807$	$5 \cdot 0675$
						(12) $\mathrm{O}(2)$	$\mathrm{O}(1), \mathrm{Sn}(1)$	-0.4433	$\begin{array}{ll}3 & 0.8642\end{array}$	$0 \cdot 2380$	$4 \cdot 6999$
(4) $\mathrm{O}(4), \mathrm{O}(3), \mathrm{O}(2)$,		-0.4410	$10 \quad 0.8681$	0.2279	4.6412	(13) $\mathrm{O}(4)$	$\mathrm{O}(3), \mathrm{Sn}(1)$	-0.4375	$5 \quad 0.8721$	0.2193	4.5890
$\mathrm{O}(1)^{\prime} \mathrm{Sn}(1)$ (5) $\mathrm{O}(4), \mathrm{O}(1), \mathrm{Sn}(1)$						(14) $\mathrm{O}(3)$	$\mathrm{O}(2), \mathrm{Sn}(1)$	-0.4368	$8 \quad 0.8714$	0.2233	$4 \cdot 6179$
		-0.4529	290.8621	. 2273	$4 \cdot 6009$	(15) $\mathrm{N}(2)$	$\mathrm{O}(3), \mathrm{C}(6)$	-0.3314	$4 \quad 0.8932$	$0 \cdot 3040$	5•1858
(b) Deviations from the planes											
Plane (2)		Plane (3)		Plane (4)		Plane (2)		Plane (3)		Plane (4)	
Atom	Δ										
$\mathrm{O}(4)$	-0.08496	$\mathrm{O}(2) \quad-0$	-0.05396	$\mathrm{O}(4)$	-0.01610	$\mathrm{C}(4)$	-0.00533	$\mathrm{C}(3) \quad 0$	0.03858	$\mathrm{C}(7)$ *	2.00594
$\mathrm{O}(3)$	-0.06918	$\mathrm{O}(1)-0$	-0.07007	$\mathrm{O}(3)$	0.01040	$\mathrm{Sn}(1)$	0.08936	$\mathrm{Sn}(1) \quad 0$	0.07748	$\mathrm{C}(8)$ *	-2.02603
N (2)	-0.00249	$\mathrm{N}(1)-0$	-0.01570	$\mathrm{O}(2)$	-0.00811	$\mathrm{C}(7)$ *	$2 \cdot 10932$	$\mathrm{C}(7) * 2$	$2 \cdot 10864$		
C(6)	0.03554	$\mathrm{C}(1) \quad-0$	-0.00939	$\mathrm{O}(1)$	0.01709	$\mathrm{C}(8)$ *	-1.90758	$\mathrm{C}(8){ }^{*}-1$	$1 \cdot 90845$		
C(5)	0.03706	$\mathrm{C}(2) \quad 0$	0.03307	$\mathrm{Sn}(1)$	-0.00327						

The atoms marked by asterisks do not determine the planes.
(c) Angles between the planes (${ }^{\circ}$)

	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
(1)	85.26	85.75	89.79	89.03	83.36	81.47	83.92	83.30	$83 \cdot 30$	81.81	89.71	89.94	89.98	83.05
(2)		$9 \cdot 06$	$5 \cdot 24$	$5 \cdot 92$	11.50	$4 \cdot 05$	11.03	11.64	$2 \cdot 93$	$3 \cdot 46$	$5 \cdot 14$	$5 \cdot 30$	$5 \cdot 14$	2.59
(3)			$4 \cdot 87$	$4 \cdot 18$	$2 \cdot 46$	12.79	$2 \cdot 15$	$2 \cdot 67$	11.01	$12 \cdot 52$	$4 \cdot 48$	$5 \cdot 33$	$5 \cdot 25$	11.20
(4)				$0 \cdot 77$	$7 \cdot 24$	$9 \cdot 29$	7.02	$7 \cdot 51$	7.93	$8 \cdot 52$	$0 \cdot 63$	0.58	$0 \cdot 41$	$7 \cdot 78$
(5)					6.51	$9 \cdot 96$	$6 \cdot 32$	6.80	$8 \cdot 53$	$9 \cdot 24$	$0 \cdot 83$	$1 \cdot 15$	1.09	$8 \cdot 43$
(6)						$15 \cdot 16$	$0 \cdot 76$	$0 \cdot 45$	$13 \cdot 35$	14.95	6.91	$7 \cdot 65$	$7 \cdot 60$	13.58
(7)							14.62	15.24	1.96	1.79	$9 \cdot 17$	$9 \cdot 34$	$9 \cdot 19$	1.58
(8)								$0 \cdot 63$	12.78	14.48	$6 \cdot 63$	$7 \cdot 47$	$7 \cdot 40$	13.05
(9)									$13 \cdot 40$	15.09	$7 \cdot 15$	7.94	$7 \cdot 88$	13.67
(10)										2.90	$7 \cdot 71$	8.08	7.90	$0 \cdot 85$
(11)											$8 \cdot 51$	$8 \cdot 47$	$8 \cdot 35$	$2 \cdot 08$
(12)												1-21	1.01	$7 \cdot 63$
(13)													$0 \cdot 23$	$7 \cdot 88$
(14)														$7 \cdot 71$

* According to V. Schomaker, J. Waser, R. E. Marsh, and G. Bergman, Acta Cryst., 1959, 12, 600.

Table 6
Comparison of bond distances in $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}, \mathrm{Ph}_{3} \mathrm{SnO} \cdot \mathrm{NPh} \cdot \mathrm{COPh}$, and $\mathrm{HO} \cdot \mathrm{NH} \cdot \mathrm{COMe} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$

Bond	$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}$	$\mathrm{Ph}_{3} \mathrm{SnO} \cdot \mathrm{NPh} \cdot \mathrm{COPh}{ }^{1}$	HO-NH $\cdot \mathrm{COMe} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}{ }^{15}$
$\mathrm{N}-\mathrm{O}$	1.381(6), 1.372(6)	1-384(6)	$1 \cdot 400$ (5)
$\mathrm{C}(=\mathrm{O})-\mathrm{N}$	$1.303(6), 1.314(8)$	$1 \cdot 304(9)$	1-333(6)
$\mathrm{C}=0$	1-264(7), $1 \cdot 250(6)$	1-265(9)	$1 \cdot 245$ (6)
C-R	1.498(8), $1.502(9){ }^{\text {a }}$	$1 \cdot 495(7){ }^{\text {b }}$	$1.505(6){ }^{\text {a }}$
$\mathrm{N}-\mathrm{C}(\mathrm{R})$	1-450(9), 1-436(8) ${ }^{\text {a }}$	1-430(10) ${ }^{\text {b }}$	-

Table 7
Comparison of bond parameters of $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}$ with those in related compounds

Compound	Geometry at tin	$\mathrm{C}-\widehat{\mathrm{Sn}}-\mathrm{C}\left({ }^{\circ}\right)$	$r(\mathrm{Sn}-\mathrm{C})(\AA)$	$r(\mathrm{Sn}-\mathrm{O})(\AA)$	$r(\mathrm{Sn} \cdot \cdots \mathrm{O})(\AA)$	Ref.
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{O} \cdot \mathrm{NMe} \cdot \mathrm{COMe})_{2}$	Distorted octahedral	145-8(3)	2.105(8)	2.107(4)	$2 \cdot 374(5)$	This work
			2.113(6)	2-126(4)	$2 \cdot 384(4)$	
$\mathrm{Ph}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{NPh} \cdot \mathrm{COPh}$	Trigonal bipyramidal	-	$e q$ 2.136(8),			a
			ax 2.176(9)	2.091(5)	2.308(4)	
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{oxin})_{2}$	Distorted octahedral	$110 \cdot 7$	$2 \cdot 15(2)$ $2 \cdot 17(2)$	$2 \cdot 11(1)$ $2 \cdot 10(1)$		b
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}$	Distorted octahedral	143.6(8)	2•11(2), 2•12(2)	2•15(1), 2•17(1)	2•70(2), 2•42(1)	c
$\mathrm{Me}_{2} \mathrm{Sn}$ (salen)	Distorted octahedral	161(1)	2.07, $2 \cdot 15$	$2 \cdot 21$		d
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}$	Octahedral	180	$2 \cdot 14(2)$	2.18(1)	2.20(1)	e
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$	Octahedral	180	2.081 (9)	2.240(6)	2.248(7)	f
$\mathrm{Me}_{2} \mathrm{SnCl}_{2} \cdot 2 \mathrm{DMSO}$	Octahedral	180	$2.07(6)$		2.32(3)	g
			2.08(5)		2.38(3)	
$\mathrm{Me}_{2} \mathrm{SnCl}_{2} \cdot 2 \mathrm{pyNO}$	Octahedral	180	2.225(25)		2.251(16)	h

${ }^{-}$Ref. 1. ${ }^{b}$ Ref. 7. ${ }^{c}$ Ref. 6. d M. Calligaris, G. Nardin, and L. Randaccio, J.C.S. Dalton, 1972, 2003. e Ref. $9 . \quad$ Ref. 9. ${ }^{9}$ N. W. Isaacs and C. H. L. Kennard, J. Chem. Soc. (A), 1970, 1257. h E. A. Blom, B. R. Penfold, and W. T. Robinson, J. Chem. Soc. $(A), 1969,913$.
to lack of substitution at nitrogen and hydrogen bonding present in the latter compound, rather than gross electronic redistributions.

We thank the S.R.C. for the award of an INSTANT Studentship (to J. A. R.).
[4/776 Received, 17th April, 1974]

[^0]: 16 'Molecular Structures and Dimensions,' Vol. Al, eds. O. Kennard, D. G. Watson, F. H. Allen, N. W. Isaacs, W. D. S. Motherwell, R. C. Pettersen, and W. G. Town, N.V.A. Oosthoek's Vitgevers Mij Utrecht, 1972.
 ${ }_{17}$ I. K. Larsen, Acta Chem. Scand., 1971, 25, 2409.
 ${ }_{18}$ M. G. Waite and G. A. Sim, J. Chem. Soc. (B), 1971, 752 ; 1102

