Oxidation of Metals by Molybdenum and Tungsten Hexafluorides in Acetonitrile †

By Ann Prescott, David W. A. Sharp, and John M. Winfield,* Department of Chemistry, University of Glasgow, Glasgow G12 800

The metals Ag, Tl, Pb, Zn, Cd, Hg, Mn, Co, Ni, and Cu are oxidised by molybdenum and tungsten hexafluorides in acetonitrile solution at ambient temperature. The products are solvated metal cations, the counter anions being hexafluoro-molybdate(v) or -tungstate(v). MoF_6 Oxidises Ag and Tl to Ag^{II} and TI^{III} respectively whereas Ag^{I} and TI^{I} are formed with WF_6 . Thus MoF_6 is the stronger oxidising agent.

TUNGSTEN HEXAFLUORIDE is the weakest oxidising agent of the 5*d* series,¹ and is considered to be a weaker oxidising agent than molybdenum hexafluoride. For example MoF_6 oxidises both NO^{2a} and $N_2H_6F_2$ ^{2b} and MoF₆ is reduced in many of its halogen-exchange reactions.^{2c} Both hexafluorides are reduced to hexafluorometallates(v)

† No reprints available.

¹ N. Bartlett, Angew. Chem. Internat. Edn., 1968, 7, 433; T. J. Richardson and N. Bartlett, J.C.S. Chem. Comm., 1974, 427.

427.
2 (a) J. R. Geichman, E. A. Smith, S. S. Trond, and P. R. Ogle, *Inorg. Chem.*, 1962, 1, 661; (b) B. Frlec, H. Selig, and H. H. Hyman, *Inorg. Chem.*, 1967, 6, 1775; (c) T. A. O'Donnell and D. F. Stewart, *Inorg. Chem.*, 1966, 5, 1434.

by metal iodides in liquid SO_2 ,³ and tetra-alkylammonium salts have been similarly obtained from MeCN or MeNO₂ solution.⁴ Reaction in the absence of solvent is incomplete. The knowledge that such solvents are suitable reaction media for MoF₆ and WF₆ led to the present work, in which it has been shown that a variety of metals are oxidised by the hexafluorides and that under these conditions MoF₆ is the stronger oxidant. A preliminary account of some of this work has been given.⁵

³ G. B. Hargreaves and R. D. Peacock, J. Chem. Soc., 1957, 4212; 1958, 3776.

⁴ A. M. Noble, Ph.D. Thesis, University of Glasgow, 1970. ⁵ A. Prescott, D. W. A. Sharp, and J. M. Winfield, J.C.S. Chem. Comm., 1973, 667. RESULTS AND DISCUSSION

The metals Cu, Ag, Zn, Cd, Hg, and Tl react rapidly with an excess of MoF_6 or WF_6 in MeCN at room temperature. The metals Mn, Co, Ni, and Pb react much more slowly and a slow reaction occurring between MoF_6 and MeCN prevented its reactions with Pb, Mn, and Ni from being studied in detail. The colour of the solutions obtained was, in general, characteristic of the solvated metal cations. The Raman spectra of the solutions contain a strongly polarised band at ca. 676 (Mo) or 695 (W) cm^{-1} . The spectra of caesium(I) hexafluorometallates(v) contain bands at similar frequencies, and hence the bands are assigned to the $v_1(a_{1g})$ mode of the $[MF_6]^-$ (M = Mo or W) anions. The v_2 and v_5 modes were not observed but this is not surprising as, by analogy with the spectra of MF₆ in MeCN, they would be very weak compared with v_1 .

colours and reflectance spectra of the Co^{II} and Ni^{II} salts are consistent with the presence of octahedrally coordinated metals; similarly CuII appears to have a pseudo-octahedral environment. The solid Mn^{II} compounds are colourless, but in solution they are yellowgreen suggesting a tetrahedral environment for Mn^{II}.⁷

Except for nickel(II) hexafluorotungstate(v) the compounds are appreciably soluble in MeCN and silver(I) hexafluorotungstate(v) is also soluble in benzene. The Raman spectra of the redissolved solids are similar to those of the original solutions (Table 3) and addition of pyridine to some solutions results in the formation of metal-pyridine complexes (Table 1).

In some cases the products isolated depend on the ratio of metal: hexafluoride used in the reaction. With a large excess of MoF₆, the product isolated from the

TABLE]	i
---------	---

Analysis (%) of the solid	l products
-------------	----------------	------------

	Found (calc.)				
Compound	С	X	F	N	
Ag[MoF ₆] ₂ ·4MeCN	14.7 (13.6)	1.5 (1.7)	34.2(32.9)	8.3 (8.1)	
Ag[MoF ₆] ₂ ·4py	29·5 (28·4)	2.7(2.4)	29.6 (27.0)	6·3 (6·6)	
Ag[WF ₆]·2MeCN	9·6 (9·8)	1.3(1.2)	23.0(23.4)	5.7 (5.7)	
TI[MoF ₆] ₃ •6MeCN	13.3(13.3)	1.8 (1.7)	35·4 (31·7)		
TI[MoF ₆] ₃ .6py	27.7 (27.7)	2.9(2.3)	$24 \cdot 3 (26 \cdot 1)$	7·1 (6·0)	
TITTIII[MoF6]4·2MeCN	3.8 (3.6)	0·7 (0·5)	33·9 (34·1)	· · /	
TI[WF ₆]	· ,	· · /	23.6(22.7)		
Pb[WF ₆] ₂ ·2MeCN	5.5 (5.4)	1.2(0.7)	28.7 (25.8)	3.9(3.2)	
Zn[MoF ₆] ₂ ·5MeCN	17.4 (17.4)	$2 \cdot 4 (2 \cdot 2)$	27.3 (29.6)	11.2(10.1)	
Zn[WF ₆] ₂ .6MeCN	15·8 (15·9)	2.0(2.0)	27·7 (25·1)	8·2 (9·3)	
Cd[MoF ₆] ₂ •5MeCN	16·8 (16·3)	$2 \cdot 2 (2 \cdot 1)$	33·9 (31·0)		
Cd[WF ₆] ₂ ·5MeCN	12·9 (13·1)	2·0 (1·6)	$25 \cdot 4 (25 \cdot 0)$	7.3 (7.7)	
Hg[MoF ₆] ₂ ·4MeCN	13.4 (12.3)	1.6 (1.5)	27·4 (29·0)	()	
Mn[WF ₆] ₂ ·4MeCN	12.4(11.9)	2·0 (1·5)	26·9 (28·0)		
Co[MoF ₆] ₂ ·5MeCN	16 ·0 (17·6)	2·6 (2·2)	30·3 (33·4)	9.4(10.2)	
Co[WF ₆] ₂ ·5MeCN	14·1 (14·0)	$2 \cdot 2 (1 \cdot 7)$	26.9(26.5)	8·5 (8·1)	
Ni WF 6MeCN 4	16·7 (16·0)	2.0(2.0)	$25 \cdot 6 (25 \cdot 3)$	7.8 (9.3)	
Cu[MoF ₆] ₂ •5MeCN	16·3 (17·4)	$2 \cdot 1 (2 \cdot 2)$	33·4 (33·2)	()	
Cu[MoF ₆] ₂ •4py	33.4 (30.0)	3.4(2.5)	27.5 (28.5)	8.7 (7.0)	
Cu[MoF ₆]·4MeCN	21·9 (21·9)	2·9 (2·2)	25·7 (26·0)	× /	
Cu[WF ₆] ₂ ·5MeCN	13.9 (13.9)	2.0(1.7)	28.7(26.4)	7.9(8.1)	
Cu[WF ₆]·4MeCN	18·4 (18·3)	$2 \cdot 2 (2 \cdot 3)$	21.9(21.7)	10.5 (10.6)	
^a Ni 6·0 (6·5)%.					

An additional polarised band at $ca. 705 \text{ cm}^{-1}$ in the WF₆ reaction solutions is assigned to $[WF_7]^{-,6}$ and not to a tungsten(IV) species as originally suggested.⁵

The involatile solids isolated from these reactions are moisture sensitive, the molybdenum-containing products being particularly reactive in this respect. Prolonged pumping usually leads to loss of MeCN and eventual decomposition. Although the characterisation of some products is incomplete, on the basis of their analysis (Table 1) and spectra (Table 2) the solids are formulated as solvated metal hexafluoromolybdates(v) and hexafluorotungstates(v). In many cases the Raman spectra of the latter indicate that the heptafluorotungstate(VI) anion is also present.

Co-ordination of MeCN to the metal cations, except for Tl^I, is suggested from the i.r. spectra of the solids. The ⁶ A. Prescott, D. W. A. Sharp, and J. W. Winfield, preceding

oxidation of Tl is Tl[MoF₆]₃·6MeCN, but with the mole ratio T1: MoF_6 ca. 1: 2 the yellow salt isolated is formulated as TlITlIII[MoF₆]₄·2MeCN by analogy with ' thallium dibromide.'⁸ It hydrolyses more slowly than the Tl^{III} compound. Solutions containing Cu^{II} are rapidly reduced by copper metal to give copper(I) hexafluorometallates(v). Equilibria between Hg^I and Hg^{II} species are possibly important in the Hg oxidation reactions. There is evidence for the presence of Hg_2^{2+} in the Raman spectrum of the Hg-WF₆ solutions, although decomposition occurred to give metallic Hg and a cream solid when the solvent was removed. The product from the corresponding reaction with MoF₆ appears to be a Hg^{II} compound. It is noteworthy that oxidation of Hg by the hexafluorides in the absence of solvent produces $Hg[WF_6]_2$ or $Hg_2[MoF_6]_2$ respectively,⁹ and by AsF₅ in

⁸ A. C. Hazell, J. Chem. Soc., 1963, 3459.
⁹ I. D. MacLeod, Ph.D. Thesis, University of Melbourne, 74 1974.

paper. ⁷ F. A. Cotton, D. M. L. Goodgame, and M. Goodgame, J. Amer. Chem. Soc., 1962, 84, 167.

TABLE 2

		.*		id products		
		Raman and i.r. spectra (in cm^{-1}) and assignments a, b			Electronic spectra (in cm ⁻¹) and tentative	
Compound	Colour	$\nu_1(\mathrm{MF_6}^{-})$	ν ₃ (MF ₆ -)	$\nu(WF_7^{-})$	assignments ^c	E.p.r. spectra
Ag[MoF ₆] ₂ ·4MeCN	White	676	620			$\langle g \rangle = 2.330$
Ag[WF ₆]·2MeCN	White	695	590			
TlITIII[MoF6]4·2MeCN	Yellow	Decomp.	620			
Tl[WF ₆]	White	695	590			
Pb[WF ₆] ₂ ·2MeCN	Cream	698m	570	710m		
Zn[MoF ₆] ₂ ·5MeCN	White	678	625			
$Zn[WF_6]_2$ ·6MeCN	Cream	695m		709m		
Cd[MoF ₆] ₂ ·5MeCN	White	679	625			
Cd[WF ₆] ₂ ·5MeCN	Cream	695s		707m		
Hg[MoF ₆] ₂ •4MeCN	Cream	678	620			
Mn[WF ₆] ₂ ·4MeCN	White	697 m		705s		
Co[MoF ₆] ₂ ·5MeCN	Pink	677			21 800, ${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{1y}(P)$	
Co[WF ₆] ₂ ·5MeCN	Salmon	694			21 800	
Ni[WF ₆] ₂ ·6MeCN	Blue-pink	695m		709m	11 000, ${}^{3}A_{27} \longrightarrow {}^{3}T_{27}$	
					17 700, ${}^{3}A_{2g} \longrightarrow {}^{3}T_{1g}(F)$	
					28 200, ${}^{3}A_{27} \longrightarrow {}^{3}T_{17}(P)$	
Cu[MoF ₆] ₂ ·5MeCN	Blue	677	625		$13\ 350$	$\langle g \rangle = 2 \cdot 129$
Cu[MoF ₆]·4MeCN	Yellow	676	625			-
Cu[WF ₆]·4MeCN	Yellow	695	595			

^a Assignments by comparison with the spectra of Cs[MoF₆] ν_1 677, ν_3 623; Cs[WF₆] ν_1 695, ν_3 594; Tl[WF₇] ν (WF) 705 cm⁻¹. ^b Except for Tl[WF₇] bands at ca. 2 300 and 940 cm⁻¹, assigned to co-ordinated MeCN (R. J. H. Clark, J. Lewis, D. J. Machin, and R. S. Nyholm, J. Chem. Soc., 1963, 379; J. Reedijk, A. P. Zuur, and W. L. Groeneveld, *Rec. Trav. chim.*, 1967, **86**, 1127) were observed. ^c Assignments by comparison with [M(NCMe)₆]²⁺; M = Co 20 400; M = Ni 10 600, 17 500, 28 100; M = Cu 13 450 cm⁻¹ (B. J. Hathaway, D. G. Holah, and A. E. Underhill, J. Chem. Soc., 1962, 2444; A. E. Wickenden and R. A. Krause, *Inorg. Chem.*, 1965, **4**, 404; J. Reedijk and W. L. Groeneveld, *Rec. Trav. chim.*, 1967, **86**, 1103.)

 SO_2 gives $\mathrm{Hg}_{2\cdot 86}\mathrm{AsF}_6,\,\mathrm{Hg}_4{}^{2+},\,\mathrm{Hg}_3{}^{2+},\,\mathrm{or}\,\,\mathrm{Hg}_2{}^{2+}$ depending on the reaction stoicheiometry.¹⁰

Evidence that $[WF_6]^-$ reacts with WF₆ in MeCN to give $[WF_7]^-$ has been given elsewhere,⁶ and the experi-

TABLE 3

Raman spectra (M-F stretching region) of the reaction mixtures

		Raman bands (cm^{-1}) and		
		assignments ^b		
Reactants ^a	Colour	ν ₁ (MF ₆ -)	$\nu(WF_7^-)$	$\nu_1(\mathrm{MF}_6)$
$Ag + MoF_6$	Colourless	676		740
$Ag + WF_6$	Pale yellow	695s	705m	770m
$TI + MoF_6$	Colourless	677		
$Tl + WF_6$	Colourless	695s	705w	
$Pb + MoF_6$	Colourless	677		
$Pb + WF_6$	Yellow	695m	707m	
$Zn + MoF_6$	Colourless	676		
$Zn + WF_6$	Yellow ^e	695	705	
$Cd + MoF_6$	Colourless	676		
$Cd + WF_{6}$	Colourless	695s	705w	
$Hg + MoF_6$	Pale yellow	677		
$Hg + WF_6$	Yellow c,d	695	705	770
$Mn + MoF_6$	Yellow-	677		
	green			
$Mn + WF_6$	Yellow-	696	705	
	green °			
$Co + MoF_6$	Pink	678		
$Co + WF_6$	Pink ^e	695	710	
$Ni + WF_{6}$	Green		y soluble	
$Cu + MoF_6$	Blue	676		
$Cu(excess) + MoF_6$	Yellow	678		
$Cu + WF_6$	Blue		705	
$Cu(excess) + WF_6$	Yellow	695		
		1 1 1	T A*	· · · · · · · · · · · · · · · · · · ·

^a In MeCN solution. ^b Strongly polarised. Assignments by comparison with the spectra of $Cs[MoF]_6 v_1 677$, $Cs(Et_4N)[WF_6] v_1 694$, $Tl[WF_7]\nu(WF) 705$ (ref. 16), $MoF_6 v_1 740$, $WF_6 v_1 773$ cm⁻¹ (H. J. Clase, A. M. Noble, and J. M. Winfield, Spectrochim. Acta, 1969, **25A**, 293). ^c Relative peak heights depend on the reaction stoicheiometry. ^d Band at 167 cm⁻¹ assigned to Hg_2^{2+} (L. A. Woodward, Phil. Mag., 1934, **18**, 323; H. Stammreich and T. Teixeira Sans, J. Mol. Structure, 1967–68, **1**, 55) 1, 55).

mental conditions under which the oxidation reactions are carried out are likely to be the major influence on the relative proportions of $[WF_6]^-$ and $[WF_7]^-$ ions present in the solid products. For example both Zn and Cd react with WF_6 more slowly than does Ag. The products are less soluble in MeCN than is silver(I) hexafluorotungstate(v). Consequently the ratio of $[WF_6]^-$ to [WF₇]⁻ may be disturbed either by co-precipitation of $[WF_7]^-$ with $[WF_6]^-$ during the oxidation or by some irreversible change in the equilibrium between WF_5 and its disproportionation products.¹¹

An analogous reaction between $[MoF_6]^-$ and MoF_6 might be assumed to occur in solution, particularly as complexes between MoF₅ and MeCN are known.¹² No reaction between $[MoF_6]^-$ and MoF_6 was detected in solution (cf. ref. 13) although there is some evidence of an interaction between F⁻ ion and MoF₆.

The reactions described above provide the first unambiguous demonstration that MoF_6 is a stronger oxidising agent than WF_6 . Previous comparisons² involved situations in which WF_6 did not react. The behaviour of the hexafluorides is qualitatively in accord with recent estimates of their electron affinities.¹⁴ The role of the acetonitrile, in addition to providing a suitable

¹⁰ B. D. Cutforth, C. G. Davies, P. A. W. Dean, R. J. Gillespie, P. R. Ireland, and P. K. Ummat, *Inorg. Chem.*, 1973, **12**, 1343; B. D. Cutforth, R. J. Gillespie, and P. R. Ireland *J.C.S. Chem. Comm.*, 1973, 723; I. D. Brown, B. D. Cutforth, C. G. Davies, R. I. Gillespie, P. R. Ireland, and I. E. Vabris, *Comm. J. Chem.* R. J. Gillespie, P. R. Ireland, and J. E. Vekris, *Canad. J. Chem.*, 1974, 52, 791.

¹⁹/4, **52**, 791.
 ¹¹ J. Schröder and F. J. Grewe, *Chem. Ber.*, 1970, **103**, 1536.
 ¹² M. Mercer, T. J. Ouellette, C. T. Ratchiffe, and D. W. A. Sharp, *J. Chem. Soc.* (A), 1969, 2532; J. C. Fuggle, D. W. A. Sharp, and J. M. Winfield, *J. Fluorine Chem.*, 1971/72, **1**, 427.
 ¹³ S. Brownstein, *Canad. J. Chem.*, 1973, **51**, 2530.
 ¹⁴ J. Burgess, I. Haigh, R. D. Peacock, and P. Taylor, *J.C.S. Dalom*, 1974, 1064.

Dalton, 1974, 1064.

dielectric medium, is in the solvation of the metal cations. Although it is too weak a donor to stabilise abnormally high or low oxidation states of most d block elements,¹⁵ it is crucial in stabilising Cu^I and Cu^{II}, Ag^I and Ag^{II}, and Tl^I and Tl^{III}.¹⁶

EXPERIMENTAL

Experimental methods used were as described elsewhere,⁶ except for the following. Electronic reflectance spectra were obtained using a Perkin-Elmer 450 instrument, samples being mounted between silica plates separated by a Teflon spacer. Analysis are by Bernhard; analytical figures for fluoride are often not good because of partial hydrolysis of the complexes and because of interference by metal ions during the analysis. Molybdenum hexafluoride (Alfa) was purified in a manner similar to WF₆.⁶ Metals used were at least 99.9%. Metal foil (Co, Ni, Cu, Ag, Zn, or Cd) or metal wire (Pb) was degreased and a fresh surface exposed with abrasive paper. Mn Pieces were broken to obtain splinters and Tl rod was freshly cut. Redistilled Hg was used as received. AnalaR pyridine was dried over activated molecular sieves.

Reactions between Hexafluorides and Metals.—No reaction was observed between WF_6 and dry MeCN even after several weeks at room temperature, however some reaction was apparent between MoF_6 and MeCN after 12 h. A mixture

B. J. Hathaway and D. G. Holah, J. Chem. Soc., 1965, 537.
 V. A. Pleskov, Zhur. fiz. Khim., 1948, 22, 351; I. M. Kolthoff and J. F. Coetzee, J. Amer. Chem. Soc., 1957, 79, 1852; H. L. Yeager and B. Kratochvil, J. Phys. Chem., 1969, 73, 1963.

of MF_6 and MeCN was distilled onto a small quantity of metal, which had been degassed for at least 0.5 h. Reactions occurred at ambient temperature. Those between WF_6 and Cu, Ag, Tl, or Pb were complete within 1 h but Co, Ni, Zn, or Cd required shaking for up to 3 days before reaction was complete. Reactions between MoF_6 and metals often appeared to be slower than the corresponding reactions with WF_6 and in some cases reaction with the solvent occurred before an adequate yield of product could be isolated.

In moist MeCN Ag metal reacted with MoF₆ to give a yellow compound, more resistant to hydrolysis than Ag^{II} hexafluoromolybdate(v). This compound contained a strong band in its i.r. spectrum at 1030 cm^{-1} , a region characteristic of the Mo=O linkage.¹⁷ It was formulated as Ag^{II}Mo^VOF₅·4MeCN (Found: C, 19·0; H, 3·4; F, 20·0. C₈H₁₂F₅N₄OAgMo requires C, 20·4; H, 2·7; F, 19·8%). Addition of pyridine to the solution gave an orange solid formulated as Ag^{II}Mo^VOF₅·3py (Found: C, 33·1; H, 3·4 F, 17·5; N, 8·0. C₁₈H₁₅F₅N₃OAgMo requires C, 32·6; H, 2·7; F, 17·2; N, 7·6%).

We thank Mrs. A. Pettrigrew, Dr. A. P. Lane, Dr. A. L. Porte, and Mrs. A. McConnell (University of Strathclyde) for help in obtaining the spectra, and the S.R.C. for a grant towards the Raman spectrometer. A. P. gratefully acknowledges the award of a Turner and Newall Fellowship.

[4/1777 Received, 28th August, 1974]

¹⁷ I. R. Beattie, K. M. S. Livingston, D. J. Reynolds, and G. A. Ozin, *J. Chem. Soc.* (A), 1970, 1210.