Preparation and Spectroscopic Studies of Five-co-ordinate β-Diketonatotri(organo)tin Compounds. Crystal Structure of (1,3-Diphenylpropane-1,3-dionato)triphenyltin(iv)

By G. Michael Bancroft,* Brian W. Davies, Nicholas C. Payne,* and Tsun K. Sham, Department of Chemistry, University of Western Ontario, London, Ontario N6A 3K7, Canada

Abstract

A series of new five-co-ordinate complexes, $\mathrm{R}_{3} \mathrm{SnL}[\mathrm{R}=\mathrm{Me},(\mathrm{I})-(\mathrm{III})$ or Ph, (IV)-(VI): $\mathrm{L}=$ anions of acetylacetone (acac), benzoylacetone (bzac), or dibenzoylmethane (bzbz)], has been prepared and characterized by i.r., n.m.r., and Mössbauer spectroscopy. Compounds (I)-(III) have large quadrupole splittings (3.69$3.86 \mathrm{~mm} \mathrm{~s}^{-1}$), while those of (IV)-(VI) are much smaller ($1.38-2.25 \mathrm{~mm} \mathrm{~s}^{-1}$). By use of partial quadrupole splittings, these splittings are shown to be consistent with the mer-structure for compounds (I)-(III), and the all-cis-structure for (IV)-(VI). The all-cis-structure has been confirmed for (VI). [$\mathrm{Ph}_{3} \mathrm{Sn}$ (bzbz)], by a singlecrystal X-ray diffraction study. Crystals are monoclinic, space group $P 2_{1} / c$, with $Z=4$ in a unit cell of dimensions: $a=13.216(5), b=9.443(4), c=22.344(9) \AA$, and $\beta=109.42(2)^{\circ}$. The structure was solved by the heavyatom method from intensity data collected by diffractometric methods, and refined by full-matrix least-squares methods to $R 0.051$ for 2328 observed reflections. The co-ordination about the Sn atom is essentially a distorted trigonal bipyramid. The phenyl groups occupy one axial and two equatorial co-ordination sites with the chelating ligand bonded to one equatorial and one axial site. Sn-C(eq) Bond lengths are $2 \cdot 149(7)$ and $2 \cdot 181(6)$. and $\mathrm{Sn}-\mathrm{C}(\mathrm{ax}) 2 \cdot 180(6) \AA$. The $\mathrm{Sn}-\mathrm{O}(\mathrm{ax})$ distance $[2 \cdot 276(7) \AA$] is significantly longer than $\mathrm{Sn}-\mathrm{O}$ (eq) [2.094(7) Å].

Although a fairly large number of five-co-ordinate organotin(IV) compounds is now known, ${ }^{1}$ there is comparatively little structural information, ${ }^{2}$ and X-ray structures are known for only seven monomeric five-co-ordinate species. ${ }^{3-10}$ Since 1965 , Mössbauer spectroscopy has been used as an indication of the co-ordination environment of $\operatorname{tin}(\mathrm{Iv})$, and ρ values ${ }^{\mathbf{1 1}}$ (quadrupole splitting, q.s., divided by the centre shift, c.s.) have been used to indicate five-co-ordination. More recently, the additivity model ${ }^{12}$ has been employed to distinguish between five-co-ordinate isomers. ${ }^{13,14}$ However, as Clark et al. ${ }^{15}$ have pointed out, a proper treatment of the five-co-ordinate q.s. treatment has been hampered by the

[^0]paucity of structural data, as well as the difficulty of having to assign partial quadrupole splittings to both axial and equatorial groups.

We now report the preparation and characterization of six new five-co-ordinate complexes of β-diketonatotri(organo)tin(IV) of the type $\mathrm{R}_{3} \mathrm{SnL}[\mathrm{R}=\mathrm{Me}$ (I)-(III), or Ph (IV)-(VI); $\mathrm{L}=$ anions of acetylacetone (acac), benzoylacetone (bzac), and dibenzoylmethane (bzbz)]. The complete single-crystal X-ray study shows that (VI) $\left[\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{bzbz})\right]$ has the all-cis-structure. The Mössbauer quadrupole splittings for (IV)-(VI) are consistent with this and strongly suggest that (I)-(III) have the hitherto unknown mer-structure.

[^1]
EXPERIMENTAL

The six compounds listed in Table 1 were prepared under dry nitrogen by use of the thallium(1) salt method. ${ }^{16}$ The thallium(I) salts of the acetylacetonates were prepared by established techniques ${ }^{16-18}$ and their purity checked by m.p.s. The organotin compounds were prepared by adding $\mathrm{R}_{3} \mathrm{SnCl}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ in dry benzene to the stoicheiometric amount of the thallium(I) salt in benzene. Thallium chloride precipitated immediately. Except for (V), solvent was removed from the filtrate in vacuo. The crude products were recrystallized in warm benzene with the addition of a small amount of light petroleum. All yields were $>60 \%$.
I.r. spectra of Nujol mulls were obtained by use of a Perkin-Elmer 621 spectrometer. N.m.r. spectra were recorded in benzene at room temperature with tetramethylsilane as standard by use of T 60 and HA 100 spectrometers.

Mössbauer spectra were obtained by use of a 5 mCi BaSnO_{3} source at room temperature and an Austin Science Associates spectrometer. All absorbers were at 110 K . Velocity calibration was obtained by use of iron foil (New England Nuclear), and spectra were fitted to Lorentzian line-shapes, with the program written by A. J. Stone. All c.s. are reported with respect to the centre of a roomtemperature $\mathrm{BaSnO}_{3}-\mathrm{BaSnO}_{3}$ spectrum by the scan-centre method. ${ }^{19}$

X-Ray Studies.-Compound (VI) crystallized from dry benzene as yellow crystals. A crystal was sealed in a capillary tube and preliminary photographic examination established the monoclinic space group $P 2_{1} / C\left(C_{2 h}^{5}\right.$, No. 14). ${ }^{20}$ Accurate unit-cell dimensions were determined by a leastsquares refinement of the angular settings of 23 reflections with $15<2 \theta<31^{\circ}$, centred on a diffractometer by use of Mo- K_{α} radiation.

Crystal Data. $-\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Sn}, M=573.3$, Monoclinic, $a=$ $13.216(5), \quad b=9.443(4), \quad c=22.344(9) \AA, \quad \beta=109.42(2)^{\circ}$, $U=2630 \AA^{3}, D_{\mathrm{m}}=1.46(1), Z=4, D_{\mathrm{c}}=1.440 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1156.5$ Mo- $K_{\alpha} \quad$ radiation, $\quad \lambda=0.70926 \quad \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=9.1 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c$ from systematic absences: $h 0 l$ for $l=2 n+1,0 k 0$ for $k=2 n+1$. No crystallographic symmetry constraints.

For data collection a crystal of dimensions ca. $0.15 \times$ $0.20 \times 0.30 \mathrm{~mm}$ was mounted in a capillary such that the long dimension, [010], was offset from collinearity with the diffractometer-spindle axis. ω-Scans of a number of lowangle axial reflections showed an average width at halfheight of 0.08°, which was considered acceptable. ${ }^{21}$ Intensities were recorded on a Picker FACS 1 automatic fourcircle diffractometer, by use of prefiltered (Nb foil, 0.07 mm) Mo radiation with a take-off angle of $1 \cdot 6^{\circ}$. All reflections in the range $1.5 \leqslant 2 \theta \leqslant 45^{\circ}$ in the octants $h k l$ and $\bar{h} k l$ were collected in three shells. The $\theta-20$ scan technique was used at a scan rate of $1.0^{\circ} \mathrm{min}^{-1}$, with a scan range of 0.8°, corrected for dispersion. Background counts were made for 10 s with a stationary crystal and counter at the ends

[^2] Synth., 1967, 9, 52.
${ }_{17}$ W. H. Nelson and D. F. Martin, J. Inorg. Nuclear Chem., 1965, 2\%, 89.
${ }_{18}$ C. Z. Moore and W. H. Nelson, Inorg. Chem., 1969, 8, 138.
${ }^{19}$ G. M. Bancroft, 'Mössbauer Spectroscopy,' McGraw-Hill, London, 1973.
${ }_{20}$ 'International Tables for X-Ray Crystallography,' vol. I, Kynoch Press, Birmingham, 1962.
${ }_{21}$ T. C. Furnas, 'Single-Crystal Orienter Instruction Manual,' General Electric Co., Milwaukee, Wisconsin, 1957.
${ }_{22}$ W. R. Busing and H. A. Levy, J. Chem. Phys., 1957, 26, 563.
of each scan. Coincidence losses were minimized for strong reflections by employing Cu foil attenuators. The intensities of five standard reflections monitored throughout data collection showed only random fluctuations of $\pm 2 \%$.

A total of 3833 reflections was measured and the recorded intensities were corrected for background, Lorentz, and polarization effects. A standard deviation, σ, was assigned to each reflection such that: $\sigma(I)=[$ count + $\left.\frac{1}{4}\left(t_{\mathrm{c}} / t_{\mathrm{b}}\right)^{2}\left(b_{1}+b_{2}\right)+(p I)^{2}\right]^{\frac{1}{2}}, \quad$ where $\quad I=$ count $-\frac{1}{2}\left(b_{1}+\right.$ $\left.b_{2}\right)\left(t_{\mathrm{c}} / t_{\mathrm{b}}\right)$, count $=$ total count measured in time t_{c}, and b_{1} and b_{2} are the background counts each measured in time t_{b}. The 'ignorance factor,' p, was initially chosen as $0 \cdot 02,{ }^{22}$ but a statistical examination of the standard reflections suggested 0.013 to be more appropriate. In the final cycle of least-squares refinement p was chosen as 0.014 to give a value close to 1.0 for the error on an observation of unit weight. Absorption correction trials ${ }^{23}$ with $\mu 9 \cdot 1 \mathrm{~cm}^{-1}$ showed transmission factors ranging from 0.888 to 0.906 , a variation of 2%. No absorption correction was made. Of the 3833 observations, 2104 having $I>3 \sigma(I)$ were used in the solution and initial refinement of the structure.

Structure Solution and Refinement.-The position of the Sn atom was located from a three-dimensional Patterson synthesis. Two cycles of least-squares refinement on F, minimizing the function $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, and varying the Sn positional parameters led to $R \quad 0 \cdot 259$ and $R^{\prime} 0.296$ $\left\{R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right]\right.$, where the weight, w, is defined as $\left.w=4 F_{o}^{2} / \sigma^{2}\left(F_{0}\right)^{2}\right\}$.

Atomic scattering factors for neutral tin, oxygen, and carbon atoms were taken from ref. 24, and that for hydrogen from ref. 25. Anomalous dispersion contributions to the real and imaginary parts of the structure factor were included for tin, the values used being from ref. 26. All remaining 61 atoms (including the 26 hydrogen atoms) were readily located by a series of least-squares refinements and difference-Fourier syntheses.

The conditions for the final cycles of refinement were: (i) 2328 observed $[>2 \sigma(I)]$ reflections with $p=0.014$ and 115 variables; (ii) the phenyl rings were refined as groups [$D_{6} h$ symmetry, C-C $1.392 \AA$ (ref. 27)] with isotropic temperature factors for each carbon atom; (iii) the six nongroup non-hydrogen atoms were assigned anisotropic thermal parameters; (iv) phenyl ring hydrogen-atom contributions to F_{c} were calculated and included $(\mathrm{C}-\mathrm{H}$ $1.00 \AA, B 4 \cdot 0 \AA^{2}$); (v) positional and thermal parameters of the hydrogen atom of the propanedionato-ligand were not refined, but the atom was included in the refinement. Refinement then converged at $R 0.051$ and $R^{\prime} 0.063$. No evidence for extinction was observed. An examination of the observed and calculated structure factors, in terms of magnitude, $\lambda^{-1} \sin \theta$, indices, and diffractometer setting
${ }^{23}$ Absorption correction trials used the analytical method of de Meulewoer and Tompa in the program AGNOST, modified by D. Cahen and J. A. Ibers, J. Appl. Cryst., 1972, 5, 298. Other programs were local versions of: cell refinement and orientation matrix, PICKTT, based on Hamilton's MODE1; Patterson and Fourier syntheses, A. Zalkin's FORDAP; least-squares refinement, J. A. Ibers' NUCLS; function and errors, W. R. Busing, K. O. Martin, and H. A. Levy's ORFFE; crystal structure illustrations, C. K. Johnson's ORTEP. Calculations were performed on PDP 10 and CDC Cyber 7314 computers at the University of Western Ontario.
${ }^{24}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1963, 18, 104.
${ }^{25}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }^{26}$ D. T. Cromer and D. Libermann, J. Chem. Phys., 1970, 53, 1891.
${ }_{27}$ R. Eisenberg and J. A. Ibers, Inorg. Chem., 1965, 4, 773.
angles (χ and ϕ) showed no unusual trends. A final difference-Fourier synthesis showed the largest residual peak to be $0.53(16) \mathrm{eA}^{-3}$ in the vicinity of $3 \mathrm{C}(5)$, a phenyl ring carbon atom. The standard deviation of an observation of unit weight is 0.99 electrons. Observed and calculated structure factors and derived phenyl hydrogen atom positional parameters are listed in Supplementary Publication No. SUP 21255 ($14 \mathrm{pp} ., 1$ microfiche).*

RESULTS AND DISCUSSION

Analytical and physical data for the compounds are summarized in Table 1, along with the n.m.r. spectra

It is perhaps surprising that the trimethyl compounds show only one set of proton resonances when the three methyl groups are not equivalent. Similar one-peak resonances have been observed ${ }^{28}$ for [$\mathrm{Me}_{3} \mathrm{Sn}$ (oxin)] and other trimethyltin cations. ${ }^{30}$ This is probably due to fast intra- or inter-molecular interconversion processes.

Since the structural data for $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]$ and $\left[\mathrm{Cl}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]^{32}$ and now our structure of $\left[\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{bzbz})\right]$ indicate that diketonates act as chelating ligands, it seems reasonable to rule out dimeric structures in which the ligand bridges two moieties. The three possible

Table 1

and i.r. $v(\mathrm{Sn}-\mathrm{C})$ bands for the trimethyl compounds. A reproducible analysis could not be obtained for (II) owing to its instability both in solution and in the solid state. (II) tended to disproportionate, as indicated, in

$$
2\left[\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{bzac})\right] \rightarrow\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{bzac})_{2}\right]+\mathrm{Me}_{4} \mathrm{Sn}
$$

solution by the presence of $\mathrm{Me}_{4} \mathrm{Sn}\left[\tau 9 \cdot 9,{ }^{2} J\left({ }^{119} \mathrm{Sn}^{-} \mathrm{CH}_{3}\right)\right.$ $54 \mathrm{~Hz}]^{1}$ in a benzene solution of (II) shortly after preparation. Similar disproportionation reactions have been found ${ }^{28}$ for $\mathrm{Me}_{3} \mathrm{Sn}$ (oxin) (oxin $=8$-hydroxyquinolinato) and $\mathrm{Cl}_{3} \mathrm{Sn}(\mathrm{acac}) .{ }^{29}$ In contrast, (I) and (III) were stable in solution for several weeks. The triphenyl compounds are more stable than the corresponding methyl compounds, although a really satisfactory analysis could not be obtained for (IV).

The n.m.r. coupling constants ${ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{CH}_{3}\right)$ are characteristic of five-co-ordinate trimethyltin compounds. ${ }^{1}$ Thus the J values for our trimethyl compounds are similar to those for other known five-coordinate trimethyl species such as $\left[\mathrm{Me}_{3} \mathrm{SnBr}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)\right]$ $(66 \mathrm{~Hz}),{ }^{30}$ and much smaller than those for six-coordinate dimethyl compounds such as $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]$ $(99 \cdot 2 \mathrm{~Hz})^{31}$ or $\left[\mathrm{Me}_{2} \mathrm{SnCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{2}\right] \quad(88 \mathrm{~Hz}) .^{30}$ The multiple i.r. $\mathrm{Sn}-\mathrm{C}$ frequencies show that the three methyl groups are not in equivalent equatorial positions, and that the two oxygen atoms in the ligands are not in axial positions, as one would expect from the steric properties of the ligands. In contrast, trimethyltin compounds such as $\left[\mathrm{Me}_{3} \mathrm{SnBr}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)\right]$ which contain only unidentate ligands have only the one $\mathrm{Sn}-\mathrm{C}$ band characteristic of three equatorial methyl groups.

[^3]$\mathrm{R}_{3} \mathrm{SnL}_{2}$ isomers are then (A)-(C). However, steric requirements for the diketonato-ligand along with the i.r. evidence rule out structure (A).

(A)

(B)

(C)

The Mössbauer quadrupole splittings (Table 2) enable us to assign structures with reasonable confidence. It

Table 2

Mössbauer parameters (mm s${ }^{-1}$ at 110 K) *		
Compound	C.s.	Q.s.
$\left[\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{acac})\right]^{a}$	$1 \cdot 21$	$3 \cdot 81$
$\left[\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{bzac})\right]^{a}$	$1 \cdot 13$	$3 \cdot 69$
$\left[\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{bzbz})\right]^{\text {a }}$	$1 \cdot 15$	$3 \cdot 86$
$\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]^{\text {b }}$	$1 \cdot 16$	$4 \cdot 02$
$\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{bzac})_{2}\right]^{\text {b }}$	$1 \cdot 06$	$3 \cdot 87$
$\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{bzbz})_{2}\right]^{\text {b }}$	$1 \cdot 18$	4-08
$\left[\mathrm{Me}_{4} \mathrm{Sn}\right]{ }^{\text {c }}$	$1 \cdot 31$	0
$\left[\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{acac})\right]^{\text {a }}$	1.09	$1 \cdot 38$
$\left[\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{bzac})\right]^{\text {a }}$	1.08	$2 \cdot 25$
$\left[\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{bzbz})\right]^{\text {a }}$	$1 \cdot 13$	$2 \cdot 25$
$\left[\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]^{\text {b }}$	$0 \cdot 71$	$2 \cdot 07$
$\left[\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{bzac})_{2}\right]^{\text {b }}$	0.73	$2 \cdot 23$
$\left[\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{bzbz})_{2}\right]^{\text {b }}$	0.73	$2 \cdot 15$
$\left[\mathrm{Ph}_{4} \mathrm{Sn}\right]{ }^{\text {c }}$	1.22	

${ }^{*}$ Errors $\pm 0.02 \mathrm{~mm} \mathrm{~s}^{-1}$; linewidths $1.10 \pm 0.10 \mathrm{~mm} \mathrm{~s}^{-1}$. χ^{2} Values for all spectra 505 ± 40 for $c a$. $500 \frac{\text { degrees of free- }}{}$ dom.
${ }^{a}$ This work. ${ }^{b}$ G. M. Bancroft and T. K. Sham, ref. 31. ${ }^{c}$ G. M. Bancroft and R. H. Platt, Adv. Inorg. Chem. Radiochem., 1973, 15, 59, Table 42.
${ }^{30}$ V. G. Kumar Das and W. Kitching, J. Organometallic Chem., 1968, 13, 523; V. G. Kumar Das, J. Inorg. Nuclear Chem., to be published.
${ }^{31}$ G. M. Bancroft and T. K. Sham, Canad. J. Chem., 1974, 52, 1361.
${ }^{32}$ G. A. Miller and E. O. Schlemper, Inorg. Chem., 1973, 12, 677.
is apparent that the trimethyl compounds have much larger splittings than their triphenyl analogues. Also, the triphenyl compounds have similar quadrupole splittings to their cis-diphenyl analogues, while the trimethyl compounds have similar splittings to their trans-dimethyl analogues (Table 2). These results are readily rationalized if the triphenyl compounds have structure (B), and the trimethyl compounds structure (C). In Table 3, the e.f.g. components are given in terms of partial field gradients for the relevant ideal structures. We have assumed here that axial and equatorial ligands have the same partial field gradients. To enable rough calculations of quadrupole splittings for these species, we assume ${ }^{33}$ that the five-co-ordinate partial quadrupole splittings are given by the octahedral values calculated previously, i.e. (p.q.s.) $\mathrm{Me}-1.03$ and (p.q.s.) $)_{\mathrm{Ph}}-0.95 \mathrm{~mm} \mathrm{~s}^{-115}$ and that (p.q.s.) L_{L} is zero. The calculated quadrupole splittings for the five structures of interest are also given in Table 3. The

Table 3
Electric field gradient components and predicted quadrupole splittings for five- and six-co-ordinate isomers

Species *	E.f.g. components	Predicted q.s. $/ \mathrm{mm} \mathrm{s}^{-1}$	
		$\mathrm{R}=\mathrm{Me}$	$\mathrm{R}=\mathrm{Ph}$
(A)	$V_{z z} / e=\underset{y}{4[\mathrm{~L}]-3[\mathrm{R}]} \underset{\eta=0}{ }$	-3.09	-2.85
(B)	$\begin{aligned} & V_{11} / e=-\frac{3}{2}[\mathrm{R}]+[\mathrm{L}] \\ & V_{22} / e=+\frac{3}{2}[\mathrm{R}]-2[\mathrm{~L}] \\ & V_{33} / e=+[\mathrm{L}] \end{aligned}$	$\begin{gathered} 1.75 \\ (\eta=1) \end{gathered}$	$\begin{gathered} 1.65 \\ (\eta \stackrel{1}{=}) \end{gathered}$
(C)	$\begin{aligned} & V_{12} / e=-\frac{1}{2}[\mathrm{~L}] \\ & V_{22} / e-3[\mathrm{R}]+\frac{8}{2}[\mathrm{~L}] \\ & V_{33} / e=3[\mathrm{R}]-2[\mathrm{~L}] \end{aligned}$	$\begin{gathered} 3.55 \\ (\eta=1) \end{gathered}$	$\begin{gathered} 3 \cdot 28 \\ (\eta=1) \end{gathered}$
(D)	$V_{z z} / e=4[\mathrm{R}]-4[\mathrm{~L}]$	$+4.12$	$+3 \cdot 80$
(E).	$V_{z z} / e=-2[\mathrm{R}]+2[\mathrm{~L}]$	-2.06	-1.90

${ }^{*}$ (A), (B), (C) defined in text; (D) trans $-\mathrm{R}_{2} \mathrm{SnL}_{4}$, (E) cis$\mathrm{R}_{2} \mathrm{SnL}_{4}$.
calculations indicate that structure (C) should give a q.s. about twice that of structure (B), and that the q.s. of (C) should be slightly smaller than that for the
the trends in q.s. are independent of the choice of p.q.s. values for R between -0.9 and $-1.2 \mathrm{~mm} \mathrm{~s}{ }^{-1}$ and L between $-0.2 \mathrm{~mm} \mathrm{~s}^{-1}$ and $0.2 \mathrm{~mm} \mathrm{~s}^{-1}$. We are preparing a complete treatment of five-co-ordinate systems, in which we derive separate p.q.s. values for axial and equatorial ligands. ${ }^{33}$

There is a marked increase in c.s. for the triorganotin species relative to the six-co-ordinate diorganotin species (Table 2) especially for the triphenyl compounds. These centre shifts reflect the very large tin $5 s$ character in the $\mathrm{R}-\mathrm{Sn}$ bonds in the five-co-ordinate species.

Description of the Structure.--The structure consists of discrete monomers; the shortest intermolecular distance of approach ($2 \cdot 42 \AA$) is between phenyl ring hydrogen atoms bonded to $1 \mathrm{C}(5)$ and $5 \mathrm{C}(5)$. The shortest intermolecular distance of approach not involving hydrogen atoms is $3 \cdot 80 \AA$ between phenyl carbon atoms $1 \mathrm{C}(\mathrm{I})$ and $2 \mathrm{C}(3)$.
Final positional and thermal parameters are given in Tables 4 and 5 . An overall view of the molecule is shown in the Figure. Selected bond distances and angles are given in Table 6.

Co-ordination about tin. The co-ordination about the tin atom is best described as a slightly distorted trigonal bipyramid. $\mathrm{O}(2)$ And $2 \mathrm{C}(1)$ occupy axial positions, the equatorial positions being occupied by $1 \mathrm{C}(\mathrm{I}), 3 \mathrm{C}(\mathrm{l})$, and $\mathrm{O}(\mathrm{l})$ (Figure). The largest departure from an ideal trigonal bipyramidal geometry is that of $\mathrm{O}(2)$. The $\mathrm{Sn}-\mathrm{O}(2)(\mathrm{ax})$ distance is $2 \cdot 276(7)$ whilst the $\mathrm{Sn}-\mathrm{O}(\mathrm{l})-$ (equatorial) distance is $2.094(7) \AA$. These distances differ by 20σ and the difference is clearly significant. The angle subtended at the tin atom by the two axial ligands $\left[\mathrm{O}(2)-\mathrm{Sn}-2 \mathrm{C}(\mathrm{I}) 163 \cdot 7(2)^{\circ}\right]$ is far removed from the ideal value of 180°. The $\mathrm{Sn}-\mathrm{C}$ distances to the co-ordinated phenyl rings are $\mathrm{Sn}-\mathrm{lC}(1) 2 \cdot 181(6)$, and $\mathrm{Sn}-3 \mathrm{C}(\mathrm{l}) 2 \cdot 149(7)$ (both equatorial), and $\mathrm{Sn}^{-2 \mathrm{C}}(1)$ $2 \cdot 180(6) \AA$ (axial). Although the two $\mathrm{Sn}-\mathrm{C}$ (equatorial) distances are just significantly different $(3 \cdot 5 \sigma)$ no

Table 4

$$
\text { Atomic }\left(\mathrm{Sn} \times 10^{5}, \mathrm{H} \times 10^{3} \text {, others } \times 10^{4}\right) \text { and thermal parameters } *\left(\times 10^{4}\right)
$$

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sn	21697(5)	35626(7)	35640(3)	411(4)	414(4)	356(4)	45(4)	113(2)	-20(4)
$\mathrm{O}(1)$	3598(5)	2396(8)	3856(3)	537(41)	746(49)	483(43)	217(39)	$-5(36)$	$-231(38)$
$\mathrm{O}(2)$	2976(6)	4385(8)	4568(3)	588(45)	675(45)	422(39)	179(38)	$2(36)$	-95(37)
C(1)	4377(7)	2232(10)	4382(4)	406(55)	$436(55)$	410(59)	$-111(46)$	111(48)	$-26(47)$
$\mathrm{C}(2)$	4474(8)	2914(11)	4937(4)	455(55)	557(59)	364(56)	18(51)	128(45)	-28(49)
$\mathrm{C}(3)$	3781(8)	3962(9)	5016 (5)	428(57)	424(64)	398(55)	$-37(45)$	101(48)	1 (43)
$\mathrm{HC}(2)$	525	269	530	$4 \cdot 0 \dagger$					
* In the form: $U_{i j}=\beta_{i j} / 2 \pi^{2} a_{i}{ }^{*} a_{j}{ }^{*}$ where the thermal ellipsoid is given by $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{19} h k+2 \beta_{13} h l\right.\right.$ $\left.\left.+2 \beta_{23} k l\right)\right]$. \dagger Anisotropic, B / \AA^{2}.									

trans $-\mathrm{R}_{2} \mathrm{SnL}_{4}$ compound. The results (Table 3) show that these calculations are consistent with the observed quadrupole splittings if the triphenyl compounds have structure (B), and the trimethyl compounds have structure (C). The small quadrupole splittings for (IV) relative to those of (V) and (VI) is surprising and cannot be readily rationalized.

The quadrupole splittings calculated in Table 3 are obviously dependent on the choice of p.q.s. values, but
chemical significance is attached to this observation. There is thus no structural evidence for a lengthening of the $\mathrm{Sn}-\mathrm{C}(\mathrm{ax})$ relative to the $\mathrm{Sn}-\mathrm{C}(\mathrm{eq})$ bond.

A series of least-squares planes has been calculated and is shown in Table 7. The four atoms in the equatorial plane (2) $[\mathrm{Sn}, 1 \mathrm{C}(1), 3 \mathrm{C}(1)$, and $\mathrm{O}(1)]$ are

[^4]Table 5
Phenyl group positional and thermal parameters

	x	y	z	B / \AA^{2}
Ph (1)				
$1 \mathrm{C}(1)$	0.2182(5)	0.5771 (5)	$0 \cdot 3281$ (3)	3-5(2)
$1 \mathrm{C}(2)$	$0 \cdot 2384$ (5)	$0.6901(6)$	$0 \cdot 3705(2)$	4-2(2)
$1 \mathrm{C}(3)$	$0 \cdot 2365$ (6)	0.8283 (5)	$0 \cdot 3484$ (3)	4.9(2)
$1 \mathrm{C}(4)$	$0 \cdot 2145(6)$	$0.8534(5)$	$0 \cdot 2839(3)$	5.3(2)
$1 \mathrm{C}(5)$	$0 \cdot 1943$ (6)	$0.7404(7)$	$0 \cdot 2415(2)$	5.0(2)
$1 \mathrm{C}(6)$	0.1961(6)	$0 \cdot 6023(6)$	$0 \cdot 2636$ (3)	4-2(2)
Ph (2)				
$2 \mathrm{C}(1)$	0.1855(4)	$0 \cdot 2555(7)$	0.2642(2)	3-3(2)
$2 \mathrm{C}(2)$	$0 \cdot 0804(4)$	$0 \cdot 2244(8)$	$0 \cdot 2270$ (3)	4.4(2)
$2 \mathrm{C}(3)$	$0 \cdot 0590$ (4)	$0 \cdot 1682(8)$	$0 \cdot 1665(3)$	4.9(2)
$2 \mathrm{C}(4)$	0.1428(5)	$0 \cdot 1431(8)$	$0 \cdot 1431$ (2)	5-2(2)
$2 \mathrm{C}(5)$	$0 \cdot 2479(4)$	$0 \cdot 1742(7)$	0.1803(3)	4.0(2)
2 C (6)	0.2692(3)	$0 \cdot 2304(7)$	$0 \cdot 2409(3)$	3-3(2)
Ph (3)				
$3 \mathrm{C}(1)$	0.1013(5)	0.2680(7)	0.3945(3)	3•7(2)
$3 \mathrm{C}(2)$	$0 \cdot 0663$ (6)	$0 \cdot 3433$ (6)	0.4375(4)	5•3(2)
$3 \mathrm{C}(3)$	-0.0076(7)	$0 \cdot 2828(9)$	0.4620(4)	6.9(2)
$3 \mathrm{C}(4)$	$-0.0465(6)$	$0 \cdot 1469$ (9)	0.4436(4)	6.5(2)
$3 \mathrm{C}(5)$	-0.0115(6)	$0 \cdot 0717(7)$	0.4005(4)	5.9(2)
$3 \mathrm{C}(6)$	$0 \cdot 0624(6)$	$0 \cdot 1322(7)$	$0 \cdot 3760(3)$	4.8(2)
Ph (4)				
4 C (1)	0.5200(4)	$0 \cdot 1165(6)$	$0 \cdot 4334(3)$	$3 \cdot 0(2)$
4C(2)	0.5037(4)	$0 \cdot 0448(7)$	0.3765(2)	4.3(2)
$4 \mathrm{C}(3)$	$0.5825(5)$	$-0.0457(7)$	$0 \cdot 3700(3)$	4.9(2)
$4 \mathrm{C}(4)$	$0.6777(5)$	$-0.0645(7)$	0.4204(3)	$5 \cdot 0(2)$
$4 \mathrm{C}(5)$	0.6940 (4)	0.0072(7)	0.4773(3)	4.4(2)
4C(6)	$0 \cdot 6151(5)$	$0 \cdot 0977(7)$	0.4838(2)	3.6(2)
Ph (5)				
5C(1)	$0 \cdot 3963$ (5)	0.4652(6)	0.5648(2)	3•1(2)
$5 \mathrm{C}(2)$	$0 \cdot 4831$ (5)	$0 \cdot 4296(6)$	$0.6181(3)$	3.9(2)
$5 \mathrm{C}(3)$	$0 \cdot 4987$ (5)	$0 \cdot 4995(7)$	$0.6753(2)$	4•7(2)
$5 \mathrm{C}(4)$	$0 \cdot 4276$ (5)	$0 \cdot 6050(7)$	$0.6792(2)$	$4 \cdot 8(2)$
$5 \mathrm{C}(5)$	$0 \cdot 3407$ (5)	$0 \cdot 6405(7)$	$0 \cdot 6259(3)$	4.4(2)
$5 \mathrm{C}(6)$	$0 \cdot 3251$ (4)	0.5706(7)	$0 \cdot 5687(2)$	3.9(2)

A view of the molecule showing the atom labelling scheme. The phenyl carbon atoms are numbered sequentially. Atoms are shown as 50% probability ellipsoids. Phenyl ring hydrogen atoms have been omitted
situated such that the tin atom is below the leastsquares plane, on the side of the axial phenyl ring, and the other three atoms are above the plane. The two ${ }^{34}$ F. J. Hollander, D. H. Templeton, and A. Zalkin, Acta Cryst., 1973, B29, 1289.
equatorial phenyl rings are tilted differently with respect to the equatorial plane, ring (3) making an angle of $80 \cdot 2^{\circ}$ and ring (1) one of $54 \cdot 0^{\circ}$ with this plane. The angle between rings (1) and (3) is $50 \cdot 1^{\circ}$. Ring (4) and ring (5), the phenyl substituents on the bzbz ligand, are approximately coplanar with the plane of the ligand,

TAble 6
Selected bond distances and angles
(a) Co-ordination about Sn

(i) Distances			
Sn-O(2)	$2 \cdot 276(7)$	$\mathrm{Sn}-2 \mathrm{C}(1)$	$2 \cdot 180(6)$
$\mathrm{Sn}-\mathrm{O}(1)$	$2 \cdot 094(7)$	$\mathrm{Sn}-1 \mathrm{C}(1)$	$2 \cdot 181(6)$
$\mathrm{Sn}-3 \mathrm{C}(1)$	$2 \cdot 149(7)$		
(ii) Angles			
3C(1)-Sn-O(1)	$111 \cdot 0(3)$	$\mathrm{O}(2)-\mathrm{Sn}-\mathrm{O}(1)$	$78 \cdot 1(2)$
3C(1)-Sn-lC(1)	$124 \cdot 1(2)$	$\mathrm{O}(2)-\mathrm{Sn}-1 \mathrm{C}(1)$	$85 \cdot 0(2)$
$1 \mathrm{C}(1)-\mathrm{Sn}-\mathrm{O}(1)$	$120 \cdot 1(3)$	$2 \mathrm{C}(1)-\mathrm{Sn}-1 \mathrm{C}(1)$	$99 \cdot 3(2)$
$\mathrm{O}(2)-\mathrm{Sn}-2 \mathrm{C}(1)$	$163 \cdot 7(2)$	$2 \mathrm{C}(1)-\mathrm{Sn}-\mathrm{O}(1)$	$86 \cdot 2(3)$
$\mathrm{O}(2)-\mathrm{Sn}-3 \mathrm{C}(1)$	$84 \cdot 5(3)$	$2 \mathrm{C}(1)-\mathrm{Sn}-3 \mathrm{C}(1)$	$105 \cdot 5(2)$
(b) The chelating ligand			
(i) Distances			
$\mathrm{O}(2)-\mathrm{C}(3)$	$1 \cdot 260(11)$	$\mathrm{C}(3)-5 \mathrm{C}(1)$	$1 \cdot 499(11)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1 \cdot 399(13)$	$\mathrm{C}(1)-4 \mathrm{C}(1)$	$1 \cdot 512(11)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1 \cdot 365(13)$	$\mathrm{C}(2)-\mathrm{HC}(2)$	$1 \cdot 09$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 290(11)$		
(ii) Angles			
$\mathrm{Sn}-\mathrm{O}(1)-\mathrm{C}(1)$	$135 \cdot 3(6)$	$5 \mathrm{C}(1)-\mathrm{C}(3)-\mathrm{O}(2)$	$116 \cdot 1(8)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$125 \cdot 3(9)$	$4 \mathrm{C}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$113 \cdot 0(8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$125 \cdot 5(9)$	$4 \mathrm{C}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121 \cdot 8(8)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	$122 \cdot 6(9)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{HC}(2)$	$122 \cdot 3$
$\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{Sn}$	$132 \cdot 1(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{HC}(2)$	$111 \cdot 3$
5C(1)-C(3)-C(2)	$121 \cdot 3(8)$		

Table 7
(a) Equations of selected least-squares planes in the form $A x+$ $B y+C z=D$, and in square brackets distances (\AA) of relevant atoms from the plane

Plane (1): $\mathrm{Sn}, \mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1)-(3)$
$\begin{array}{llll}8.454 & 6.705 & -10.953 & 0.3806\end{array}$
$[\mathrm{Sn}-0.061, \mathrm{O}(2) 0.073, \mathrm{C}(1) 0.016, \mathrm{C}(2)-0.052, \mathrm{C}(3)$
$-0.021, \mathrm{O}(1) 0.044]$
Plane (2): $\mathrm{Sn}, \mathrm{O}(1), 3 \mathrm{C}(1), 1 \mathrm{C}(1)$

$$
\begin{array}{llll}
1.041 & 3.650 & 18.78 & 8.423
\end{array}
$$

$[\mathrm{Sn}-0.205, \mathrm{O}(1) 0.066,3 \mathrm{C}(1) 0.067,1 \mathrm{C}(1) 0.072]$
(b) Equations of planes through the phenyl rings *

Plane	Ring	A	B	C	D
(3)	(1)	13.086	-0.577	-4.703	0.9785
(4)	(2)	0.322	8.723	-8.220	0.117
(5)	(3)	6.976	-3.635	12.033	4.479
(6)	(4)	7.334	7.194	-11.166	-0.188
(7)	(5)	9.021	6.479	-10.372	0.731

* Calculated using the positions of atoms $n \mathrm{C}(1), n \mathrm{C}(3)$, and $n C(5)$ of ring n.
(c) Interplanar angles $\left({ }^{\circ}\right)$
(2)-(3) $80 \cdot 21,(2)-(5) 53 \cdot 95,(2)-(4) 89 \cdot 51,(3)-(5) 50 \cdot 10,(1)-(6)$ $6 \cdot 14$, (1)-(7) $3 \cdot 73$
ring (4) making an angle of $6 \cdot 1$, and ring (5) one of $3 \cdot 7^{\circ}$ with the plane. This is in contrast to results from three studies of solvated alkaline-earth complexes containing the bzbz ligand, ${ }^{34-36}$ in which the rings subtended angles varying from $5 \cdot 6$ to $47 \cdot 6^{\circ}$ with the plane of the ligand,
${ }^{35}$ F. J. Hollander, D. H. Templeton, and A. Zalkin, Acta Cryst., 1973, B29, 1295.
${ }_{36}$ F. J. Hollander, D. H. Templeton, and Z. Zalkin, Acta Cryst., 1973, B29, 1303.
although the intra-atomic distances and angles within the diketonato-ligand were comparable. The ligand geometry is also not significantly different from that of the free ligand in the enolate form. ${ }^{37,38}$

Although structural data for the previously reported triphenyl(N-phenylhydroxamato)tin were incomplete, ${ }^{8}$ the geometry of the $\mathrm{SnC}_{3} \mathrm{O}_{2}$ core appears to be similar to that of the present structure $\left[\mathrm{Sn}^{-\mathrm{C}}(\mathrm{ax}) 2 \cdot 18, \mathrm{Sn}-\mathrm{O}(\mathrm{ax})\right.$ $2.31, \mathrm{Sn}-\mathrm{C}(\mathrm{eq}) 2.13$ and 2.14 , and $\mathrm{Sn}-\mathrm{O}(\mathrm{eq}) 2.09 \AA$, ref. 8].

From presently known structural data for organotin
compounds ${ }^{3,4,8,10}$ and $\mathrm{SnCl}_{5}^{-},{ }^{39}$ it is not yet possible to rationalize the axial-equatorial $\mathrm{Sn}-\mathrm{O}$ bond length differences in terms of bonding differences, transinfluence, or the steric requirements of the ligands.

We thank the National Research Council of Canada for financial support of this work, and for the award of a scholarship (to B. W. D.).
[4/921 Received, 8th May, 1974]
${ }^{37}$ D. E. Williams, Acta Cryst., 1966, 21, 340.
${ }^{38}$ D. H. Templeton and A. Zalkin, Acta Cryst., 1973, B29, 1552.
${ }^{39}$ R. F. Bryan, J. Amer. Chem. Soc., 1964, 86, 733.

[^0]: 1 R. C. Poller, 'Chemistry of Organotin Compounds,' Academic Press, New York, 1970, Table 7.
 ${ }_{2}$ B. Y. K. Ho and J. J. Zuckerman, J. Organometallic Chem., 1973, 49, 1.
 ${ }^{3}$ F. W. B. Einstein and B. R. Penfold, Chem. Comm., 1966, 780.
 ${ }_{4}^{4}$ F. W. B. Einstein and B. R. Penfold, J. Chem. Soc. (A), 1968 3019.
 ${ }^{s}$ P. J. Vergamini, H. Vahrenkamp, and L. F. Dahl, J. Amer. Chem. Soc., 1971, 93, 6327.
 ${ }^{6}$ R. Hulme, J. Chem. Soc., 1963, 1524.
 ${ }^{7}$ R. E. Drew and F. W. B. Einstein, Acta Cryst., 1972, B28, 345.
 ${ }_{8}$ T. J. King and P. G. Harrison, J.C.S. Chem. Comm., 1972, 815.

[^1]: ${ }^{9}$ J. Buckle, P. G. Harrison, T. J. King, and J. A. Richards, J.C.S. Chem. Comm., 1972, 1104.
 ${ }^{10}$ K. Furue, T. Kimura, N. Yasmoka, N. Kasai, and M. Kakudo, Bull. Chem. Soc., Japan, 1970, 43, 1661.
 ${ }_{11}$ R. H. Herber, H. A. Stockler, and W. T. Reichle, J. Chem. Phys., 1965, 42, 2447.
 ${ }_{12}$ G. M. Bancroft and R. H. Platt, Adv. Inorg. Chem. Radiochem., 1972, 15, 59.
 ${ }_{13}$ R. E. B. Garrod, R. H. Platt, and J. R. Sams, Inorg. Chem., 1971, 10, 424.
 ${ }_{14}$ B. Y. K. Ho and J. J. Zuckerman, Inorg. Chem., 1973, 12, 1552.
 ${ }_{15}$ M. G. Clark, A. G. Maddock, and R. H. Platt, J.C.S. Dalton, 1972, 281.

[^2]: ${ }^{18}$ W. H. Nelson, W. J. Randall, and D. F. Martin, Inorg.

[^3]: * See Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.
 ${ }^{28}$ K. Kawakami and R. Okawara, J. Organometallic Chem., 1966, 6, 249.
 ${ }^{29}$ P. W. Thompson and J. F. Lefelhocz, J. Organometallic Chem., 1973, 47, 103.

[^4]: ${ }^{33}$ G. M. Bancroft, M. G. Clark, V. G. Kumar Das, and T. K. Sham, J.C.S. Chem. Comm., 1974, 236; J.C.S. Dalton, to be published.

