Formation of Silylcarbaboranes from 1,2-Bis(trimethylsilyl)pentaborane(9)

By John B. Leach, Gerald Oates, Stephen Tang, and Thomas Onak,* California State University, Los Angeles, California 90032, U.S.A.

By way of an apparent carbon-insertion process, 1,2-bis(trimethylsilyl)pentaborane(9) gives, on flash thermolysis, a number of C-silyl derivatives of the smallest known carbaborane, 1-H₃Si-1,5-C₂B₃H₃, 1-MeH₂Si-1,5-C₂B₃H₄, 2-Me-1-(H₃Si)-1.5-C₂B₃H₃, as well as an equilibrium mixture of 2- and 4-methyl derivatives of CB₅H₇. A total carbaborane yield of ca. 40 mol % has been obtained. Temperature-dependent n.m.r. studies on the B-methyl isomers of CB5H7 show a fast bridge-hydrogen tautomerism at ca. 100 °C. A substituent chemical-shift effect has been calculated for Me₃Si and H₃Si groups on all positions of the pentaborane(9) cage.

ALTHOUGH C-silvl derivatives are known for many of the six- to twelve-atom *closo*-carbaborane polyhedra.¹ none have been reported for the smallest cage, $C_2B_3H_5$. Attempts in this laboratory to prepare $[C_2B_3H_4]^-$ and [C₂B₃H₃]²⁻, logical precursors to C-substituted derivatives, from $C_2B_3H_5$ by the methods ¹ employed for the higher carbaboranes have not succeeded. In the course of flash-thermolysis studies on substituted boron hydrides,² we report the preparation of three C-silyl derivatives of C₂B₃H₅ from 1,2-bis(trimethylsilyl)pentaborane(9). In addition, B-methyl derivatives of CB_5H_7 as well as the parent compound are formed as byproducts. Also, because good yields of 1,5-C2B3H5 were experienced on flash thermolysis of 1,2-Me₂B₅H₇,² we have attempted a similar conversion of $1,2-(H_3Si)_2$ - B_5H_7 to the cage $Si_2B_3H_5$.

EXPERIMENTAL

Materials.---Preparation of µ-Me₃Si-B₅H₈, 1-(Me₃Si)B₅H₈, $2\text{-}(\text{Me}_3\text{Si})\text{B}_5\text{H}_8,\ \mu\text{-}\text{H}_3\text{Si}\text{-}\text{B}_5\text{H}_8,\ 2\text{-}(\text{H}_3\text{Si})\text{B}_5\text{H}_8,\ \text{and}\ 1\text{-}(\text{H}_3\text{Si})\text{-}\text{B}_5\text{H}_8\ \text{was carried out as reported earlier.}^3\ We\ note,\ how$ ever, that a better yield of 1-(H₃Si)B₅H₈ was obtained by heating 2-(H₃Si)B₅H₈ to 135 rather than 150 °C.

 μ -Silyl-1-silylpentaborane(9).—Butyl-lithium (10.3 mmol) in hexane was syringed into a flask (250 cm³); the hexane was removed by vacuum distillation and replaced by diethyl ether (25 cm³) which had been dried over

¹ R. N. Grimes, 'Carboranes,' Academic Press, New York, 1970; T. Onak, 'Organometallic Chemistry,' ch. 4, vol. 1-3, Specialist Periodical Report, The Chemical Society, London, 1971 - 1974

 $Li[AlH_{4}]$. 1-Silvlpentaborane(9) [10.5 mmol with a trace impurity of $2-(H_3Si)B_5H_8$] was condensed into the flask and the reactants warmed to -30 °C over a period of 2 h with constant stirring. Chlorosilane (13.0 mmol) was then condensed into the flask and the temperature allowed to rise to -18 °C with constant stirring over a period of 2 h. Fractionation of the products through traps at -22, -43, -78, and -196 °C was carried out while keeping the reaction flask at -18 °C until most of the ether had been removed, after which it was allowed to warm up slowly to room temperature. The product $1, \mu$ -(H₃Si)₂B₅H₇ (2.5 mmol, 25%) was found in both the -22 and -45 °C traps.

1,2-Disilylpentaborane(9).---A sample of 1,µ-(H₃Si)₂B₅H₇ (2.5 mmol) was condensed into an ampoule together with diethyl ether (ca. 10 cm³) and left standing overnight. The reaction was monitored by observing changes in the ¹¹B n.m.r. spectrum. The products were fractionated through traps at -22, -45, and -196 °C. The product 1,2- $(H_3Si)_2B_5H_7$ (80% yield) was obtained from the -22 and -45 °C traps. A small amount of involatile yellow polymer remained in the reaction vessel and the -196 °C trap was shown to contain the ether solvent together with a small amount of silane. The mass-spectroscopic cut-off was at m/e 124, $[^{28}Si_2^{11}B_5^{1}H_{13}]^+$, with an intensity of 10% of the base peak at m/e 91.

u-Trimethylsilyl-1-trimethylsilylpentaborane(9).- Butyllithium (30.5 mmol) in hexane was syringed into a flask

² E. Groszek, J. B. Leach, G. T. F. Wong, C. Ungermann, and

 D. Glack, J. J. Lotan, 1971, 10, 2770.
 ³ D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 1968, 90, 6617; Inorg. Chem., 1971, 10, 1094; J. Amer. Chem. Soc., 1967, 89, 4249.

previously purged with dry nitrogen. The hexane was distilled off and replaced with dry diethyl ether (40 cm³). A mixture of 1- and 15% 2-(Me₃Si)B₅H₈ (32 mmol) was condensed into the reaction flask and the reactants allowed to warm to -10 °C with constant stirring over a period of 2 h. Chlorotrimethylsilane (34 mmol) was then distilled into the reaction flask and the reactants allowed to warm to ca. 0 °C over a period of another 2 h. The products were then vacuum fractionated through traps at 0, -22, -45, and -196 °C. Some unchanged (Me₃Si)B₅H₈ and Me₃SiCl were found in the last three traps and the product I,μ - $(Me_3Si)_2B_5H_7$ was found in the 0 °C trap. It should be noted that preferential bridge substitution of 1-(Me₃Si)B₅H₈ rather than the 2-derivative had occurred, for the -22 °C trap contained the monosilyl starting material enriched (50%) with the 2-isomer.

1,2-Bis(trimethylsily))pentaborane(9).—The $1,\mu$ -(Me₂Si)₂-B₅H₇ prepared as described above was combined with hexamethylenetetramine and warmed to 85 °C. The reaction was monitored by ¹¹B n.m.r. spectroscopy and rearrangement was shown to be practically complete in 5 h. Fractionation through 0 and -196 °C gave 1,2-(Me₂Si)₂B₅H₇ (2·18 g, 10·3 mmol) in the 0 °C trap. The mass spectrum contained a cut-off at m/e 208 corresponding to the [²⁸Si₂¹²C₆¹¹B₅¹H₂₅]⁺ ion.

Flash Thermolysis of $1,2-(Me_3Si)_2B_5H_7$.—Low-pressure dynamic transfer of $1,2-(Me_3Si)_2B_5H_7$ (10.3 mmol) through a hot quartz tube at 575 °C was accomplished by constantly vacuum pumping (over a 24 h period) the reactant while it was kept in a bath at *ca*. 15 °C. The products (*ca*. 18 mmol) were trapped at -196 °C and subsequently fractionated by cold-column vacuum distillation. A product analysis of the fractions obtained from both types of fractionation is summarized in Table 1. Carbaboranes, not heretofore

TABLE 1

Products from the flash thermolysis of 1,2-(Me₃Si)₂B₅H₇

Compound	Quantity/mmol		
Me _s SiH	6.36		
Me ₂ SiH ₂	0.80		
MeŠiHa	4.04		
B_2H_6	1.35		
$1, 1-Me_2B_2H_4$	0.03		
Me ₃ B ₂ H ₃	1-01		
CB ₅ H ₇	1.16		
1-H ₃ Si-1,5-C ₂ B ₃ H ₄	0-78		
2,4-C ₂ B ₅ H ₇	0-11		
B-MeCB ₅ H ₆	1.60		
$1-MeH_2Si-1, 5-C_2B_3H_4$	0.26		
2-Me-1-(H ₃ Si)-1,5-C ₂ B ₃ H ₃	0.16		
*	0.50		

* A mixture of lower volatility compounds (see Experimental section).

reported in the literature, were removed from the cold column at the following temperatures: $1-H_3Si-I,5-C_2B_3H_4$, -90 to -100; B-MeCB₅H₆, -86 to -90; $1-MeH_4Si-I,5-C_2B_3H_4$ and $2-Me-1-(H_3Si)-1,5-C_2B_3H_2$, -83 °C. Careful refractionation of the latter mixture gave partial separation, the B-Me compound being the less volatile of the two isomers.

The mass-spectroscopic cut-off for the B-MeCB₅H₆ mixture was at m/e 88, $[^{12}C_2{}^{11}B_5{}^{1}H_9]^+$, with an intensity of 30% of the base peak at m/e 86. The cut-off for 1-H₃Si-1,5-C₂B₃H₄ at m/e 92 corresponds to $[^{38}Si^{12}C_2{}^{11}B_3{}^{11}H_7]^+$ and had an intensity of 17% of the base peak at m/e 90. Both 1-MeH₂Si-1,5-C₂B₃H₄ and the isomeric 2-Me-1-(H₃Si)-1,5-C₂B₃H₃ had the expected cut-off at m/e 106. In addition to the products listed in Table 1 there was massspectroscopic and ¹¹B n.m.r. evidence for 2-Me₃HSi-2-CB₅H₈ (*m/e* 134 cut-off; H⁻¹¹B doublets at δ +49·8, +2·6, and -18·2 p.p.m. in *ca.* 2:2:1 area ratio) and 1-(Me₃Si)B₅H₈ (*m/e* 136 cut-off with a base peak at *m/e* 121; large H⁻¹¹B doublet, δ +12·1, and smaller singlet, δ +57·4 p.p.m.). Also mass-spectroscopic data on two very small fractions showed cut-offs corresponding to Me₂CB₅H₅ and (Me₂HSi)C₂B₃H₄; the ¹¹B n.m.r. spectrum of Me₂CB₅H₅ was consistent with that expected for a mixture of all *B*-dimethyl isomers and like other CB₅H₇ derivatives ² showed a temperature dependence.

Physical Measurements.—Positive-ion mass spectra were recorded using a Varian CH-5 high-resolution mass spectrometer. N.m.r. chemical-shift data for the protons were obtained using tetramethylsilane (τ 10.00) as external standard. ¹¹B Chemical-shift data (Table 2) were obtained using boron trichloride, $\delta - 46.8$ p.p.m. relative to boron trifluoride–diethyl ether, as external secondary standard. ¹⁴H (100.0 MHz) N.m.r. spectra were recorded using a Varian HA 100 spectrometer (Table 3). Boron-11 decoupled

TABLE 2 ¹¹B N.m.r. data

$\begin{array}{c cccc} Compound & Boron type & obs. & cal \\ 1,\mu-(H_3Si)_2B_5H_7 & B\{1), & +57\cdot2 & +57 \\ & & B\{2), B\{3\} & +11\cdot2 & +11 \\ B\{4), B\{5\} & & (150) \\ 1,2-(H_3Si)_2B_5H_7 & B(1) & +56\cdot7 & +56 \\ B(2) & +13\cdot2 & +13 \\ B(3) & B(5) & +10\cdot2 & +9 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} B(2), B(3) \\ B(4), B(5) \\ 1,2-(H_3Si)_2B_5H_7 \\ B(1) \\ B(3) \\ B(2) \\ B(3) \\ B(3) \\ B(3) \\ B(5) \\ B(5) \\ H_1 \\ H_2 \\ H_2 \\ H_3 \\ H_1 \\ H_2 \\ H_2 \\ H_3 \\ H_1 \\ H_2 \\ H_1 \\ H_2 \\ H_2 \\ H_1 \\ H_2 \\ H_1 \\ H_1 \\ H_2 \\ H_1 \\ H_1 \\ H_1 \\ H_2 \\ H_1 \\ H_1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccc} B(2) & +13 \cdot 2 & +13 \\ B(3) & B(5) & +10 \cdot 2 & +9 \end{array}$
B(3) B(5) + 10.2 + 9
(ca. 170)
B(4) + 6.0 + 5
(ca. 170)
$1, \mu$ -(Me ₃ Si) ₂ B ₅ H ₇ B(1), +51·1 +52·
B(2), B(3) + 7.4 + 8
(ca. 155)
B(4), B(5) + 11.9 + 12
(ca. 155)
$1,2-(Me_3Si)_2B_5H_7$ B(1) $+54.7$ $+55$
B(2) + 9.0 + 9.0
$B(3), B(5) + 11 \cdot 1 + 10^{-3}$
(120-160)
B(4) + 7.5 - 8.5 + 7.5
(150-180)
$1-\Pi_3 51-1, 0-U_2 B_3 \Pi_4$ $B(2) - B(4) - 6.5$
$1-Men_2 51-1, 0-C_2 D_3 n_4 = D(2)D(4) =$
$2 M_{0} k / H Si 15 D(0) $ (190)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$U_2 D_3 H_3 = D(3), D(4) = 10.9$
9-Ma-1-CBH = B(0) (180)
B(2) B(5) + 10.5
D(0), D(0) + 12.0 (179)
(173) B(4) $+ 17.9$
D(T) + 178 (179)
B(6) = 4.0
(173)

"With respect to F_3B -OEt₂ (δ 0 p.p.m.); values of the coupling constant (J/Hz) are given in parentheses. ^b At 110 °C

spectra were obtained with a Nuclear Magnetic Resonance Specialties HD-60 spin-decoupler attachment, modified for use with HA 100. The radiation frequency (ca. 32.1 MHz) was controlled by a Hewlett-Packard 200 CD wide-range oscillator. Another 200 CD oscillator drove a pseudorandom binary-noise generator whose output was used to phase shift the radiation frequency. This signal amplified by an Electronic Navigation Industries 320L RF power amplifier was then applied to the HA 100 probe which had been double tuned for decoupling. Conversely, decoupled ¹¹B spectra at 32.1 MHz were observed while irradiating with the heteronuclear-decoupling apparatus equipped with 100 MHz modules. Gas-phase i.r. spectra were recorded the B-H(terminal) stretching region of 2 605-2 622 cm⁻¹. and $MeCB_5H_6$, $(MeH_2Si)C_2B_3H_4$, and 2-Me-1- $(H_3Si)C_2B_3H_3$ showed bands in the methyl C-H stretching region of $2 817-2 978 \text{ cm}^{-1}$. Both 1,µ- and 1,2-(Me₃Si)₂B₅H₇ were too involatile for gas-phase spectra.

Me

FIGURE 1 Major carbaborane products from the flash thermolysis of 1,2-(Me₃Si)₂B₅H₇

on a Beckman IR-Acculab 3. The compounds (MeH₂Si)- $C_2B_3H_4$, 2-Me-1-(H₃Si) $C_2B_3H_3$, 1, μ - and 1,2-(H₃Si)₂ B_5H_7 all

TABLE 3

	ιΗ N.r	n.r. data	
Compound	τa		
$1, \mu$ -(H ₃ Si) ₂ B ₅ H ₇	1-H₃Si μ-H₃Si	} 7.0, 6.1	
	H _t B (all)	7.6	
	H_{μ} (near)	12.4	
	H_{μ} (far)	12.0	
$1,2-(H_{3}Si)_{2}B_{5}H_{7}$	1-H ₃ Si 2-H-Si	} 6.9	
	H ₄ B (all)	7.5	
	H_{μ} (near)	12.4, 12.0	
	H_{μ} (rar)	J ·	
$1, \mu - (Me_3 S1)_2 B_5 H_7$	μ -Me ₃ Si	$\left. \right\} 10{\cdot}1, \ 9{\cdot}7$	
	$H_{t}B$ (all)		
	H_{μ} (near)	12.7	
	H_{μ} (far)	12.4	
$1,2-(\mathrm{Me_3Si})_2\mathrm{B_5H_7}$	I-Me ₃ Si 2-Me Si	} 10.0	
	$H_{\rm H} B$ (all)	7.6	
	H_{u} (near))	
	H_{μ} (far)	12.3-12.6)
1-H-Si-1 5-C-B-H	H.Si	6.9	[/(29SiH) ca. 100]
1 11301 1,0 0223-4	HB	7.2	[<i>I</i> (¹¹ BH) ca. 190]
	HC	5.3	LUN , 1
1-MeH_Si-1.5-	H.Si	6.0	$[I(H_2SiMe) 3-4]$
C.B.H.	MeSi	10.0	$[I(MeSiH_{2}) 3-4]$
- 2 3 4	HB	6.5	[<i>J</i> (¹¹ BH) 187]
	HC	4.5	
2-Me-1-(H ₃ Si)-	HaSi	$6 \cdot 2$	[J(²⁹ SiH) ca. 98]
$1,5-C_{2}B_{3}H_{3}$	MeB	10.0	
	$_{\rm HB}$	6.3	[J(¹¹ BH) ca. 185]
	HC	4 ·8	
B-Me-1-CB ₅ H ₆ ^b	MeB	9.7	
	HC	7.6	
	H_{μ}	14	
	TT (0)	(broad)	
	н _t (б)	7.9	F7/HH1119.57
	$H_t(3)$	8.2	[J(II1I ⁸) 12.0]
	$H_t(b)$		

• With respect to SiMe₄ (τ 10.00); coupling constants (J/Hz) are given in square brackets. • At 110 °C.

exhibited a strong band in the Si-H stretching region of 2 145-2 180 cm⁻¹, all the reported pentaborane and carbaborane derivatives exhibited strong absorption in

RESULTS AND DISCUSSION

Preparation of Disilylpentaboranes.—Taking advantage of previous chemistry³ carried out on the preparation and rearrangement of monosilyl derivatives of pentaborane(9), we found that a bridge-hydrogen position of $1-(R_3Si)B_5H_8$ (R = H or Me) could be easily replaced with another R₃Si group. Rearrangement of

the second bridge-silvl group to one of the basalterminal positions in the presence of a Lewis base occurred only slightly more slowly than rearrangement of the monosilyl derivative. In this regard the trimethylsilyl group was more reluctant to rearrange than the parent silvl and this may be attributed to steric repulsions in the transition state of the rearrangement.

Flash Thermolysis of Disilylpentaboranes.-Flash thermolysis of 1,2-(Me₃Si)₂B₅H₇ produced an unusually high yield (ca. 40 mol %) of a carbaborane mixture as compared to previous² thermolysis reactions carried out on other boron hydride derivatives. The major carbaborane products included three silyl derivatives of the *closo*-carbaborane 1,5-C₂B₃H₅ (all three compounds together representing ca. one third of the total carbaborane mixture) and B-methyl derivatives of CB₅H₇ as well as the parent compound (ca. two thirds of the total carbaborane mixture, Figure 1). Both of these carbaborane systems, appearing as the parent compound, were also observed as major carbaborane products in the thermolysis reaction of 1,2-Me₂B₅H₇.² In the present case, however, it is surprising to find a silyl group attached to the carbaborane carbon of the

products rather than to a boron atom of $C_2B_3H_5$ in that the starting material for this reaction contained silvl groups on the cage borons of *nido*- B_5H_9 . Both this and the loss of methyl carbons on the silvl group in this transformation lead one to suspect that a rearrangement of the sort outlined in equation (2) may be responsible for the silvl $C_2B_3H_5$ derivatives.⁴

$$\begin{array}{c} \begin{array}{c} CH_{3} \\ I \\ B-Si- \\ I \end{array} \xrightarrow{B-CH_{2}-Si- } \begin{array}{c} H \\ I \\ -\frac{1}{2}H_{2} \\ I \end{array} \xrightarrow{B-H} \\ C-Si- \\ H \end{array}$$
(2)

Because closo-1,5-C₂B₃H₅ is obtained in reasonably good yield from the thermolysis of $1,2-Me_2B_5H_7$, it was thought that a cage silaborane (e.g. Si₂B₃H₅) might be obtained from $1,2-(H_3Si)_2B_5H_9$. Subjecting the latter compound to minimal flash-thermolysis conditions gave, however, only a poor yield of products including 1-(H₃Si)B₅H₈ and B₅H₉ and no substantial evidence of a cage silaborane.

¹¹B N.M.R. Spectra.—Pentaborane derivatives. Using previously reported chemical shifts ³ for the monosilyl derivatives of pentaborane, it appears possible to develop chemical-shift additivity formulae ⁵ to predict ¹¹B n.m.r. chemical shifts for polysubstituted derivatives. For basal and apical boron atoms this can be expressed by the relations (3) and (4), where $\sigma_{a\mu}$ is the effect of a bridge

$$\delta (^{11}B apex) = 53 \cdot 1 + \sigma_{ac} + \sigma_{ab} + \sigma_{a\mu}$$
(3)

$$\delta (^{11}\text{B base}) = 13.4 + \sigma_{bc} + \sigma_{bt} + \sigma_{bn} + \sigma_{ba} + \sigma_{b\mu} + \sigma_{b\mu'} (4)$$

substituent on an apical boron, $\sigma_{b\mu}$ that of a bridge substituent on a neighbouring basal boron, and $\sigma_{b\mu'}$ that of a bridge substituent on a 'far' basal boron; all other contributions are as defined earlier.⁵ Values (in p.p.m.) for each of the individual contributions as calculated from the monosilyl derivatives are as below:

Substituent H ₃ Si Me Si	σ_{ac} + 6.9 + 4.9	σ_{ab} - 3.1 - 2.2	σ_{bc} +1.6	$\sigma_{\rm bt}$ -6.3	σ_{bn} - 2.2
Substituent H ₃ Si Me ₃ Si	$\sigma_{ba} \\ -1.6 \\ -0.5$	$\begin{array}{c} \sigma_{a\mu} \\ -2 \cdot 5 \\ -5 \cdot 1 \end{array}$	$\sigma_{b\mu}$ 0.5 4.5	$\begin{array}{c} \sigma_{b}\mu\\ -0.5\\ -0.2\end{array}$	-2.5

The agreement of the calculated values using equations (3) and (4) with the experimentally obtained values for the disilyl derivatives (Table 2) is acceptable when considering the difficulty in determining ¹¹B chemical shifts to an accuracy greater than ± 1 p.p.m. It is interesting to note that the two largest effects in the silyl groups, σ_{ac} and σ_{bt} , are opposite in sign to those found for alkyl substituents.⁵ For bridge SiH₃-substituted B₅H₉ derivatives the ¹¹B n.m.r. spectra did not distinguish between the two different basal-boron nuclei. In an investigation to see if this was due to fluxional motion of the SiH₃ group, a low-temperature

study on μ -H₃Si-B₅H₈ at -140 °C in a Freen solvent did not resolve the low-field doublet. We conclude that this is therefore probably due to accidental overlap of basal ¹¹B resonances rather than fluxional behaviour.

Carbaboranes.—The ¹¹B n.m.r. assignment for the B-methyl derivative of CB_5H_7 isolated from thermolysis of 1,2-(Me₃Si)₂B₅H₇ was substantially easier to make at 110 °C than at room temperature. For at the higher temperature a fast bridge-proton tautomerization converted the static mixture of 2-Me (ca. 25%) and 4-Me (ca. 75%) isomers to a single compound, 2-Me-1-CB₅H₆, on the n.m.r. time scale (Figure 2). Trans-upfield (ca.

FIGURE 2 Temperature-dependent $^{11}{\rm B}$ n.m.r. spectra for 2-(and/or 4-)MeCB_5H_6 at (a) 20, (b) 110, and (c) 110 °C (1H decoupled)

3.4 p.p.m.) and contiguous downfield (ca. 11 p.p.m.) shifts were observed for the tautomerized isomer, and are very similar to those observed for the structural relative $nido-B_5H_9$.⁵ When the heated sample was cooled to ambient conditions the ¹¹B n.m.r. pattern changed to that of the original mixture (lower temperatures down to -80 °C did not further change the pattern), indicating that an equilibrium ratio of *B*methyl isomers was produced originally from the flashthermolysis reaction. During this ¹¹B n.m.r. study a very small singlet at δ -19 p.p.m. prevailed and might be attributed to a small quantity of a 6-Me-1-CB₅H₆; the higher-field 2,3,4,5 B-H resonances of such a compound are probably masked by the greater quantity of ⁵ P. M. Tucker, T. Onak, and J. B. Leach, *Inorg. Chem.*, 1970,

⁴ Methylene-group rearrangement has been previously observed in organosilicon compounds (G. Fritz, J. Grobe, and D. Kummer, *Adv. Inorg. Chem. Radiochem.*, 1965, **7**, 349).

^{9, 1430.}

both the other *B*-methyl isomers and therefore positive identification was not possible.

The positional assignment of 2-Me-1-(H₃Si)C₂B₃H₃ rather than 1-Me-2-(H₃Si)C₂B₃H₃ is based on the observation of a methyl-proton resonance at τ ca. 10-0, in the region expected for a B-Me group; ⁶ a methyl group on the cage carbon atom would be expected at somewhat lower field, τ ca. 8·1-8·5.⁷

This work was supported, in part, by the Office of Naval Research and the Public Health Service. J. B. L. thanks Oxford Polytechnic, Oxford, England, for a travel grant.

[4/2150 Received, 18th October, 1974]

⁶ R. N. Grimes, J. Amer. Chem. Soc., 1966, **88**, 1895. ⁷ R. Köster and M. A. Grassberger, Angew. Chem., 1967, **79**. 197; R. Köster and B. W. Rotermund, Tetrahedron Letters, 1964, 1667; M. P. Brown, A. K. Holliday, and G. M. Way, J.C.S. Chem. Comm., 1972, 850.