Lewis Acidity of Dodecafluoro-octaborane(12) and Trifluorophosphinetris(difluoroboryl)borane (1/1): A Nuclear Magnetic Resonance Study of **Reactions with Trimethylamine**

By J. Stephen Hartman,* Department of Chemistry, Brock University, St. Catherines, Ontario L2S 3A1, Canada Peter L. Timms, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS

Low-temperature n.m.r. studies of the $Me_3N + F_3P \cdot B(BF_2)_3$ system indicate the formation of adducts $F_3P \cdot B$ - $(BF_2NMe_3)_n(BF_2)_{3-n}$ (n = 1-3). The compound B_8F_{12} is very reactive toward Me_3N in dichloromethane solution at -90 °C and the only product tentatively identified is Me₃N+B(BF₂)₃.

DODECAFLUORO-OCTABORANE(12), B_8F_{12} , is the best known of the higher boron fluorides and appears to have the structure (I).¹ It reacts with donor molecules of the

type classified as ' soft bases ' 2 to form thermally stable complexes of structure $D \cdot B(BF_2)_3$. The crystal structure of the PF₃ complex, (II), has been determined.³ However, with ' hard bases ' 2 such as Me₃N rapid decomposition of B_8F_{12} occurs even at -70 °C, and the only products which have been isolated are the BF3 complexes of the donor molecules.¹

We have now studied the reaction of Me₃N with the BF_2 groups of $F_3P \cdot B(BF_2)_3$, a complex in which the ' super-acid ' 1 central electron-pair acceptor site is protected by an especially stable donor-acceptor linkage. We have also investigated the reaction between Me₃N and B_8F_{12} in solution at -90 °C in an attempt to detect the initially formed complex.

EXPERIMENTAL

Dodecafluoro-octaborane(12) and trifluorophosphine-tris-(difluoroboryl)borane (1/1) were prepared as described previously.1 Trimethylamine was dried over calcium hydride before use. Dichloromethane was dried over calcium sulphate, followed by drying over P2O5, before use. N.m.r. samples were made up and sealed off using standard highvacuum techniques.

Proton and fluorine-19 n.m.r. spectra were obtained on a Varian Associates HA 100 spectrometer operating at 100 and 94.1 MHz respectively. Boron-11 spectra were obtained on a Bruker WH 90 Fourier-transform spectrometer operating at 28.87 MHz. Proton chemical shifts are given in p.p.m. to low field of external tetramethylsilane. Fluorine-19 and boron-11 chemical shifts are given in p.p.m. to high field of external trichlorofluoromethane and external $Et_2O \cdot BF_3$ respectively. The adduct $F_3P \cdot B(BF_2)_3$ dissolved readily in dichloromethane at room temperature; ¹⁹F and ¹¹B n.m.r. parameters are similar to those observed in CFCl₃.¹

¹ R. W. Kirk, D. L. Smith, W. Airey, and P. L. Timms, J.C.S. Dalton, 1972, 1392.

The compound is insoluble at -90 °C, but goes into solution as Me₃N adducts in the presence of Me₃N. Bright yellow B_8F_{12} dissolved in dichloromethane at -90 °C to give a yellow-brown solution which was stable at temperatures up to ca. -50 °C and from which unchanged B_8F_{12} could be recovered by trap-to-trap distillation. The -90 °C ¹⁹F n.m.r. spectrum consisted of a single major peak at 50.0 p.p.m. (pure liquid and solution in CFCl₃, 44.1 p.p.m.¹). Small impurity peaks were also present at 121.7 (BF₃) and 37.9 p.p.m. Warming to -23 °C resulted in decomposition with rapid evolution of BF3 and fading of colour over a few minutes.

RESULTS AND DISCUSSION

The Reaction of Me₃N with F₃P·B(BF₂)₃.—Our ¹⁹F, ¹H, and ¹¹B n.m.r. results are in accord with the following reaction scheme in which $F_3P \cdot B(BF_2)_3$, (II), acts as a three-site Lewis acid:

$$F_{3}P \cdot B(BF_{2})_{3} \xrightarrow{(i)} F_{3}P \cdot B(BF_{2}NMe_{3})(BF_{2})_{2}$$

$$\downarrow^{(i)}$$

$$F_{3}P \cdot B(BF_{2}NMe_{3})_{3} \xrightarrow{(ii)} F_{3}P \cdot B(BF_{2}NMe_{3})_{2}(BF_{2})$$

$$(i), Me_{3}N; \quad (ii), \text{ excess of } Me_{3}N$$

Two of the three BF₂ sites of (II) complex readily at -90 °C, but the third is less easily complexed. ¹⁹F N.m.r. parameters of (II) and its adducts are given in the Table.

-90 °C ¹⁹ F N	.m.r. para (BF ₂) ₃	ameters of H $_{-n}$ ($n = 0$ —	F₃P•B(BF₂N 3)	Ме ₃) _n -
n	0 •	1	2	3
Chemical shift: ^b				
Free BF ₂	39.4	43.5	41.9	
Complexed BF,		$132 \cdot 8$	133.1	126.8
• •				and
				130.7
$F_{3}P$	$52 \cdot 3$	53.3	51.0	45.6
J(19F-31P)/Hz	$1\ 350$	$1\ 350$	1 380	1 360
	trum in	soluble at -	90 °C · 1it 1 9	7.4 (BF.)
53.9 p.p.m. (F.P). P.D.T	n, to high fie	ld of externa	I CFCL ir
T T	· · · ·			

CH₂Cl₂ solution. ^c Broad resonances due to unresolved boronfluorine coupling.

Low-temperature ¹⁹F spectra of dichloromethane solutions of Me₃N and (II) of various mol ratios demonstrated

² R. G. Pearson, J. Chem. Educ., 1968, 45, 581, 643; J. Amer. Chem. Soc., 1963, 85, 3533. ³ B. G. DeBoer, A. Zalkin, and D. H. Templeton, Inorg.

Chem., 1969, 8, 836.

1374

the presence of all species in the series $F_3P \cdot B(BF_2NMe_3)_{n-1}$ $(BF_2)_{3-n}$ (n = 0-3). The BF₂ resonances of (II) and its adducts were broad due to unresolved ¹¹B-¹⁹F coupling. The large high-field shifts which occurred on complexing of successive BF₂ groups of (II) are consistent with the expected change from trigonal-planar to tetrahedral geometry at the BF₂ boron (cf. BF₂Br, 53 p.p.m.; ⁴Me₃N·BF₂-Br, 134.0 p.p.m.⁵). Thus the n = 1 adduct was identified by its two low-temperature BF₂ resonances in a 2:1 ratio at 43.5 and 132.8 p.p.m. respectively. PF₃ Resonances were relatively sharp doublets due to ¹⁹F-³¹P coupling; on complexing of the first Me₃N, the doublet shifted No further chemical-exchange effects could be detected in this sample up to room temperature once the initial reaction was complete. When the mol ratio of Me_aN to (II) was greater than 1:1, Me_3N exchanged rapidly and reversibly among the adducts. Thus coalescence of the ¹⁹F n.m.r. peaks of the n = 2 and 3 adducts gave at -20 °C a single BF₂ resonance and a single PF₃ doublet (Figure 1). Exchange became more rapid as the Me₃-N: (II) ratio increased. This is to be expected if the n = 2and 3 adducts dissociate on warming, with the n = 3adduct doing so the most readily. Complexing of two of the BF₂ sites greatly decreases the acidity of the third site

FIGURE 1 ¹⁹F N.m.r. spectra of a Me₃N + F₃P·B(BF₂)₃ solution of mol ratio 3: 1 at -90 (a), -85 (b), -80 (c), -70 (d), -50 (e), and $-20 \ ^{\circ}C (f)$. The adduct F₃P·B(BF₂NMe₃)₂(BF₂) is the predominant species

slightly to higher field, but two further base molecules caused a marked low-field shift toward the value of uncomplexed PF₃ (35.1 p.p.m.⁶). Although the broad BF₂ resonances of the different adducts overlapped, the sharp PF₃ doublets could be clearly distinguished.

The n = 1 adduct is the most stable. Thus, while a freshly prepared -90 °C solution of Me₃N and (II) in a 1:1 mol ratio contained both n = 1 and 2 adducts and some insoluble uncomplexed (II), brief warming to 20 °C led to complete -90 °C solubility and a simpler -90 °C ¹⁹F n.m.r. spectrum corresponding to the l : l adduct only.

4 T. D. Coyle and F. G. A. Stone, J. Chem. Phys., 1960, 32, 1892.

and a large excess of Me₃N was required to shift the equilibrium to favour the n = 3 complex at -90 °C. Thus a 3:1 mol ratio of Me₃N to (II) gave mainly the n = 2adduct (Figure 1). A 6:1 mol ratio gave ca. 93% of the n = 3 adduct at -90 °C, but dissociation became predominant at higher temperatures and the n = 2 adduct was the only major species at 20 °C.

At -90 °C the n = 3 adduct gave *two* complexed-BF ¹⁹F n.m.r. peaks of different widths but of approximately equal areas. These peaks coalesced at $ca. -85 \,^{\circ}\text{C}$

⁵ B. Benton-Jones, M. E. A. Davidson, J. S. Hartman, J. J. Klassen, and J. M. Miller, *J.C.S. Dalton*, 1972, 2603. ⁶ R. R. Holmes and W. P. Gallagher, *Inorg. Chem.*, 1962, **2**,

^{433.}

(Figure 2). Their relative chemical shift (3.9 p.p.m.) was not much less than the relative chemical shift (5.2 p.p.m.)of the major and minor PF₃ doublets arising from the

 $\begin{array}{ll} \label{eq:Figure 2} Figure 2 & {}^{19} F \ N.m.r. \ spectra \ of \ a \ Me_3N \ + \ F_3P\cdot B(BF_2)_3 \ solution \\ of \ mol \ ratio \ 6: \ l, \ showing \ coalescence \ of \ the \ two \ complexed-BF \\ peaks \ (126\cdot 8 \ and \ 130\cdot 7 \ p.p.m.) \ of \ F_3P\cdot B(BF_2NMe_3)_3, \ at \ -93 \ (a), \\ -90 \ (b), \ -85 \ (c), \ -80 \ (d), \ and \ -70 \ ^{\circ} C \ (e) \end{array}$

n = 3 and 2 adducts, yet the two complexed-BF peaks coalesced at a temperature ca. 50 °C lower than the two PF_3 doublets in the same sample. A different process, much faster than Me₃N exchange, must be responsible for the coalescence of the two complexed-BF peaks. The process being observed is probably restricted rotation about the boron-boron bonds. In (II) itself, each BF, group consists of an 'axial 'and an 'equatorial 'fluorine,³ but separate ¹⁹F resonances are not observed. Bulky Me_aN molecules would be expected to co-ordinate in 'equatorial' positions, so that the preferred conformation of the 3: ladduct would probably be as in (III), with

equal amounts of 'axial' and 'equatorial' fluorines. It seems that only in the n = 3 adduct is rotation about the B-B bonds sufficiently hindered to be slow on the n.m.r. time scale, and even here the two peaks can be distinguished only at very low temperatures. The difference in peak widths (Figure 2) can be attributed to different ¹¹B-¹⁹F coupling constants for the different fluorine orientations.

¹H N.m.r. spectra confirmed that rapid Me₃N exchange occurs when excess of Me₃N is present. Trimethylamine complexed to (II) absorbed at 2.82 ± 0.02 p.p.m. to low field of external SiMe₄ at -90 °C (free Me₃N, 2·45 p.p.m.), and the chemical shift was little affected by the attachment of other molecules of Me₃N to the same molecule of (II). When the mol ratio of Me₃N to (II) was greater than 3:1, separate resonances of free and complexed Me₃N could be detected, but only at very low temperatures. The single peak observed at higher temperatures shifted closer to the free-Me₃N value as the temperature was raised, confirming the temperaturedependent dissociation of Me₃N. ¹¹B N.m.r. spectra provided further confirmation. When the mol ratio of Me_3N to (II) was 1:1, the expected three ¹¹B n.m.r. resonances in the ratio 2:1:1 were observed at room temperature, two of them (-34, +50 p.p.m.) being little changed in position from the peaks of uncomplexed (II) $(BF_2 \text{ boron}, -32 \text{ p.p.m.}; \text{ central boron}, +49 \text{ p.p.m.}).$ The new resonance, a broad doublet at -7 p.p.m., is assigned to the complexed BF2 group (cf. Me3N·BF2Cl, -4.5 p.p.m.⁷). Samples containing an excess of Me₃N over (II) gave only two ¹¹B n.m.r. peaks, consistent with rapid chemical exchange of Me₃N among BF₂ sites. The chemical shift of the averaged BF₂ resonance moved closer to the free- BF_2 position as the temperature was raised, in accord with greater dissociation of Me₃N at higher temperatures. ³¹P N.m.r. was not useful in this study because of large unresolved couplings to ¹¹B which gave peak widths of several KHz.

Further reactions occur in this system. Thus, whereas (II) alone is stable in dichloromethane well above room temperature, when Me₃N is present free PF₃ is slowly released (19F doublet, 33.3 p.p.m.; lit., 6 35.1 p.p.m.) and Me₃N·BF₃ is slowly formed. After 1 h at 40 °C a brown second liquid phase separated. It seems that even when PF_3 stabilizes the B_4 skeleton, Me_3N slowly breaks it down. An initial displacement of F_3P by Me_3N is likely, since this reaction is known to occur in the analogous F₃P·BH₃ complex.⁸ Additional products formed readily when there was insufficient Me_3N to complex in a 1:1 ratio with (II). Thus a freshly prepared solution of Me_3N and (II) in a 1:2 mol ratio contained a new species giving a broad -90 °C ¹⁹F n.m.r. peak at 140.9 p.p.m., in addition to $F_3P \cdot B(BF_2NMe_3)(BF_2)_2$ and $Me_3N \cdot BF_3$. In the new species, Me_3N is apparently complexed with a new BF₂ acceptor site. ¹H N.m.r. spectra indicated two new species, apparently Me₃N adducts (major and minor absorptions at 2.84 and 2.75 p.p.m. respectively, in addition to the n = 1 adduct and Me₃N·BF₃ peaks). ¹¹B N.m.r. spectra showed an unusual ratio of peaks due to free BF_2 (-34 p.p.m.), complexed BF_2 (-7 p.p.m.), and central boron (51 p.p.m.). The new species might be Me₃N adducts of higher homologues of (II). A study of the interactions of Me₃N with Si₂Cl₆⁹ provides precedent

⁷ H. Binder and E. Fluck, Z. anorg. Chem., 1971, 381, 116.

⁸ R. W. Parry and T. C. Bissot, J. Amer. Chem. Soc., 1956, 78, 1524. • G. Urry, J. Inorg. Nuclear Chem., 1964, 26, 409.

for the formation of higher homologues of a Lewis acid in the presence of small amounts of Me_aN .

The Reaction of Me_3N with B_8F_{12} —When excess of Me_3N was condensed on top of a frozen B_8F_{12} solution in methylene chloride at -196 °C and the mixture allowed to warm to -90 °C, a rapid reaction occurred. Boron trifluoride was evolved below the interface and then absorbed in the amine layer as $Me_3N\cdot BF_3$. After the -90 °C reaction was complete the solution gave a number of ¹⁹F n.m.r. peaks in the 140—160 p.p.m. region, corresponding to fluorine on tetrahedral boron (e.g. at 146.0, 148.1, 151.5, and 156.8 p.p.m.), and a much larger resonance due to $Me_3N\cdot BF_3$ [164.3 p.p.m., $J(^{11}B^{-19}F)$] 15.1 Hz ⁵]. There was also a peak at 78.0 p.p.m. but no peaks in the 40—55 p.p.m. region corresponding to the higher boron fluorides. Further warming to -20 °C had little effect on the spectrum.

When B_8F_{12} rather than Me_3N was present in excess, appreciable evolution of BF3 occurred only on warming to -60 °C. Brief warming to -60 °C gave -90 °C ¹⁹F n.m.r. peaks at 50.0 (B_8F_{12}) , 121.7 (BF_3) , 41.4, and 44.0 p.p.m. and a shoulder at 50.7 p.p.m. Warming to -20 °C for 1 min caused a large increase in the 44.0 p.p.m. peak and disappearance of the B₈F₁₂ peak and most of the intensity of the 41.7 p.p.m. peak. Absence of $Me_3N \cdot BF_3$ or other fluorine-on-tetrahedral-boron peaks throughout this process indicates bonding of Me₃N to a strong Lewis-acid site not directly linked to fluorine. This is consistent with fission of B_8F_{12} to give $Me_3N\cdot B$ - $(BF_2)_3$. The single -90 °C ¹H n.m.r. peak (3.26 p.p.m., width at half height 8 Hz) corresponds to a large complexation shift [0.81 p.p.m. compared to Me₃N·BF₃ (0.45 p.p.m.) and $F_3P \cdot B(BF_2NMe_3)(BF_2)_2$ (0.37 p.p.m.)], and this supports ⁵ interaction with a 'super-acid' site. Furthermore the BF_2 group of B_2F_4 is a weaker Lewis acid than BF₃ toward Me₃N; ¹⁰ since the BF₂ groups of B_8F_{12} are probably similar to those of B_2F_4 , the absence of the BF₃ adduct when both BF₃ and B_8F_{12} are present in solution is indirect evidence of Me₃N association with the central boron of $B(BF_2)_3$. However, the meagre

¹⁰ B. W. C. Ashcroft and A. K. Holliday, J. Chem. Soc. (A), 1971, 2581.

¹¹ M. Goldstein, L. I. B. Haines, and J. A. G. Hemmings, *J.C.S. Dalton*, 1972, 2260 and refs. therein.

evidence allows only tentative identification of $Me_3N \cdot B(BF_9)_3$.

The initial adduct reacted extremely rapidly with any additional Me₃N present to give BF₃ and other products. From our work on the Me₃N-F₃P·B(BF₂)₃ system it is clear that a second Me₃N should be able to complex with a BF₂ group of the initially formed adduct. The resulting species decomposes very rapidly since it lacks the special stability found in F₃P·B(BF₂)₃ and maintained to some extent in F₃P·B(BF₂NMe₃)_n(BF₂)_{3-n} (n = 1--3). Since BF₃ gas is evolved, the complexed BF₂ group does not give rise to Me₃N·BF₃ directly. A number of possibilities remain, but it will be difficult to carry out more detailed studies on this extremely reactive system.

A weak interaction of B_8F_{12} with dichloromethane is suggested by the 5.9 p.p.m. shift of the ¹⁹F n.m.r. signal to high field in this solvent from its position in the pure liquid or in CFCl₃.¹ Survival of the chromophore in solution argues against any gross change in structure such as breaking apart of the dimer. It may be that the 'super-acid' B_8F_{12} is capable of interacting with the chlorine of dichloromethane; the halogen atoms of certain alkyl halides can apparently act as Lewis bases.¹¹ A much smaller solvation interaction is indicated for $F_3P\cdot B(BF_2)_3$ in dichloromethane (BF₂ resonance, 2.0 p.p.m. to high field; PF₃ resonance, 1.6 p.p.m. to low field).

In polyfunctional Lewis bases having nitrogen- and phosphorus-donor sites linked together, it has been shown that BF_3 prefers to combine with nitrogen whereas BH_3 prefers to combine with phosphorus.¹² In the $B(BF_2)_3$ moiety a similar situation exists, *i.e.* in this polyfunctional Lewis acid the different boron sites have their own strong preferences. Trifluorophosphine combines only with the central boron whereas NMe_3 can combine with any of the boron sites.

One of us (J. S. H.) wishes to thank Brock University for sabbatical leave and the National Research Council of Canada for a travel grant.

[4/1422 Received, 15th July, 1974]

¹² S. Fleming and R. W. Parry, *Inorg. Chem.*, 1972, **11**, 1; C. Jouany, J. P. Laurent, and G. Jugie, *J.C.S. Dalton*, 1974, 1510.