Kinetic and Equilibrium Studies on Iron(II) and Iron(III) Pentacyanoferrates

By Alan D. James and Robin S. Murray,* Department of Chemistry, The University of Hull, Hull HU6 7RX

The results of a kinetic investigation of the reaction of $[Fe^{II}(CN)_5(py)]^{3-}$ (py = pyridine) with CN- and HCN are reported, together with a linear free-energy treatment of data obtained for aquation reactions of species of the type $[Fe^{II}(CN)_5X]$ (X = an uncharged or univalent anion). Equilibrium studies of $[Fe^{II}(CN)_5OH_2]^{3-}$ and $[Fe^{III}(CN)_5OH_2]^{2-}$ with a number of substituents have confirmed the class (b) or 'soft' character of the iron centre in these complexes.

THE reactions and properties of species $[Fe^{II}(CN)_5X]^{1-3}$ and $[Fe^{III}(CN)_5X]^{4-6}$ have been reported recently. In general the rates of substitution of iron(II) species are much greater than those of corresponding iron(III) complexes.⁴ The rates of substitution of the former are slower 1,7 when X = [SO₃]²⁻, [AsO₂]⁻, and CN⁻ than when $X = H_2O$, where very rapid rates of substitution by, for example, pyridine (py) are observed.³ In this paper we report the results of a kinetic investigation of

⁵ B. Jaselskis, J. Amer. Chem. Soc., 1961, 83, 1082. ⁶ J. H. Espenson and S. G. Wolenuck, Inorg. Chem., 1972, 11, 2034.

⁷ J. Legros, J. Chim. phys., 1964, 61, 911.

¹ J. Legros, J. Chim. phys., 1964, **61**, 909, 923. ² H. E. Toma and J. M. Malin, *Inorg. Chem.*, 1973, **12**, 2084. ³ H. E. Toma and J. M. Malin, *Inorg. Chem.*, 1973, **12**, 2080. ⁴ A. D. James, R. S. Murray, and W. C. E. Higginson, *J.C.S. Dalton*, 1974, 1273.

the substitution reactions of $[Fe^{II}(CN)_5(py)]^{3-}$ with CN^- and HCN.

The values of the association constants K_1 and K_2 for equilibria (1) and (2) with a number of ligands X show the class (b) character of the iron centre. Stability

$$[\text{Fe}^{\text{II}}(\text{CN})_{5}\text{OH}_{2}]^{3-} + X \xrightarrow{k_{1}X} [\text{Fe}^{\text{II}}(\text{CN})_{5}X] + H_{2}\text{O};$$

$$K_{1X} = k_{1}/k_{-1} \quad (1)$$

$$[\text{Fe}^{\text{III}}(\text{CN})_{5}\text{OH}_{2}]^{2-} + X \xrightarrow{K_{2}} [\text{Fe}^{\text{III}}(\text{CN})_{5}X] + H_{2}\text{O} \quad (2)$$

constants of the previously unreported species $[Fe^{III}-(CN)_5I]^{3-}$, $[Fe^{III}(CN)_5Br]^{3-}$, and $[Fe^{III}(CN)_5Cl]^{3-}$ are included in this treatment.

EXPERIMENTAL

All chemicals were AnalaR grade unless otherwise stated. Samples of Na₃[Fe^{II}(CN)₅NH₃] were prepared and characterised according to previously reported methods.4,8 Solutions of $[Fe^{II}(CN)_{5}(py)]^{3-}$ were prepared by allowing solutions of $[Fe^{II}(CN)_5NH_3]^{3-}$ (ca. 5 \times 10⁻⁴M) * to hydrolyse $(t_1 = 40 \text{ s at } 25 \text{ °C})$ in the presence of pyridine.² Pyridine, NaI (Hopkins and Williams, G.P.R.), NaBr (Hopkins and Williams, G.P.R.), and NaCl solutions were prepared by weight. Sodium cyanide (B.D.H.) solutions were standardised against Ag[NO₃] in the presence of NH₃ and KI.⁹ The ionic strength of the reaction mixtures was maintained with Na[ClO₄], which was standardised against 1.00M-NaOH (B.D.H. ampoule) after passing the solution down an ionexchange column (Amberlite I.R. 120) in the acid form. Buffers were mixtures of Na[H₂PO₄], Na₂[HPO₄], and $Na_{3}[PO_{4}]$ (pH 6.8, 10.2, and 10.9) or $Na_{2}[CO_{3}]$ and $Na[HCO_{3}]$ (pH 8.6).

The kinetics of substitution of $[Fe^{II}(CN)_5(py)]^{3-}$ by CN⁻ and HCN were followed at 390 nm in a thermostatted cell compartment of a Unicam SP 600 spectrophotometer. Spectra were obtained using a Unicam SP 800 spectrophotometer. Gradients and intercepts of plots of k against $[py]([HCN] + [CN^-])^{-1}$ and of Arrhenius plots were obtained from least-squares calculations and the errors quoted are standard deviations. The reduction potentials were obtained by the method previously reported.⁴

Solutions of [Fe^{III}(CN)₅I]³⁻, [Fe^{III}(CN)₅Br]³⁻, and [Fe^{III}-(CN)₅Cl]³⁻ were prepared by allowing solutions of [Fe^{III}- $(CN)_5OH_2]^{2-}$ and the appropriate halide ion to equilibrate in the presence of trace amounts of the catalytic species [Fe^{II}(CN)₅OH₂]^{3-.4} When solutions containing [Fe^{III}- $(\text{CN})_5\text{OH}_2]^{2-}$ (3.5 × 10⁻⁴), [Fe^{II}(CN)₅OH₂]³⁻ (ca. 5 × 10⁻⁶), and NaI (1.3 \times 10⁻²—9.1 \times 10⁻¹M) were allowed to equilibrate at 25 °C a new band (λ_{max} , 730 nm) was observed in the visible region of the spectrum. Plots of $(D - D_0)^{-1}$ against $[\bar{\mathbf{I}}^-]^{-1}$ were linear (where D and D_0 are optical densities at 730 nm in the presence and absence of NaI respectively), consistent with the establishment of equilibrium (2) where $X = I^-$. From the gradients of these plots, K_{2I-} was found to be 38.4 + 0.1 [at 25 °C and I = 4.55M (NaClO_4)] and 5.3 \pm 0.4 l mol^-1 [at 25 $^{\circ}\mathrm{C}$ and I = 1.00M (NaClO₄)]. From the intercepts of the plots, ε was calculated as 830 \pm 70 l mol⁻¹ cm⁻¹ at 730 nm.

* $lm = 1 \mod dm^{-3}$, l cal = 4.184 J.

⁸ K. A. Hoffmann, Annalen, 1900, 312, 1.

Similar experiments with NaBr (0.18—4.55M) gave a species with $\lambda_{\text{max.}} = 490$ nm ($\epsilon 920 \pm 70$ l mol⁻¹ cm⁻¹; Figure 1) and $K_{2\text{Br}} = 1.73 \pm 0.09$ l mol⁻¹ [at 25 °C and I = 4.55M (NaClO₄)]; $K_{2\text{Br}}$ was estimated as 0.3 l mol⁻¹ at I = 1.00M using the absorption coefficient obtained at the higher ionic strength. Addition of NaCl did not lead to significant changes in the visible spectrum of [Fe^{III.}(CN)₅OH₂]²⁻. However an estimate of $K_{2\text{Cl}}$ of 0.53 \pm 0.13 l mol⁻¹ [I = 4.6M (NaClO₄) at 25 °C] was obtained from (3), by measuring [Fe(CN)₅Br³⁻] spectrophotometrically in solutions containing both NaBr (0.20—1.34M) and NaCl (0.77 and 1.34M); [Fe^{III.}]_T is the total concentration of

$$[\mathrm{Fe^{III}(CN)_5Br^{3-}]^{-1}} = \frac{K_{2\mathrm{Cl}^-}[\mathrm{Cl}^-] + 1}{[\mathrm{Br}^-][\mathrm{Fe^{III}}]_\mathrm{T}K_{2\mathrm{Br}^-}} + \frac{1}{[\mathrm{Fe^{III}}]_\mathrm{T}} \qquad (3)$$

iron(11) species. No spectral changes were observed when NaI and NaBr were added to solutions of $[Fe^{II}(CN)_5OH_2]^{3-}$ which may imply that the stabilities of $[Fe^{II}(CN)_5Br]^{4-}$ and $[Fe^{II}(CN)_5Br]^{4-}$ are less than the corresponding iron(11) complexes.

FIGURE 1 Visible spectra of $[Fe(CN)_5Br]^{3-}$ (a) and $[Fe(CN)_5I]^{3-}$ (b)

RESULTS AND DISCUSSION

(a) Substitution of $[Fe^{II}(CN)_5(py)]^{3-}$ by CN^- and HCN.—Studies of substitution reactions of $[Fe^{III}(CN)_5OH_2]^{3-}$ are complicated by the dimerisation of this species to give $[Fe^{II}_2(CN)_{10}]^{6-}$. An indirect method was therefore used to obtain the second-order rate constants k_8 and k_9 for substitution of $[Fe^{II}(CN)_5OH_2]^{3-}$ by CN^- and HCN. The kinetics of reactions (4) and (5) were studied at different ratios of $[HCN], [CN^-], \text{ and } [py].$

$$[Fe^{II}(CN)_{5}(py)]^{3-} + HCN \longrightarrow [Fe(CN)_{6}]^{4-} + H^{+} + py \quad (4)$$
$$[Fe^{II}(CN)_{5}(py)]^{3-} + CN^{-} \longrightarrow [Fe(CN)_{6}]^{4-} + py \quad (5)$$

In all kinetic runs the reaction proceeded to completion, as expected from the relative values of K_{1py} $(3.3 \times 10^5 \ 1 \ \text{mol}^{-1})$ and K_{1CN^-} $(1.2 \times 10^{10} \ 1 \ \text{mol}^{-1})$ (Table 2). The formation of $[\text{HFe}(\text{CN})_6]^{3^-}$ was unimportant in the pH range employed in this work $(pK_a\ 2.33\ ^{10},\ I=1.0\text{M})$. The reaction obeyed rate law (6) for at least 80% completion of reaction and values

A. I. Vogel, 'Quantitative Inorganic Analysis,' 3rd edn., Longmans, p. 271.
 ¹⁰ 'Stability Constants of Metal-Ion Complexes,' Chem. Soc.

¹⁰ 'Stability Constants of Metal-Ion Complexes,' Chem. Soc. Special Publ., no. 25, The Chemical Society, London, 1971.

	Kinetic data for substitution of $[Fe(CN)_{5}(py)]^{3-}$ by CN ⁻ and HCN at $I = 1.0_{M}$ (NaClO ₄)						
		[HCN] + [CN-]	[py]	$10^4 k_{obs.}$	10 ⁻² Gradient	10 ⁻² Intercept	k_{-} Gradient
θ _c /°C	$_{\rm P}H$	mol l ⁻¹	mol 1-1	s ⁻¹	mol l ⁻¹ s	<u>s</u>	$\frac{1}{k_{\bullet}} = \frac{1}{\text{Intercept}}$
25	10.9	0.0312	0.0240	1.29	88.4 ± 1.3	93 ± 0.6	
		0.0333	0.0128	2.25			
		0.0345	0.0066	3.83			
25	10.2	0.0277	0.0426	0.83	71.8 ± 0.9	96 ± 0.8	
		0.0312	0.0240	1.50	1110 <u>T</u> 010	0.0 _ 0.0	
		0.0333	0.0128	2.73			
		0.0345	0.0066	4.22			
25	8.6	0.0135	0.0259	2.50	16.5 - 0.8	8.7 ± 0.8	
		0.0312	0.0240	4.48			
		0.0333	0.0128	7.25			
25	6.8	0.0090	0.0462	1.73	9.5 ± 0.3	83 ± 0.8	1.15 ± 0.15
		0.0161	0.0448	2.83			1.10 _ 0.10
		0.0277	0.0426	4.72			
		0.0485	0.0372	6.13			
15	6.8	0.0152	0.0450	0.49	54.2 + 1.6	43.2 ± 2.6	1.25 ± 0.04
		0.0277	0.0426	0.80			
		0.0236	0.0289	0.88			
		0.0689	0.0066	1.92			
35	6.8	0.0147	0.0451	9.58	2.51 ± 0.07	2.54 ± 0.12	0.99 ± 0.07
		0.0277	0.0426	16.1			
		0.0485	0.0372	23.0			
		0.0349	0.0040	33.3			
44	6.8	0.0342	0.0079	11.3	0.81 ± 0.06	0.72 ± 0.12	1.12 ± 0.09
		0.0147	0.0451	31.2			
		0.0214	0.0438	39.0			
		0.0277	0.0426	57.5			

TABLE 1	
netic data for substitution of $[Fe(CN), (py)]^{3-}$ by	$v \text{CN}^-$ and HCN at $L = 1.0 \text{ w}$ (NaClO.)

		TABLE 2	
		Equilibrium data at $I = 1.0$ M	
х	$E_x (0 °C)/V$	$K_1 (25 \text{ °C})/1 \text{ mol}^{-1}$	$K_2 (25 \ ^{\circ}\text{C})/\text{l mol}^{-1}$
CN-	0.509 ª	$1.2 imes 10^{10}$ (k) b,c	$(5+3) \times 10^{8}$ (e)
[SCN]-	0.385 ª	90 ± 30 (e)	$(2.57 + 0.15) \times 10^2$ (s) ^d
N ₃ -	0.265, ° 0.24 (І 0.05м) е	4 ± 3 (e)	$(1.93 \pm 0.16) \times 10^3$ (s) ^d
OH-	0.159 ª	8 ± 5 (e)	$(3.9 \pm 0.5) \times 10^5$ (s) a
[NO ₂]-		$3 imes 10^3$ (s) f	
I-		<1	5.3 ± 0.4 (s), $^{\circ}38.4 \pm 0.1$ (I 4.55m) (s) $^{\circ}$
Br⁻		<1	ca. 0.3 (s), $^{\circ}$ 1.73 \pm 0.09 (I 4.55m) (s) $^{\circ}$
C1-		<1	0.53 ± 0.13 (I 4.6м) (s) $^{\circ}$
ру	0.508 ª	$3.3 \times 10_5$ (k) g	$(6.5 \pm 0.8) imes 10^3$ (s) ^d
H ₂ O	0.409 a		
NH ₃	0.399,ª 0.33 (I 0.05м) е	1.25×10^4 (k), ^b (7 \pm 3) \times 10 ³ (e)	$(7.5 \pm 0.7) \times 10^3$ (s) ^d
HCN		1.0×10^9 (k) ^{b,c}	<i>ca.</i> 50 (e) ^{<i>h</i>}
[SO ₃] ^{2–}	0.44,° 0.57 (pH 4) °	ca. 1 \times 10 ⁴ (0 °C) (k) ^b	<i>ca.</i> 1×10^3 (e)
[Co(CN) ₆] ³⁻	0.457 *	$2.0 imes 10^{3}$ (9.4 °C) (k), (2 \pm 1.5) $ imes$ 10 ³ (e)	$(2.17~\pm~0.20)~ imes~10^2~(9.4~^\circ\mathrm{C})$ (s) a
$[Co(CN)_{6}]$	0.510 °		

k = Kinetic method, s = spectrophotometric method, and $e = calculated from either K_1 or K_2 and E_X$.

^a Ref. 4. ^b Ref. 1. ^c This work. ^d Refs. 5 and 6. ^e Ref. 12. ^f J. H. Swinehart and P. A. Rock, *Inorg. Chem.*, 1966, 5, 573. ^g Ref. 3. ^h Using pK_a 0.5 for [Fe(CN)₅CNH]²⁻; J. Duplessis-Legros, *Compt. rend.*, 1970, **270**, 1768.

of $k_{obs.}$ are given in Table 1. Plots of $k_{obs.}^{-1}$ against [py]([HCN] + [CN⁻])⁻¹ were linear at constant [H⁺], consistent with the reaction scheme (7)—(9).

$$-d[Fe^{II}(CN)_{5}(py)^{3-}]/dt = k_{obs.}[Fe^{II}(CN)_{5}(py)^{3-}]$$
(6)

$$[Fe^{II}(CN)_{5}(py)]^{3-} + H_{2}O \xrightarrow[k_{-7}]{k_{-7}} [Fe^{II}(CN)_{5}OH_{2}]^{3-} + py \quad (7)$$

$$[\operatorname{Fe^{II}(CN)_5OH_2}]^{3-} + \operatorname{HCN} \xrightarrow{R_6} [\operatorname{Fe}(CN)_6]^{4-} + [H_3O]^+ \quad (8)$$

$$[\text{Fe}^{II}(\text{CN})_5\text{OH}_2]^{3-} + \text{CN}^{-} \xrightarrow{k_5} [\text{Fe}(\text{CN})_6]^{4-} + \text{H}_2\text{O} \quad (9)$$

The species $[Fe^{II}(CN)_{3}OH_{2}]^{3-}$ substitutes very rapidly 3 $[k_{-7} 365 \ 1 \ mol^{-1} \ s^{-1} \ (25 \ ^{\circ}C)]$ and did not form in detectable

quantities [ε (440 nm) 7001 mol⁻¹ cm⁻¹]. Applying steadystate treatment to [Fe^{II}(CN)₅OH₂]³⁻, equation (10) was obtained from which (11) could be derived where $K_{\rm HCN}$ is the acidity constant of HCN.

$$\frac{-\mathrm{d}[\mathrm{Fe^{II}(CN)_{5}(py)^{3-}}]}{\mathrm{d}t} = \frac{k_{7}[\mathrm{Fe^{II}(CN)_{5}(py)^{3-}}](k_{8}[\mathrm{HCN}] + k_{9}[\mathrm{CN}^{-}])}{k_{-7}[\mathrm{py}] + k_{8}[\mathrm{HCN}] + k_{9}[\mathrm{CN}^{-}]} \quad (10)$$

$$k_{\mathrm{obs.}}^{-1} = k_{7}^{-1} + k$$

$$\frac{k_{-7}(1 + K_{\text{HCN}}[\text{H}^+]^{-1})[\text{py}]}{k_{7}(k_{8} + K_{\text{HCN}}[\text{H}^+]^{-1}k_{9})([\text{HCN}] + [\text{CN}^-])}$$
(11)

From the intercepts of plots of $k_{\rm obs}$ ⁻¹ against [py]-([HCN] + [CN⁻])⁻¹ for data obtained at 25 °C, a value of k_7 of $(1.1 \pm 0.05) \times 10^{-3}$ s⁻¹ was obtained compared with the previously reported ³ value of 1.1×10^{-3} s⁻¹.

1975

An expression for the gradient of these plots is given by (12). The data from experiments at 25 °C in the pH

$$(\text{Gradient})^{-1} = \frac{[\text{H}^+]K_{1\text{py}}^{-1}(k_8 - k_9)}{([\text{H}^+] + K_{\text{HCN}})} + k_9 K_{1\text{py}}^{-1} \quad (12)$$

range 6.8—10.9 gave a best fit to (12) if a value of $pK_{\rm HCN}$ of 8.75 was assumed and gave k_8 and k_9 as 344 ± 25 and $29.2 \pm 3.4 \ {\rm l}\ {\rm mol}^{-1}\ {\rm s}^{-1}$ respectively using $K_{1\rm py} = 3.3 \times 10^5 \ {\rm l}\ {\rm mol}^{-1}.^3$ A value of $pK_{\rm HON}$ of 8.90 ± 0.05 was obtained from direct measurements under the same conditions as the kinetic experiments. The above values of k_8 and k_9 differ from those obtained by Legros ⁷ (3.3 and 0.68 ${\rm l}\ {\rm mol}^{-1}\ {\rm s}^{-1}$ respectively), where the experiments were made using reaction mixtures containing excess of $[{\rm Fe}({\rm CN})_6]^{4-}$. Under these conditions spuriously low rates of substitution by ${\rm CN}^-$ and HCN are to be expected due to complications arising from reaction of $[{\rm Fe}^{\rm II}({\rm CN})_5{\rm OH_2}]^{3-}$ and $[{\rm Fe}({\rm CN})_6]^{4-}$ to give $[{\rm Fe}^{\rm II}_2({\rm CN})_{11}]^{7-.11}$

Activation parameters ΔH_8^{\ddagger} and ΔS_8^{\ddagger} for substitution of $[\text{Fe}^{II}(\text{CN})_5\text{OH}_2]^{3-}$ by HCN were obtained from a temperature-dependence study at pH 6.8. The previously reported ³ values of ΔH_{-7}^{\ddagger} , ΔS_{-7}^{\ddagger} , and k_7 were used in these calculations. Values of ΔH_8^{\ddagger} and ΔS_8^{\ddagger} of 17.0 ± 1.3 kcal mol⁻¹ and 11 ± 5 cal K⁻¹ mol⁻¹ respectively were obtained.

(b) The Relative Stabilities of Iron(II) and Iron(III)Pentacyanoferrates.—Reduction potentials (E_X) for $[Fe^{III}(CN)_5X]$ - $[Fe^{II}(CN)_5X]$ couples for a variety of complexes including $X = H_2O$ (E_{H_1O}) are given in Table 1. These are related to the stability constants K_1 and K_2 by (13). From the data in Table 1 it can be

$$E_{\rm X} - E_{\rm H,0} = +(RT/F)\ln(K_1/K_2)$$
 (13)

seen that $K_2 > K_1$ when $X = OH^-$, N_3^- , [SCN]⁻, and NH₃, and $K_2 < K_1$ when $X = [SO_3]^{2-}$, [HSO₃]⁻, [Co-(CN)₅(NC)]³⁻, [Co(CN)₅(CN)]³⁻, py, and CN⁻.

For the iron(II) complexes the order of stability constants (K_1) is $\text{CO} > \text{CN}^- > \text{acyclic N} > [\text{SO}_3]^{2-} \approx$ $\text{NH}_3 > [\text{NO}_2]^- > [\text{SCN}]^{-12} > \text{N}_3^- \gg \text{OH}^- > \text{halides}$. This behaviour is typical of a class (b) or 'soft 'metal centre,¹³ and is similar to the order of decreasing bond character of the Fe-X bond obtained in a Mössbauer study of a series of $[\text{FeII}(\text{CN})_5\text{X}]$ species ^{14,15} where $\text{CO} > \text{CN}^- > [\text{SO}_3]^{2-} > \text{NH}_3 \approx [\text{NO}_2]^-$. The order of decreasing stability constants (K_2) for the iron(III) com-

- * We thank Professor W. C. E. Higginson for this suggestion.
- ¹¹ G. Emschwiller and J. Legros, *Compt. rend.*, 1971, **273**, 452.

¹² R. Stasiw and R. G. Wilkins, *Inorg. Chem.*, 1969, 8, 156.
 ¹³ F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' 2nd edn., Wiley, pp. 23 and 113.

plexes is $CN^- > [SCN]^- \sim OH^- > N_3^- \approx py \approx HN_3 > I^- > Br^- > Cl^-$, and class (b) character is evident particularly where X = halide.

(c) Linear Free-energy Treatment of Data.—Figure 2 is a linear free-energy plot of data for the reverse reactions of equation (1), where X is (a) an uncharged ligand or (b) a univalent anion. The gradient of the plot for ligands of type (a) is 1.0 ± 0.05 and for type (b) is 0.77 ± 0.05 . A gradient of 1.0 suggests that the aquation reaction is dissociative in nature ¹⁶ and further substantiates the mechanisms proposed here and

FIGURE 2 Linear free-energy relation for aquation of $[Fe^{II}(CN)_{b}X]$ complexes: X = (a) NH₃, ref. 1; (b) dimethyl sulphoxide, ref. 2; (c) methylpyridine, ref. 3; (d) pyridine, ref. 3; (e) pyrazine, ref. 3; (f) HNC, ref. 1 and this work; (g) $[SCN]^-$, refs. 5, 6, this work, and A. D. James and R. S. Murray, unpublished work; (h) $[HSO_{3}]^-$, ref. 1; (i) $[NO_{2}]^-$, J. H. Swinehart and P. A. Rock, *Inorg. Chem.*, 1966, 5, 573; and (j) CN⁻, ref. 1 and this work

elsewhere ^{1,3} for substitution reactions of pentacyanoferrate(II) complexes. The agreement between the results where X = HNC and pyrazine, pyridine, 4methylpyridine, dimethyl sulphoxide, and ammonia may imply a high degree of covalency in the bonding between the cyano-ligand and the proton,* rather than the alternative ion-pair association between $[H_3O]^+$ and $[Fe(CN)_6]^{4-}$. The gradient of 0.8 obtained when X is a univalent anion is consistent with some degree of solvent-assisted aquation.

We thank the S.R.C. for the award of a grant (to A. D. J.).

[4/1734 Received, 19th August, 1974]

 R. Nast and K. W. Kreiger, Z. anorg. Chem., 1965, 341, 189.
 E. Fluck, E. Kerler, and W. Neuwirth, Z. anorg. Chem., 1964, 333, 235.

333, 235.
¹⁶ J. R. Chipperfield in 'Advances in Linear Free Energy Relationships,' eds. N. B. Chapman and J. Shorter, Plenum, London, 1972.