Crystal and Molecular Structures of Two Addition Products of Hexa-fluorobut-2-yne with Palladium(II) β-Diketonate Rings: cis-bis[1,2-bis-(trifluoromethyl)-3-acetyl-4-oxopent-1-enyl-O, C^{1}]palladium(iI) and $a b$ -[1,2-Bis(trifluoromethyl)-3-acetyl-4-oxopent-1-enyl-O, C ${ }^{1}$]-cd-\{2-[(dimethylamino)methyl]phenyl- C^{1}, N) palladium(II)

By David R. Russell ${ }^{\circ}$ and Paul A. Tucker, Department of Chemistry, The University, Leicester LE1 7RH

The crystal structures of the title compounds $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{O}_{2} \mathrm{Pd}$ (1) and $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{Pd}$ (2) have been determined. Crystals of (1) are monoclinic, space group $P 2_{1} / n$ with $a=9.512 \pm 0.007, b=23.294 \pm 0.013, c=11.301 \pm 0.009$ $\AA, \beta=114.9 \pm 0.2^{\circ}$; crystals of (2) are monoclinic, space group $P 2_{1} / c$, with $a=8.789 \pm 0.007, b=13.186 \pm$ $0.010, c=17.237 \pm 0.014 \AA, \beta=102.4 \pm 0.2^{\circ}$. The structures were solved from counter intensity data by heavy-atom techniques and refined by block-diagonal least-squares methods to $R 0.057$ [4302 reflections, (1)] and 0.034 [3748 reflections, (2)]. The molecular geometries are described and related to the fact that both adducts are formed by 1,4 -addition of hexafluorobut-2-yne to palladium(II)-acetylacetonate rings. Mean bond lengths are $\mathrm{Pd}-\mathrm{C} 1.998, \mathrm{Pd}-\mathrm{O} 2.130, \mathrm{Pd}-\mathrm{N} 2.115, \mathrm{Pd}-\mathrm{C}(\mathrm{Ph}) 1.988$, and $\mathrm{C}=\mathrm{C} 1.339 \mathrm{~A}$.

THE 1,4-addition of hexafluorobut-2-yne ($\mathrm{C}_{4} \mathrm{~F}_{6}$) across certain d^{8} rhodium(\mathbf{I})- β-diketonate rings has recently been reported ${ }^{1}$ and one of the products so obtained has been the subject of a single-crystal X-ray structure
${ }^{1}$ D. M. Barlex, A. C. Jarvis, R. D. W. Kemmitt, and B. Y. Kimura, J.C.S. Dalton, 1972, 2549.
determination. ${ }^{2}$ As reported in a preliminary communication ${ }^{3}$ this 1,4 -addition reaction may be extended to d^{8}
${ }^{2}$ D. M. Barlex, J. A. Evans, R. D. W. Kemmitt, and D. R. Russell, Chem. Comm., 1971, 331.
${ }^{3}$ A. C. Jarvis, R. D. W. Kemmitt, B. Y. Kimura, D. R. Russell, and P. A. Tucker, J. Organometallic Chem., 1974, 66, C53.
palladium(II)- β-diketonate rings. In confirmation of this we report here the crystal and molecular structures of the adducts (1) and (2) obtained on treating $\mathrm{C}_{4} \mathrm{~F}_{6}$ with bis(acetylacetonato)palladium(II) (3) and (acetylacetonato) $\left\{2-\left[(\right.\right.$ dimethylamino $)$ methyl] phenyl- $\left.C^{\mathbf{1}}, N\right\}$ palladium(II) (4). ${ }^{4}$

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{Pd}$, (1), $M=628.7$, Monoclinic, $\quad a=9.512 \pm 0.007, \quad b=23.294 \pm 0.013, \quad c=$ $11.301 \pm 0.009 \AA, \quad \beta=114.9 \pm 0.2^{\circ}, \quad U=2271.2 \AA^{3}$,
mounted about [001]. 3748 Unique reflections were considered observed.
Structure Determinations.-Scattering factors were taken from ref. 6. During the least-squares refinement corrections were made for anomalous dispersion. ${ }^{7}$ Both structures were solved by conventional heavy-atom techniques and refined by a block-diagonal least-squares treatment. In both cases hydrogen atoms were located from differenceFourier syntheses calculated after several cycles of refinement and were subsequently included in the structurefactor calculations with a temperature factor of $B 5.0 \AA^{2}$. Anisotropic temperature factors for all non-hydrogen atoms

(1)

(2)

Showing the systematic numbering

(3)
$D_{\mathrm{c}}=1.84 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1232$. Mo- K_{α} radiation, $\lambda=$ $0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=9.24 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / n$ from systematic absences: $h 0 l$ for $h+l=2 n+1,0 k 0$ for $k=$ $2 n+1$.
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{Pd}(2), M=501.8$, Monoclinic, $a=8.789 \pm$ $0.007, b=13.186 \pm 0.010, c=17.237 \pm 0.014 \AA, \beta=$ $102.4 \pm 0.2^{\circ}, U=1951.4 \AA^{3}, D_{\mathrm{c}}=1.71 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 1000. $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=10.10 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c$ from systematic absences: $h 0 l$ for $l=2 n+1,0 k 0$ for $k=2 n+$ 1.

Crystals of (1) from benzene-light petroleum are plates on $\{101\}$ with forms $\{010\}$, $\{11 \overline{1}\}$, and $\{\overline{1} 11\}$ commonly developed. Crystals of (2) from dichloroethane-light petroleum are parallelipipeds with forms $\{10 \overline{1}\},\{011\}$, and $\{0 \overline{1} 1\}$ developed. Unit-cell dimensions were obtained from precession photographs by use of Mo- K_{α} radiation.

The intensities of reflections with $0.1 \AA^{-1}>\sin \theta / \lambda<0.7$ \AA^{-1} were measured on a Stoe Weissenberg diffractometer by use of monochromatic Mo- K_{α} radiation and a ω-scan technique. Corrections for Lorentz, polarisation, and absorption ${ }^{5}$ effects were made. Intensity data for (1) were collected in 13 layers from a crystal of dimensions ca. $0.03 \times 0.03 \times 0.05 \mathrm{~cm}$ mounted about [101̄]. 4302 Unique reflections having $I>3 \sigma(I)$ were considered observed. Intensity data for (2) were collected in 17 layers from a crystal of dimensions ca. $0.02 \times 0.03 \times 0.04 \mathrm{~cm}$

* Anisotropic temperature factors have been deposited with the structure factors.

4. A. C. Jarvis and R. D. W. Kemmitt, 1974, unpublished results.
were refined but hydrogen-atom parameters were not. Weighting schemes were introduced in order that $w \Delta^{2}$ be approximately independent of $\left|F_{0}\right|$. For (1) twelve cycles of refinement reduced R to $0.057\left[R^{\prime}=\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) \mid\right.$ $\Sigma w\left|F_{0}\right|=0.069, \quad$ where $\quad w=\left(10.0+\left|F_{0}\right|+0.02\right.$ $\left.\left|F_{0}\right|^{2}\right)^{-1]}$ on 4302 reflections. The maximum shift in the final cycle was 0.8σ. For (2), seven cycles of refinement reduced R to 0.034 [$R^{\prime} 0.042$ where $w=\left(2.8+0.067\left|F_{o}\right|\right.$ $\left.\left.+0.0055\left|F_{0}\right|^{2}\right)^{-1}\right]$ on 3748 reflections. The maximum shift in the final cycle was 0.7σ.

Difference-Fourier syntheses calculated from the final parameters show no maxima >0.3 for (1) or $0.2 \mathrm{eA}^{-3}$ for (2).

RESULTS AND DISCUSSION

Atomic co-ordinates* for (1) and (2) are listed in Tables 1 and 2, and bond lengths and angles in Tables 3 and 4. The large and highly anisotropic temperature factors of the fluorine atoms in (1) are probably caused by libration of the trifluoromethyl groups about the $\mathrm{C}-\mathrm{CF}_{3}$ bonds. By referring the fluorine-atom temperature factors to the local axial system defined in Figure 1 it is evident that the largest root-mean-square amplitude of vibration is perpendicular to the $\mathrm{C}-\mathrm{F}$ bond and tangential to the circle drawn through the three fluorine atoms. Table 3 also lists corrected $\mathrm{C}-\mathrm{F}$ bond lengths. The quantity
${ }^{5}$ J. De Meulenaer and H. Tompa, Acta Cryst., 1965, 19, 1014; N. W. Alcock, ibid., 1969, A25, 518.
${ }^{6}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{7}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
$U_{z}{ }^{\mathrm{F}_{1}}-U_{z} \mathrm{C}_{3} \cdot\left(U_{x}{ }^{\mathrm{F}_{3}} / U_{x} \mathrm{C}_{\mathrm{a}}+U_{y}{ }^{\mathrm{F}} / U_{y}{ }_{y}^{\mathrm{C}_{\mathrm{a}}}\right) / 2$, where U_{j}^{A} is the mean square amplitude of vibration of atom A in the direction j of the local axial system (defined in Figure 1),

Table 1
Atomic co-ordinates for (1) with standard deviations, in parentheses, derived from the least-squares treatment

	x / a	y / b	z / c
Pd	0.22025(5)	$0.16938(2)$	$0.01147(4)$
C(1)	$0.3031(7)$	0.0997(2)	0.1226 (6)
C(2)	$0.3017(7)$	0.0989(2)	0.2401 (6)
C(3)	0.2224 (7)	0.1466(2)	0.2820 (5)
C(4)	0.2881 (6)	0.2051 (2)	0.2770 (5)
C(5)	0.3820 (11)	0.0569 (3)	0.3494 (8)
C(6)	$0.3911(10)$	$0.0555(3)$	$0.0814(8)$
C(7)	$0.0446(7)$	$0.1498(3)$	0.2049 (6)
$\mathrm{C}(8)$	$-0.0407(10)$	0.0941 (3)	$0.1932(10)$
C(9)	$0.3212(8)$	0.2450 (3)	$0.3886(6)$
C(11)	$0.1082(7)$	0.1299 (3)	-0.1583(6)
$\mathrm{C}(12)$	$0.1252(8)$	0.1510 (3)	$-0.2633(6)$
C(13)	$0.2296(8)$	0.2026(3)	$-0.2507(6)$
C(14)	$0.1865(6)$	$0.2532(3)$	-0.1897(6)
C(15)	0.0393(12)	$0.1297(4)$	-0.4029(7)
C(16)	-0.0087(11)	$0.0863(3)$	-0.1683(8)
C(17)	$0.4032(8)$	0.1889 (4)	-0.1749(7)
C(18)	$0.4688(12)$	0.1439 (6)	$-0.2321(11)$
C(19)	0.1751 (8)	0.3101(3)	-0.2499(7)
$\mathrm{O}(1)$	0.3145 (4)	$0.2200(2)$	0.1835 (4)
$\mathrm{O}(2)$	-0.0174(5)	$0.1951(2)$	$0.1654(5)$
$\mathrm{O}(11)$	0.1625(4)	0.2477(2)	$-0.0910(4)$
$\mathrm{O}(12)$	$0.4803(6)$	$0.2148(3)$	-0.0785(6)
$\mathrm{F}(1)$	$0.5388(6)$	0.0529(3)	$0.1624(6)$
$\mathrm{F}(2)$	0.3368 (8)	$0.0031(2)$	0.0719 (7)
$\mathrm{F}(3)$	0.3881 (11)	$0.0660(3)$	-0.0329(6)
$\mathrm{F}(4)$	0.4993 (9)	0.0806(3)	0.4413 (7)
$\mathrm{F}(5)$	$0.4244(12)$	0.0091 (3)	0.3193 (7)
F (6)	0.2916(8)	$0.0411(3)$	0.4070 (6)
F(11)	-0.0302(17)	$0.0805(7)$	-0.0735(8)
$\mathrm{F}(12)$	-0.1411(9)	0.0931 (5)	-0.2523(10)
F(13)	$0.0179(13)$	0.0393 (3)	-0.1816(22)
F(14)	-0.1024(10)	0.1398 (6)	-0.4553(7)
$F(15)$	$0.0442(16)$	$0.0758(4)$	-0.4138(7)
$\mathrm{F}(16)$	$0.0979(13)$	0.1467(5)	-0.4775(7)
$\mathrm{H}(81)$	-0.140	0.094	0.111
H(82)	0.022	0.059	0.193
$\mathrm{H}(83)$	-0.072	0.089	0.269
H(91)	0.256	0.280	0.357
H(92)	0.286	0.225	0.453
$\mathrm{H}(93)$	0.430	0.254	0.432
$\mathrm{H}(3)$	0.245	0.139	0.375
H(181)	0.434	0.103	-0.218
$\mathrm{H}(182)$	0.415	0.147	-0.335
$\mathrm{H}(183)$	0.579	0.144	-0.205
H(191)	0.124	0.339	-0.215
H(192)	0.280	0.325	-0.236
H(193)	0.111	0.307	-0.347
H(13)	0.210	0.214	-0.341

Figure 1 Local axial system used in calculating the libration correction for a trifluoromethyl fluorine atom
is assumed to be due solely to libration about the $\mathrm{C}_{b}-\mathrm{C}_{\mathrm{a}} \mathrm{F}_{3}$ bond. The value of r (Figure I) was corrected ${ }^{8}$ for libration and the corrected $C_{a}-F_{i}$ bond length

Table 2
Atomic co-ordinates for (2), with standard deviations in parentheses

	x / a	y / b	z / c
Pd	$0.35203(3)$	$0.30606(2)$	0.42503(1)
C(1)	0.0758(5)	$0.1778(3)$	$0.4164(3)$
$\mathrm{C}(2)$	-0.0664(6)	$0.1318(5)$	$0.4356(4)$
C(3)	0.1342 (5)	0.1402(3)	$0.3441(3)$
$\mathrm{C}(4)$	0.1417(4)	0.2280 (3)	$0.2877(2)$
C(5)	0.2289 (4)	0.3086(2)	$0.3125(2)$
C(6)	0.0336(5)	0.2088(3)	0.2086(3)
C(7)	0.2220(4)	0.4023 (3)	$0.2628(2)$
C(8)	0.2865(5)	0.0801 (3)	$0.3755(3)$
C(9)	$0.4032(6)$	0.0727(4)	0.3239(4)
C(10)	0.5559(4)	0.3481 (2)	$0.4031(2)$
C(11)	0.6063 (5)	0.3461 (3)	$0.3321(3)$
C(12)	0.7581 (5)	0.3747(4)	0.3292(3)
C(13)	0.8606(5)	0.4050(4)	0.3962(4)
C(14)	0.8160(5)	0.4050 (3)	0.4679(3)
C(15)	0.6632(4)	0.3775 (3)	$0.4724(2)$
C(16)	0.6086(5)	0.3795 (3)	0.5470 (3)
C(17)	0.5507(6)	0.2001 (3)	0.5611 (3)
C(18)	$0.3887(7)$	$0.3276(5)$	0.6033(3)
N(1)	$0.4815(4)$	0.3030(2)	$0.5435(2)$
$\mathrm{O}(1)$	0.1440 (3)	0.2467(2)	0.4567(2)
$\mathrm{O}(2)$	$0.2986(5)$	0.0363 (3)	0.4370 (3)
$\mathrm{F}(1)$	-0.1145(3)	0.1997 (3)	$0.2181(2)$
$\mathrm{F}(2)$	0.0323(5)	0.2767 (3)	0.1537(2)
$\mathrm{F}(3)$	0.0638(4)	$0.1211(2)$	0.1776(2)
$\mathrm{F}(4)$	0.0760(3)	0.4380 (2)	0.2390 (2)
$F(5)$	0.2784 (3)	$0.3918(2)$	0.1967(2)
$\mathrm{F}(6)$	0.3028(4)	0.4798(2)	$0.3013(2)$
$\mathrm{H}(3)$	0.047	0.094	0.315
$\mathrm{H}(11)$	0.530	0.325	0.282
$\mathrm{H}(12)$	0.767	0.375	0.279
H(13)	0.966	0.428	0.396
H(14)	0.891	0.429	0.517
H(21)	-0.136	0.186	0.457
$\mathrm{H}(22)$	-0.133	0.098	0.391
$\mathrm{H}(23)$	-0.039	0.081	0.482
$\mathrm{H}(91)$	0.375	0.028	0.277
H(92)	0.421	0.144	0.306
H(93)	0.503	0.048	0.359
$\mathrm{H}(161)$	0.570	0.450	0.557
H (162)	0.699	0.364	0.595
H(171)	0.475	0.148	0.535
H(172)	0.650	0.196	0.544
H(173)	0.570	0.189	0.621
H(181)	0.274	0.318	0.580
H(182)	0.413	0.270	0.648
H(183)	0.412	0.391	0.629

Figure 2 Molecular geometry, and atom numbering used in the crystal-structure determination of (1); thermal ellipsoids scaled to 30% probability
computed. The fluorine atom temperature factors in (2) are not markedly anisotropic and no libration correction
${ }^{8}$ H. Lipson and W. Cochran, 'The Crystalline State,' vol. III, Bell, London, 1966, p. 354.

Table 3

Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for (1), with estimated standard deviations of bond lengths in parentheses. For angles, no estimated standard deviation is $>0.8^{\circ}$. The molecule comprises two similar halves and, where appropriate, equivalent values for each half are separated by a comma [e.g. the entry labelled $\mathrm{C}(1)-\mathrm{C}(2)$ gives the $\mathrm{C}(1)-\mathrm{C}(2)$ bond length followed by the $\mathrm{C}(11)-\mathrm{C}(12)$ bond length]. $\mathrm{C}-\mathrm{F}$ Bond lengths corrected for libration are given in square brackets after the uncorrected length

$\mathrm{Pd}-\mathrm{C}(1)$	2.001(5), 1.985(6)
$\mathrm{Pd}-\mathrm{O}(1)$	2.106(4), 2.122(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.333(8), $1.356(8)$
$\mathrm{C}(2)$ - $\mathrm{C}(3)$	1.525(8), 1.527(10)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.510(8), 1.507(9)$
$\mathrm{C}(4)-\mathrm{O}(1)$	1.233(6), 1.236(7)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.519(8), 1.475(10)
$\mathrm{C}(2)-\mathrm{C}(5)$	1.507(9), 1.522(10)
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.491(8), 1.473$ (9)
$\mathrm{C}(3)-\mathrm{C}(7)$	1.544(8), 1.539(10)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.506(9), 1.499(12)
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.200(8), 1.190(10)$
$\mathrm{C}(6)-\mathrm{F}(1)$	1.32(1), 1.18(1) [1.34, 1.39]
$\mathrm{C}(6)-\mathrm{F}(2)$	$1.31(1), 1.23(1)$ [1.33, 1.32$]$
$\mathrm{C}(6)-\mathrm{F}(3)$	$1.30(1), 1.15(1)$ [1.38, 1.36$]$
$\mathrm{C}(5)-\mathrm{F}(4)$	1.29(1), 1.25(1) [1.37, 1.33]
$\mathrm{C}(5)-\mathrm{F}(5)$	1.28(1), 1.26(1) [1.36, 1.35]
$\mathrm{C}(5)-\mathrm{F}(6)$	1.33(1), 1.25(1) [1.36, 1.37]
$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(11)$	98.1
$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{O}(11)$	86.2
$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{O}(1)$	88.4, 87.7
$\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(2)$	118.0, 117.7
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.9, 121.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.2, 111.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	121.5, 121.4
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{Pd}$	117.9, 118.8
$\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(6)$	118.7, 118.3
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.3, 123.1
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	127.6, 125.4
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	111.4, 113.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	115.3, 113.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(9)$	107.9, 110.0
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	118.3, 118.3
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	120.2, 120.3
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	115.4, 116.7
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{O}(2)$	120.2, 120.5
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	124.2. 122.8

Figure 3 Molecular geometry, and atom numbering used in the crystal-structure determination of (2); thermal ellipsoids scaled to $\mathbf{4 0} \%$ probability
was made. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21328 (43 pp ., 1 microfiche).* The molecular geometry and atom numbering is shown for (1) in Figure 2 and for (2) in Figure 3.

Both adducts are formed by a 1,4 -addition of $\mathrm{C}_{4} \mathrm{~F}_{6}$ to the palladium(II)-acetylacetonate ring(s) in their respective precursors. ${ }^{4}$ The acetylene links the γ-carbon of

Table 4
Bond lengths (\AA) and angles (${ }^{\circ}$) in (2), with estimated standard deviations of bond lengths in parentheses. For angles no estimated standard deviation is $>\mathbf{0 . 5}{ }^{\circ}$

$\mathrm{Pd}-\mathrm{C}(5)$	2.009(3)	$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{N}(1)$	93.4
$\mathrm{Pd}-\mathrm{O}(1)$	2.163(3)	$\mathrm{C}(5)-\mathrm{Pd}-\mathrm{C}(10)$	97.6
$\mathrm{C}(5)-\mathrm{C}(4)$	1.327 (5)	$\mathrm{O}(\mathbf{1})-\mathrm{Pd}-\mathrm{C}(5)$	86.6
$\mathrm{C}(4) \mathrm{C}(3)$	$1.522(5)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}(10)$	82.4
$\mathrm{C}(3)-\mathrm{C}(1)$	1.528(7)		
$\mathrm{C}(1)-\mathrm{O}(1)$	1.220 (5)	$\mathrm{Pd}-\mathrm{O}(1)-\mathrm{C}(1)$	117.7
$\mathrm{C}(5)-\mathrm{C}(7)$	1.497 (5)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	119.7
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.507(5)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	110.0
$\mathrm{C}(1)-\mathrm{C}(2)$	1.488(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.3
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.550(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Pd}$	116.9
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.497(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	120.7
$\mathrm{C}(8)-\mathrm{O}(2)$	1.192(6)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	119.6
$\mathrm{C}(6)-\mathrm{F}(1)$	1.351(6)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	107.3
$\mathrm{C}(6)-\mathrm{F}(2)$	1.301 (6)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	117.4
$\mathrm{C}(6)-\mathrm{F}(3)$	1.325(6)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	118.4
$\mathrm{C}(7)-\mathrm{F}(4)$	1.346(4)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{O}(2)$	117.4
$\mathrm{C}(7)-\mathrm{C}(5)$	1.343 (5)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(2)$	123.6
$\mathrm{C}(7)-\mathrm{F}(6)$	$1.337(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	110.2
$\mathrm{Pd}-\mathrm{C}(10)$	1.988(4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	129.4
$\mathrm{Pd}-\mathrm{N}(1)$	$2.115(3)$	$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(7)$	121.8
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.388(6)$	$\mathrm{Pd}-\mathrm{C}(5)-\mathrm{C}(7)$	120.9
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.398(6)$		
$\mathrm{C}(12)-\mathrm{C}(13)$	1.364(6)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.8
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.374(6)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.8
$\mathrm{C}(14)-\mathrm{C}(15)$	1.409(6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.8
$\mathrm{C}(15)-\mathrm{C}(10)$	$1.408(5)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.5
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.465(7)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	119.9
		$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$	118.1
$\mathrm{C}(16)-\mathrm{N}(1)$	1.497(5)	$\mathrm{Pd}-\mathrm{C}(10)-\mathrm{C}(11)$	129.3
$\mathrm{N}(1)-\mathrm{C}(17)$	1.491(5)	$\mathrm{Pd}-\mathrm{C}(10)-\mathrm{C}(15)$	112.5
$\mathrm{N}(1)-\mathrm{C}(18)$	$1.480(7)$	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	117.6
		$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(1)$	109.5
		$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Pd}$	105.6
		$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{C}(16)$	122.5
		$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(18)$	108.6
		$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{Pd}$	109.2
		$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(16)$	109.7
		$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(18)$	110.0
		$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{Pd}$	113.9

the ring to the metal. Whereas similar additions to rhodium(I) ${ }^{1}$ and iridium(I) ${ }^{9} \beta$-diketonate rings lead to an increase in co-ordination number of the metal, these palladium(II) systems remain four-co-ordinate and one of the carbonyl functions of the original diketonate is not co-ordinated in the adduct. The co-ordination of palladium is essentially planar in both complexes (Table 5), with small tetrahedral distortions; however the palladium atom in (2) does not lie in the mean plane of the four atoms co-ordinated to it.

With the exception of the $\mathrm{Pd}-\mathrm{O}$ bonds, equivalent

* See Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.
${ }^{9}$ A. C. Jarvis, R. D. W. Kemmitt, B. Y. Kimura, D. R. Russell, and P. A. Tucker, J.C.S. Chem. Comm., 1974, 797.

Table 5
Parameters of mean planes through sets of atoms and (in square brackets) distances (\AA) of atoms from the planes. The equation of a plane is $l x+m y+n z=p$, with co-ordinates (\AA) referred to orthogonal axes a^{\prime}, b, and c
(a) Compound (1)

Plane (i)
$\mathrm{Pd}, \mathrm{C}(1), \mathrm{C}(11), \mathrm{O}(1), \quad 0.9936 \quad 0.0239 \quad-0.1104 \quad 2.112$ O(11)
$[\mathrm{Pd} 0.00, \mathrm{C}(1) 0.09, \mathrm{C}(11)-0.09, \mathrm{O}(1)-0.09, \mathrm{O}(11) 0.09]$
Plane (ii)
$\begin{array}{lllll}\mathrm{Pd}, \mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(6) & 0.7534 & 0.4847 & 0.4443 & 3.484\end{array}$
$[\mathrm{Pd} 0.02, \mathrm{C}(1)-0.07, \mathrm{C}(2) 0.03, \mathrm{C}(6) 0.02]$
Plane (iii)
$\begin{array}{lllll}\mathrm{C}(1)-(3), \mathrm{C}(5) & 0.7619 & 0.5497 & 0.3426 & 3.450\end{array}$
$[\mathrm{C}(1) 0.01, \mathrm{C}(2)-0.02, \mathrm{C}(3) 0.01, \mathrm{C}(5) 0.01]$
Plane (iv)
Pd, C(11), C(12), C(18) $\begin{array}{lllll}0.7066 & -0.6766 & 0.2071 & -1.187\end{array}$
$[\mathrm{Pd} 0.02, \mathrm{C}(11)-0.06, \mathrm{C}(12) 0.02, \mathrm{C}(16) 0.02]$
Plane (v)
$\mathrm{C}(11)-(13), \mathrm{C}(15) \quad 0.7615 \quad-0.6294 \quad 0.1551 \quad-0.791$
[C(11) $0.01, \mathrm{C}(12)-0.02, \mathrm{C}(13) 0.01, \mathrm{C}(15) 0.01]$
Plane (vi)
$\mathrm{O}(1), \mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(9) \quad 0.8107 \quad-0.3695 \quad 0.4541 \quad 0.678$
$[\mathrm{O}(1) 0.00, \mathrm{C}(3) 0.00, \mathrm{C}(4) 0.00, \mathrm{C}(9) 0.00, \mathrm{Pd}-0.43]$
Plane (vii)
$\begin{array}{lllll}\mathrm{Pd}, \mathrm{O}(1), \mathrm{C}(4) & 0.7524 & -0.5625 & 0.3428 & -0.643\end{array}$
Plane (viii)
$\mathrm{O}(11), \mathrm{C}(13), \mathrm{C}(14), \mathrm{C}(19) \quad 0.7997 \quad 0.1649 \quad 0.5774 \quad 1.994$ $[\mathrm{O}(11) 0.00, \mathrm{C}(13) 0.00, \mathrm{C}(14) 0.00, \mathrm{C}(19) 0.00, \mathrm{Pd} 0.36]$ Plane (ix)

Pd, O(11), C(14)	0.7502	0.3488	0.5617	2.973
Dihedral angles (${ }^{\circ}$)				
$\begin{aligned} & \text { (ii-(iii) } \\ & \text { (vi)-(vii) } \end{aligned}$	$\begin{array}{r} 6.9 \\ 13.2 \end{array}$	$\begin{aligned} & \text { (iii)-(iv) } \\ & \text { (viii)-(ix) } \end{aligned}$	5.1	
(b) Compound (2)				
Plane (i)				
$\begin{gathered} \mathrm{Pd}, \mathrm{~N}(1), \mathrm{O}(1), \mathrm{C}(5), \\ \mathrm{C}(10) \end{gathered}$	0.3027	-0.9448	-0.1250	-4.210

C(10)
$[\mathrm{Pd}-0.03, \mathrm{~N}(1)-0.03, \mathrm{O}(1) 0.05, \mathrm{C}(5)-0.03, \mathrm{C}(10) 0.05]$ Plane (ii)
$\mathrm{C}(10)-(15) \quad 0.2692-0.9488 \quad 0.1653-2.308$
$[\mathrm{C}(10)-0.01, \mathrm{C}(11) 0.01, \mathrm{C}(12) 0.00, \mathrm{C}(13)-0.01, \mathrm{C}(14)$
$0.01, \mathrm{C}(15) 0.00, \mathrm{C}(16)-0.02, \mathrm{~N}(1) 0.63, \mathrm{Pd} 0.07]$
Plane (iii)
$\mathrm{Pd}, \mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(7) \quad \begin{array}{lllll}0.8680 & -0.3626 & -0.3392 & -2.561\end{array}$
$[\mathrm{Pd}-0.01, \mathrm{C}(4)-0.02, \mathrm{C}(5) 0.04, \mathrm{C}(7)-0.02]$
Plane (iv)

[C(1) 0.01, C(2) $0.00, \mathrm{C}(3) 0.00, \mathrm{O}(1) 0.00, \mathrm{Pd} 0.06]$
Plane (vi)
$\begin{array}{lllll}\mathrm{Pd}, \mathrm{O}(1), \mathrm{C}(1) & 0.3970 & -0.6098 & 0.6860 & 2.101\end{array}$
Dihedral angles
(iii)-(iv)
4.7
(v)-(vi)
bond lengths and angles in each of the three
$\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ rings are not significantly different, and the mean values are shown in Figure 4 . Those bond lengths and angles not involving the metal are similar to values found when $\mathrm{C}_{4} \mathrm{~F}_{6}$ adds across rhodium $(\mathrm{I})^{1}$ and iridium(I) ${ }^{9}$ acetylacetonato-rings.

The mean $\mathrm{Pd}-\mathrm{O}$ bond in (1) is significantly shorter than that in (2) because the trans-carbon atoms in the former have strongly electron-withdrawing CF_{3} groups as substituents. The longer $\mathrm{Pd}-\mathrm{O}$ bond length of (2) is similar to that $(2.158 \AA)$ reported for $\left[\mathrm{Pd}(\mathrm{acac})\left(\mathrm{C}_{18} \mathrm{H}_{20}\right)\right]{ }^{10}$ There are two distinct $\mathrm{C}=\mathrm{O}$ bond lengths with the coordinated ketonic bond being the longer, as expected. Both $\mathrm{C}=\mathrm{O}$ bonds are shorter than the mean value observed

Figure 4 Mean bond lengths (\AA) and angles (${ }^{\circ}$) of the $\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ rings in (1) and (2)
in $(3)^{11}\left(1.31_{5} \AA\right)$, indicative of the greater carbonoxygen bond orders in (1) and (2). The value of the mean $\mathrm{C}=\mathrm{C}$ bond length compares well with that ($1.336 \AA$) in ethylene. ${ }^{12}$ The $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)$ bond lengths are unexceptional except for the $>\mathrm{CH}^{-} \mathrm{C}(\mathrm{O})$ Me bond which is consistently longer than expected $\left[c f . \mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)\right.$ $1.510 \AA$ (ref. 13)]. The $\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ rings show further deviations from ideal geometry. The $\mathrm{C}\left(\mathrm{CF}_{3}\right)=$ $\mathrm{C}-\mathrm{CF}_{3}$ angle is significantly larger than 120°, presumably in order to minimise steric interference between the adjacent CF_{3} groups. Similarly the $\mathrm{C}\left(\mathrm{CF}_{3}\right)-\mathrm{CH}-\mathrm{C}(\mathrm{O}) \mathrm{Me}$ angle is larger than tetrahedral. The carbon atom bonded to palladium is on average $0.08 \AA$ out of the mean plane of its attached atoms. The $\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{C}\left(\mathrm{CF}_{3}\right)$ and co-ordinated $\mathrm{C}=\mathrm{O}$ bonds have mean torsion angles of 6 and 11° respectively. The mean (corrected) $\mathrm{C}-\mathrm{F}$ bond length $(1.35 \AA)$ is similar to the accepted value of 1.333 A. ${ }^{13}$

The phenyl ring in (2) is planar (Table 5), mean $\mathrm{C}-\mathrm{C}$ bond length $1.390(7) \AA$ and mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle $120.0(5)^{\circ}$. The mean $\mathrm{C}-\mathrm{N}$ bond length ($1.489 \AA$) compares well with the value $(1.479 \AA)$ for a $\mathrm{C}\left(s p^{3}\right)-\mathrm{N}$ (four-co-ordinate) bond, given in ref. 13. The nitrogen atom is on the same side of the phenyl-ring plane as the non-bonded carbonyl

[^0]function with the methyl groups $\mathrm{C}(17) \mathrm{H}_{3}$ and $\mathrm{C}(18) \mathrm{H}_{3}$ in axial and equatorial positions respectively (Figure 3). The observed conformation of the five-membered $\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ ring, as opposed to the alternative with nitrogen on the opposite side of the phenyl plane, minimises steric interaction between the phenyl carbon atom $C(11)$ and the fluorine atoms attached to $C(7)$.

The orientation of the non-bonded carbonyl groups is of interest. In (1) the distances $\mathrm{Pd}-\mathrm{C}(7), \mathrm{Pd}-\mathrm{C}(17)$, $\mathrm{Pd}-\mathrm{O}(2)$, and $\mathrm{Pd}(12)$ are $3.30,3.28,3.23$, and $3.43 \AA$ with the $\mathrm{C}=\mathrm{O}$ bond approximately perpendicular to the line connecting the midpoint of the bond to the metal, (i.e. in a ' π-bonding' orientation). Because this orientation of the carbonyl group is not expected on simple steric grounds, and bearing in mind evidence for weakly bonding axial interactions in other squareplanar $\mathrm{Pd}^{\mathrm{II}}$ species $\left\{\right.$ e.g. trans- $\left[\mathrm{PdI}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (ref. 14) \}, we tentatively suggest a weak π-interaction between the metal and the non-bonded carbonyl function. Whether or not this is the case, the orientation of the non-bonded carbonyl groups suggests the previously reported ${ }^{3}$ mechanism whereby the two different methyl environments in (1) may be made equivalent in solution at room temperature (viz. a concerted mechanism whereby the two long $\mathrm{Pd}-\mathrm{O}$ bonds shorten to form an octahedral

Figure 5 Packing of the molecules of (1) in the unit cell, projected along [100]
intermediate which undergoes a trigonal twist, followed by reversal of the initial process to yield an equivalent structure with the methyl groups interchanged). The non-bonded carbonyl group in (2) has a different orient-
ation, namely that expected on steric grounds, with $\mathrm{Pd}-\mathrm{C}(8) 3.12$ and $\mathrm{Pd}-\mathrm{O}(2) 3.60 \AA$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (2) ${ }^{4}$ shows that this molecule is also fluxional

Figure 6 Packing of the molecules of (2) in the unit cell, projected along [100]

Table 6
Short intermolecular contacts (\AA)

Compound (1)		Compound (2)		
$\mathrm{C}(8) \cdots \mathrm{H}(192 \mathrm{I})$	2.88	C (12)	- $\mathrm{H}\left(19^{\text {VII }}\right.$)	2.80
$\mathrm{O}(11) \cdots \mathrm{H}\left(93^{\text {II }}\right)$	2.34	$\mathrm{F}(4)$.	$\mathrm{H}\left(3^{\mathrm{VII}}\right)$	2.41
$\mathrm{O}(12) \cdots \mathrm{H}\left(193{ }^{\text {III }}\right.$)	2.42	$\mathrm{F}(1)$.	$\mathrm{H}\left(162^{\mathrm{VIII}}\right)$	2.54
$\mathrm{H}(82) \cdots \mathrm{F}\left(13^{\text {IV }}\right.$)	2.32	$\mathrm{H}(23)$	- $\mathrm{H}\left(23^{\text {IX }}\right.$)	2.30
$\mathrm{H}(183) \cdots \mathrm{H}\left(9 \mathrm{l}^{\mathbf{v}}\right)$	2.33			

Roman numeral superscripts denote atoms related to those at x, y, z by the symmetry operations

$$
\begin{array}{rr}
\text { I } x-\frac{1}{2}, \frac{1}{2}-y, z+\frac{1}{2} & \text { VI } 1-x, \frac{1}{2}+y, \frac{1}{2}-z \\
\text { II } x-y, z \\
\text { III } \frac{1}{2}, \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z & \text { VIII } x, \frac{1}{2}+y, \frac{1}{2}-z \\
\text { IV }-x,-y,-z-\frac{1}{2}-y, z-\frac{1}{2} \\
\text { V } \frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2} & \text { IX } \frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}
\end{array}
$$

in solution at room temperature with both acetylace-tonato-methyl groups and both nitrogen-bonded methyl groups equivalent. The two acetylacetonato-methyl groups may be made equivalent by a mechanism similar to that postulated for (I), but producing a five-coordinate intermediate. Minimisation of steric interactions between the CF_{3} group adjacent to the metal and the phenyl group would then require a change in conformation of the five-membered $\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ ring such that the nitrogen atom would move to the other side of

[^1]the phenyl-ring plane. This produces an equivalent molecule but with both sets of methyl groups interchanged.

The solid-state packing of the molecules is shown in Figures 5 and 6, both projected along the a axis. There
${ }^{15}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.
are no exceptionally short intermolecular contacts; those few contacts shorter than the estimated sum of van der Waals radii ${ }^{15}$ for the atoms are listed in Table 6.

We thank the University of Leicester computing centre for the use of its facilities, and the S.R.C. for financial support.
-
[4/2171 Received, 21st October, 1974]

[^0]: ${ }^{10}$ C. Calvo, T. Hosokana, H. Reinheimer, and P. M. Maitlis, J. Amer. Chem. Soc., 1972, 94, 3237.
 ${ }_{11}$ A. N. Knyazeva, E. A.'Shugan, and L. M. Shkol'nikova, Zhur. Strukt. khim., 1970, 11, 938.
 ${ }^{12}$ L. S. Bartell, E. A. Roth, C. D. Hollowell, K. Kuchitsu, and J. E. Young, J. Chem. Phys., 1965, 42, 2683.
 ${ }_{13}$ Chem. Soc. Special Publ., No. 18, 1965.

[^1]: 14 N. A. Bailey and R. Mason, J. Chem. Soc. (A), 1968, 2594.

