# Kinetics of Oxidation of Formic Acid by Silver(II) in Aqueous Perchloric Acid Solution 


#### Abstract

By Ezio Pelizzetti * and Edoardo Mentasti, Istituto di Chimica Analitica, Università di Torino, Torino, Italy The kinetics of oxidation of formic acid by silver ( 11 ) in acidic perchlorat emedia ( $1.00 \leqslant\left[\mathrm{HClO}_{4}\right] \leqslant 4.00 \mathrm{~m}$ ) at 14.0. 22.0, and $30.0^{\circ} \mathrm{C}$ have been investigated by means of a stopped-flow spectrophotometric technique. The experimental rate law, at constant $\left[\mathrm{H}^{+}\right]$and with formic acid in excess, is $-\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right] / \mathrm{d} t=k_{\mathrm{I}}^{0}\left[\mathrm{Ag}^{\mathrm{II}}\right]\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ $+k_{\text {I1 }}{ }^{0}\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}+\left[\mathrm{HCO}_{2} \mathrm{H}\right]\left[\mathrm{Ag}^{\mathrm{I}}\right]^{-1}$. The $\left[\mathrm{H}^{+}\right]$dependence of the terms is explained by taking into account the presence of the hydrolyzed species $[\mathrm{Ag}(\mathrm{OH})]^{+}$and $[\mathrm{Ag}(\mathrm{OH})]^{2+}$ : the corresponding hydrolysis equilibrium constants have been evaluated. The mechanism of the reaction is discussed in terms of different paths and reacting species. Comparison is made with previous findings concerning formic acid oxidation with other metal ions and oxidations with $\mathrm{Ag}^{\mathrm{II}}$.


Several papers deal with the kinetics and mechanisms of oxidations of formic acid with different metal ions, ${ }^{1-3}$ and recent work has involved metal-ion couples of high redox potential such as $\mathrm{Ce}^{\mathrm{IV}}-\mathrm{Ce}^{\mathrm{III}}$ (ref. 4) and $\mathrm{Np}^{\mathrm{VII}}-\mathrm{Np}^{\mathrm{VI}}$ (ref. 5) in perchlorate media. The main features are the presence in the rate laws of terms dependent on and independent of acidity and the increase in reaction rate on increasing the redox potential of the oxidizing agent. In order to extend the available data, the oxidation with $\mathrm{Ag}^{\mathrm{II}}$ in perchlorate media has been investigated.

The couple $\mathrm{Ag}^{\mathrm{II}}-\mathrm{Ag}^{\mathrm{I}}$ is strongly oxidizing in aqueousperchlorate media ( $E^{\ominus} c a .2 .0 \mathrm{~V}$ ). ${ }^{6}$ Kinetic investigations of reactions of $\mathrm{Ag}^{\text {II }}$ with metal ions, ${ }^{7}$ dithionate, ${ }^{8}$ and hydroxylamines ${ }^{9}$ have been reported and in these cases the kinetic laws contain terms involving [AgiI]. On the other hand, the oxidation of water in different acidic media (perchlorate, ${ }^{\mathbf{1 0}}$ nitrate, ${ }^{\mathbf{1 1}}$ phosphate, ${ }^{\mathbf{1 2}}$ and sulphate ${ }^{13}$ ) and of phosphorous acid ${ }^{14}$ showed a term dependent on $\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}$ : this suggested a mechanism involving $\mathrm{Ag}^{\text {III }}$ formed via rapid disproportionation of $\mathrm{Ag}^{\mathrm{II}}$. The same disproportionation equilibrium is involved in Ag ${ }^{\text {II }}-\mathrm{Ag}^{\mathrm{I}}$ exchange. ${ }^{15}$ However, the mechanism of oxidation of $\mathrm{Tl}^{\mathrm{I}}$ with $\mathrm{Ag}^{\mathrm{II}}$ in nitrate media, which involves the same $\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}$ dependence, has been explained in terms of intermediate formation of the $\mathrm{NO}_{3}$ radical. ${ }^{16}$

## EXPERIMENTAL

Reagents.-Formic acid solutions were prepared before use. Solutions of Ag ${ }^{\text {II }}$ were obtained by anodic oxidation of $\mathrm{Ag}\left[\mathrm{ClO}_{4}\right]$ [obtained by dissolving $\mathrm{Ag}_{2} \mathrm{O}$ (Merck) in perchloric acid] in perchloric acid. ${ }^{8,14}$ The total $\mathrm{Ag}^{I I}$ concen-

[^0]tration was determined spectrophotometrically at 470 nm ( $\varepsilon_{\text {AgII }} 138 \pm 21 \mathrm{~mol}^{-1} \mathrm{~cm}^{-117}$ ). Sodium perchlorate (C. Erba) was used for adjustment of ionic strength. Twice distilled water was employed throughout.

Stoicheiometry.-It is generally accepted ${ }^{1-5}$ that formic acid is oxidized by metal ions to carbon dioxide. In the present case the stoicheiometric equation can be represented as (1). This equation was tested in the stopped-flow

$$
\begin{equation*}
2 \mathrm{Ag}^{\mathrm{II}}+\mathrm{HCO}_{2} \mathrm{H} \longrightarrow 2 \mathrm{Ag}^{\mathrm{I}}+\mathrm{CO}_{2}+2 \mathrm{H}^{+} \tag{1}
\end{equation*}
$$

apparatus by mixing an $\mathrm{Ag}^{\mathrm{II}}$ solution (whose concentration in excess, in the range $1 \times 10^{-4}-3 \times 10^{-3} \mathrm{M}$, was estimated spectrophotometrically) $\dagger$ with different amounts of $\mathrm{HCO}_{2} \mathrm{H}$ and measuring the final absorbance at 470 nm which decreased toward zero on approaching the limiting ratio $\left[\mathrm{HCO}_{2} \mathrm{H}\right]:\left[\mathrm{Ag}^{\mathrm{II}}\right]=2: 1$.

Kinetics.-The kinetic determinations were made with a Durrum-Gibson stopped-flow spectrophotometer by following the disappearance of $\mathrm{Ag}^{\mathrm{II}}$ at 470 nm . At this wavelength no other components of the investigated solutions contribute significantly to the measured absorbance. Formic acid was present in excess and the initial $\mathrm{Ag}^{\text {II }}$ concentration was determined spectrophotometrically before mixing the two reagents; the absorbance at the start of the reaction agreed with that of the calculated $\mathrm{Ag}^{\text {II }}$ concentration taking into account the dilution. An excess of $\mathrm{Ag}^{\mathrm{I}}$ was always present in the $\mathrm{Ag}^{\mathrm{II}}$ solution. The reaction traces were photographed on the storage screen of a Tektronix 564 oscilloscope. The kinetic data were evaluated with a weighted least-squares method. ${ }^{18}$ The experiments were carried out at $14.0,22.0$, and $30.0{ }^{\circ} \mathrm{C}$ and $I=4.0 \mathrm{~m}$. The pathlength of the cell was 2.00 cm .

## RESULTS

First-order Path.-By working with $\left[\mathrm{AgHI}^{\mathrm{II}}\right]_{0}$ in the range $5 \times 10^{-5} \ldots 20 \times 10^{-5} \mathrm{M}$ and in the presence of a large excess
${ }^{10}$ J. B. Kirwin, F. D. Peat, P. J. Proll, and L. H. Sutcliffe, $J$. Phys. Chem., 1963, 6\%, 1617; G. A. Rechnitz and S. B. Zamochnick, Talanta, 1964, 11, 713.
${ }^{11}$ (a) H. N. Po, J. H. Swinehart, and T. L. Allen, Inorg. Chem., 1968, 7. 244; (b) A. A. Noyes, C. D. Coryell, F. Stitt, and A. Kossiakoff, J. Amer. Chem. Soc., 1937, 59, 1316.
${ }^{12}$ G. A. Rechnitz and S. B. Zamochnick, Talanta, 1965, 12, 479.
${ }_{13}$ G. A. Rechnitz and S. B. Zamochnick, Talanta, 1964, 11, 1645.
${ }_{14}$ A. Viste, D. A. Holm, P. L. Wang, and G. D. Veith, Inovg. Chem., 1971, 10, 631.
${ }^{15}$ B. M. Gordon and A. C. Wahl, J. Amer. Chem. Soc., 1958, 80, 273.
${ }_{16}$ R. W. Dundon and J. W. Gryder, Inorg. Chem., 1966, 5, 986.
${ }^{17}$ D. S. Honig and K. Kustin, J. Inovg. Nuclear Chem., 1970, 32, 1599.
${ }_{18}$ G. Giraudi, E. Mentasti, and E. Pelizzetti, Atti Accad. Sci. Torino, 1974, 108, 825.
of $[\mathrm{Ag}]_{\mathrm{T}}\left(\geqslant 5 \times 10^{-2} \mathrm{M}\right)$, the disappearance of $\mathrm{Ag}^{\text {II }}$ obeyed first-order kinetics, i.e. plots of $\ln A_{t}$ against time (where $A_{t}$ is the absorbance at time $t$ ) showed good linearity for at

Table 1
Values of the pseudo-first-order rate constant, $k_{\mathrm{I}}$, at $I=$ $4.0 \mathrm{~m}, \quad\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0}=5 \times 10^{-5}-20 \times 10^{-5} \mathrm{M}$, and $[\mathrm{Ag}]_{\mathrm{T}}=$ 0.10 m at $14.0^{\circ} \mathrm{C}$ and 0.050 M at 22.0 and $30.0^{\circ} \mathrm{C}$

| $\theta_{c} /{ }^{\circ} \mathrm{C}$ | $\underset{\left.\mathrm{HClO}_{4}\right] /}{\mathrm{mol} \mathrm{l}^{-1}}$ | $\begin{aligned} & 10^{2}\left[\mathrm{HCO}_{2} \mathrm{H}\right] / \\ & \mathrm{mol}^{-1} \end{aligned}$ | $k_{\mathrm{I}} / \mathrm{s}^{-1}$ |
| :---: | :---: | :---: | :---: |
| 14.0 | 1.00 | 2.0 | 0.39 |
|  |  | 4.0 | 0.92 |
|  |  | 7.0 | 1.52 |
|  |  | 10 | 2.07 |
|  | 1.20 | 2.0 | 0.35 |
|  |  | 4.0 | 0.74 |
|  |  | 7.0 | 1.20 |
|  |  | 10 | 1.70 |
|  | 1.50 | 2.6 | 0.40 |
|  |  | 6.5 | 1.03 |
|  |  | 13 | 1.96 |
|  |  | 26 | 3.63 |
|  |  | 65 | 8.05 |
|  | 2.00 | 2.6 | 0.30 |
|  |  | 6.5 | 0.76 |
|  |  | 13 | 1.47 |
|  |  | 26 | 2.83 |
|  |  | 65 | 6.62 |
|  | 2.50 | 0.2 | 0.021 |
|  |  | 0.4 | 0.039 |
|  |  | 0.6 | 0.060 |
|  |  | 5.0 | 0.46 |
|  |  | 10 | 0.93 |
|  |  | 20 | 1.68 |
|  |  | 30 | 2.42 |
|  |  | 50 | 4.26 |
|  | 3.00 | 2.6 | 0.21 |
|  |  | 6.5 | 0.49 |
|  |  | 13 | 1.04 |
|  |  | 26 | 2.03 |
|  |  | 65 | 4.26 |
|  | 4.00 | 2.6 | 0.16 |
|  |  | 6.5 | 0.37 |
|  |  | 13 | 0.76 |
|  |  | 26 | 1.63 |
|  |  | 65 | 3.68 |
| 22.0 | 1.00 | 2.0 | 1.06 |
|  |  | 4.0 | 1.96 |
|  |  | 7.0 | 3.42 |
|  |  | 10 | 4.78 |
|  | 2.00 | 2.0 | 0.69 |
|  |  | 4.0 | 1.17 |
|  |  | 7.0 | 2.12 |
|  |  | 10 | 2.85 |
|  | 3.00 | 2.0 | 0.41 |
|  |  | 4.0 | 0.81 |
|  |  | 7.0 | 1.43 |
|  |  | 10 | 2.09 |
|  | 4.00 | 2.0 | 0.36 |
|  |  | 4.0 | 0.64 |
|  |  | 7.0 | 1.11 |
|  |  | 10 | 1.50 |
| 30.0 | 1.00 | 2.0 | 2.29 |
|  |  | 4.0 | 4.53 |
|  |  | 7.0 | 7.10 |
|  |  | 10 | 10.8 |
|  | 2.00 | 2.0 | 1.38 |
|  |  | 4.0 | 2.64 |
|  |  | 7.0 | 4.83 |
|  |  | 10 | 6.90 |
|  | 3.00 | 2.0 | 0.97 |
|  |  | 4.0 | 1.89 |
|  |  | 7.0 | 3.22 |
|  |  | 10 | 4.83 |
|  | 4.00 | 2.0 | 0.67 |
|  |  | 4.0 | 1.40 |
|  |  | 7.0 | 2.53 |
|  |  | 10 | 3.68 |

least three half-lives. This behaviour was independent of the initial $\mathrm{Ag}^{\mathrm{II}}$ concentration. Pseudo-first-order rate constants, $k_{\mathrm{I}}$ (Table 1), were obtained from the gradients of the above plots by means of a weighted least-squares method; the standard deviation for each $k_{\mathrm{I}}$ value (obtained from triplicate runs) was generally within $2-4 \%$.

Dependence on formic acid concentration. The pseudo-first-order rate constants (at constant $\left[\mathrm{H}^{+}\right],\left[\mathrm{Ag}^{1}\right]$, and $\left[\mathrm{HClO}_{4}\right]$ ) showed a linear dependence on $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ in the range $2.0 \times 10^{-3}-0.650 \mathrm{~m}$. Thus, the observed rate law is as in (2). Second-order rate constants, $k_{\mathrm{I}}{ }^{\mathbf{0}}$, calculated using

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right] / \mathrm{d} t=k_{\mathrm{I}}^{0}\left[\mathrm{Ag}^{\mathrm{II}}\right]\left[\mathrm{HCO}_{2} \mathrm{H}\right] \tag{2}
\end{equation*}
$$

a weighted least-squares method, are in Table 2. The weights were based on the standard deviations of the pseudo-first-order rate constants.

Table 2
Values of second-order rate constant $k_{\mathrm{I}}{ }^{0}\left(\mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ at $I=4.0 \mathrm{~m}$

| $\left[\mathrm{HClO}_{4}\right] / \mathrm{mol} \mathrm{l}^{-1}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta_{\mathrm{c}} /{ }^{\circ} \mathrm{C}$ | $\overbrace{1.00}$ | 1.20 | 1.50 | 2.00 | 2.50 | 3.00 | 4.00 |
| 14.0 | 21.5 | 17.5 | 14.5 | 11.2 | 9.2 | 8.0 | 6.1 |
| 22.0 | 48 |  |  | 30 |  | 21 | 15.5 |
| 30.0 | 108 |  |  | 68 |  | 48 | 35 |



Figure 1 Plot of $1 / k_{\mathrm{I}}{ }^{0}$ against $\left[\mathrm{H}^{+}\right]$at $14.0^{\circ} \mathrm{C}$ and $I$ $=4.0 \mathrm{~m}$

Hydrogen-ion dependence. At every temperature and constant $\left[\mathrm{Ag}^{\mathrm{I}}\right]$ and $\left[\mathrm{ClO}_{4}\right]$ concentrations, plots of $1 / k_{\mathrm{I}}{ }^{0}$ against $\left[\mathrm{H}^{+}\right]$gave straight lines (Figure l). The overall rate law (3) can therefore be written where $A$ and $B$ are

$$
\begin{equation*}
-\frac{\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right]}{\mathrm{d} t}=\frac{A\left[\mathrm{Ag}^{\mathrm{II}}\right]\left[\mathrm{HCO}_{2} \mathrm{H}\right]\left[\mathrm{H}^{+}\right]^{-1}}{1+B\left[\mathrm{H}^{+}\right]^{-1}} \tag{3}
\end{equation*}
$$

constants. Values of $A$ were $25 \pm 3,70 \pm 6$, and $165 \pm 18$ $\mathrm{s}^{-1}$ and for $B 0.21 \pm 0.05,0.35 \pm 0.11$, and $0.48 \pm 0.14$ $\mathrm{mol} 1^{-1}$ at $14.0,22.0$, and $30.0^{\circ} \mathrm{C}$ respectively.

Dependence on silver $(I)$ and perchlorate concentration. By working at constant $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ the effect of varying $\left[\mathrm{Ag}^{\mathrm{I}}\right.$ ] was investigated at $14.0{ }^{\circ} \mathrm{C}$ (from 0.05 to 0.20 m ). No effect was found. The effect of perchlorate concentration was studied at $14.0,22.0$, and $30.0^{\circ} \mathrm{C}$ and $\left[\mathrm{HClO}_{4}\right]=$ 1.00 m by varying the added quantity of $\mathrm{Na}\left[\mathrm{ClO}_{4}\right]$ from 0 to 3.0 m . Again the rate of reaction was unaffected.

Second-order Path.-In kinetic runs with $\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0}>2 \times$ $10^{-4} \mathrm{M}$ and small $\mathrm{Ag}^{\mathrm{I}}$ concentrations and plotting $\ln A_{t}$ against time, deviations from a first-order dependence on [ $\left.\mathrm{Ag}^{\mathrm{II}}\right]$ were observed, Plots of reciprocal absorbance against time (for experiments at various $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ and $\left[\mathrm{HClO}_{4}\right]$, and with $\left[\mathrm{Ag}^{\mathrm{II}}\right]_{9} \geqslant 3 \times 10^{-4}$ and $[\mathrm{Ag}]_{\mathrm{T}}=5 \times$ $\left.10^{-3} \mathrm{M}\right)$ were linear in the early part of the reactions. Thus first and second-order paths in $\left[\mathrm{Ag}^{\mathrm{II}}\right]$ were assumed to be present, according to rate law (4). Integration of equation

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right] / \mathrm{d} t=k_{\mathrm{II}}\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}+k_{\mathrm{I}}\left[\mathrm{Ag}^{\mathrm{II}}\right] \tag{4}
\end{equation*}
$$

(4) gives (5) ${ }^{19}$ which, by indicating the right-hand side as $\beta$,

$$
\begin{equation*}
\frac{k_{\mathrm{I}}+k_{\mathrm{II}}\left[\mathrm{Ag}^{\mathrm{II}}\right]}{k_{\mathrm{I}}+k_{\mathrm{II}}\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0}}=\frac{\left[\mathrm{Ag}^{\mathrm{II}}\right]}{\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0}} \mathrm{e}^{k_{\mathrm{s}} t} \tag{5}
\end{equation*}
$$

can be rewritten as (6). Straight lines were obtained on

$$
\begin{equation*}
1-\beta=\frac{k_{\mathrm{II}}}{k_{\mathrm{I}}}\left(\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0} \beta-\left[\mathrm{Ag}^{\mathrm{II}}\right]_{t}\right) \tag{6}
\end{equation*}
$$

plotting $(1-\beta)$ against $\left(\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0} \beta-\left[\mathrm{Ag}^{\mathrm{II}}\right]_{t}\right)$, and from the gradients $k_{\text {II }}$ values were evaluated (Figure 2) (Table 3). At constant $\left[\mathrm{Ag}^{\mathrm{I}}\right], k_{\text {II }}$ was linearly dependent on $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ in the range $0.010-0.650 \mathrm{~m}$.

Dependence on silver $(\mathrm{I})$ concentration. The rate of reaction decreased with increasing [ $\mathrm{Ag}^{\mathrm{I}}$ ]. Since $\mathrm{Ag}^{\mathrm{I}}$ is produced during the course of the reaction, an average value of $\left[\mathrm{Ag}{ }^{I}\right]$ for each experiment was estimated from the initial and final $\mathrm{Ag}^{\mathrm{I}}$ concentrations. Data for experiments at constant temperature and $\left[\mathrm{H}^{+}\right]$are given in Figure 3 where $k_{\text {II }}$ is plotted against $\left[\mathrm{HCO}_{2} \mathrm{H}\right] /\left[\mathrm{Ag}^{\mathrm{I}}\right]_{\text {av }}$. The linearity of the plots and the very small intercepts support the assumption

Table 3

| $\begin{gathered} \theta_{\mathrm{c}} /{ }^{\circ} \mathrm{C} \\ 14.0 \end{gathered}$ | Values of the rate constant $k_{\text {II }}$ at $I=4.0 \mathrm{M}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{\left[\mathrm{HClO}_{4}\right]}{\mathrm{mol} \mathrm{l}^{-1}}$ | $\frac{10^{3}[\mathrm{Ag}]_{\mathrm{T}}}{\mathrm{~mol}^{-1}}$ | $\frac{10^{3}\left[\mathrm{Ag}^{11}\right]_{0}}{\mathrm{~mol}^{-1}}$ | $\frac{\left[\mathrm{HCO}_{2} \mathrm{H}\right]}{\mathrm{mol}^{-1}}$ | $\frac{10^{-3} k_{\mathrm{II}}}{1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$ |
|  | 1.00 | 5.0 | 0.56 | 0.020 | 2.3 |
|  |  | 5.0 | 0.93 | 0.040 | 5.5 |
|  |  | 5.0 | 0.75 | 0.070 | 8.4 |
|  | 1.20 | 5.0 | 0.53 | 0.020 | 2.1 |
|  |  | 5.0 | 0.73 | 0.040 | 4.8 |
|  |  | 5.0 | 0.49 | 0.070 | 8.3 |
|  |  | 5.0 | 0.46 | 0.10 | 11.6 |
|  |  | 5.0 | 0.65 | 0.10 | 12.1 |
|  |  | 6.5 | 0.94 | 0.10 | 8.8 |
|  |  | 8.0 | 0.73 | 0.10 | 6.4 |
|  |  | 10.0 | 0.76 | 0.10 | 6.1 |
|  |  | 12.0 | 1.16 | 0.10 | 5.5 |
|  | 1.50 | 5.0 | 1.38 | 0.10 | 10.2 |
|  |  | 7.0 | 1.05 | 0.10 | 8.0 |
|  |  | 10.0 | 1.14 | 0.10 | 5.2 |
|  |  | 15.0 | 1.44 | 0.10 | 3.0 |
|  |  | 20.0 | 0.94 | 0.10 | 2.5 |
|  | 2.00 | 5.0 | 1.04 | 0.013 | 0.91 |
|  |  | 5.0 | 1.64 | 0.039 | 2.6 |
|  |  | 5.0 | 1.07 | 0.078 | 5.8 |
|  |  | 5.0 | 1.78 | 0.13 | 10.8 |
|  |  | 5.0 | 1.48 | 0.26 | 21 |
|  |  | 5.0 | 1.32 | 0.65 | 49 |
|  |  | 10.0 | 1.19 | 0.13 | 5.6 |
|  |  | 30.0 | 1.38 | 0.13 | 1.7 |
|  | 2.50 | 5.0 | 1.02 | 0.10 | 5.5 |
|  |  | 5.0 | 0.39 | 0.10 | 6.6 |
|  |  | 5.0 | 0.30 | 0.20 | 12 |
|  |  | 5.0 | 0.28 | 0.30 | 16 |
|  |  | 5.0 | 0.27 | 0.50 | 30 |
|  |  | 6.5 | 1.29 | 0.10 | 5.1 |
|  |  | 8.0 | 0.84 | 0.10 | 3.7 |
|  |  | 10.0 | 1.27 | 0.10 | 3.5 |
|  |  | 12.0 | 1.27 | 0.10 | 2.4 |

Table 3 (Continued)

| $\theta_{\mathrm{c}} /{ }^{\circ} \mathrm{C}$ | $\frac{\left[\mathrm{HClO}_{4}\right]}{\mathrm{mol}^{-1}}$ | $\frac{10^{3}[\mathrm{Ag}]_{\mathrm{T}}}{\mathrm{~mol}^{-1}}$ | $\frac{10^{3}\left[\mathrm{Ag}^{\mathbf{I I}}\right]_{0}}{\mathrm{~mol}^{-1}}$ | $\frac{\left[\mathrm{HCO}_{2} \mathrm{H}\right]}{\mathrm{mol}^{-1}}$ | $\frac{10^{-3} k_{\mathrm{II}}}{1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.00 | 5.0 | 1.25 | 0.013 | 0.72 |
|  |  | 5.0 | 1.06 | 0.039 | 2.1 |
|  |  | 5.0 | 1.03 | 0.078 | 3.3 |
|  |  | 5.0 | 1.02 | 0.13 | 7.4 |
|  |  | 5.0 | 0.93 | 0.26 | 13.5 |
|  |  | 5.0 | 0.85 | 0.65 | 31 |
|  |  | 5.0 | 1.21 | 0.10 | 4.4 |
|  |  | 7.0 | 1.26 | 0.10 | 3.6 |
|  |  | 10.0 | 1.00 | 0.10 | 2.5 |
|  |  | 15.0 | 1.62 | 0.10 | 1.7 |
|  |  | 20.0 | 0.94 | 0.10 | 1.3 |
|  |  | 30.0 | 0.83 | 0.02 | 0.24 |
|  |  | 30.0 | 1.28 | 0.04 | 0.39 |
|  |  | 30.0 | 1.43 | 0.07 | 0.53 |
|  |  | 30.0 | 1.24 | 0.10 | 0.69 |
|  |  | 30.0 | 1.16 | 0.15 | 1.5 |
|  | 3.50 | 5.0 | 1.19 | 0.10 | 5.0 |
|  |  | 6.5 | 1.06 | 0.10 | 3.6 |
|  |  | 8.0 | 0.73 | 0.10 | 2.7 |
|  |  | 10.0 | 1.28 | 0.10 | 2.4 |
|  |  | 12.0 | 1.35 | 0.10 | 1.8 |
|  | 4.00 | 5.0 | 0.79 | 0.013 | 0.50 |
|  |  | 5.0 | 1.19 | 0.039 | 1.4 |
|  |  | 5.0 | 1.07 | 0.078 | 2.7 |
|  |  | 5.0 | 1.28 | 0.13 | 4.6 |
|  |  | 5.0 | 1.11 | 0.26 | 9.4 |
|  |  | 5.0 | 0.99 | 0.65 | 21 |
|  |  | 10.0 | 1.08 | 0.13 | 2.9 |
|  |  | 30.0 | 1.48 | 0.13 | 1.1 |
| 22.0 | 1.00 | 5.0 | 1.19 | 0.05 | 14 |
|  |  | 6.5 | 1.19 | 0.05 | 10.5 |
|  |  | 8.5 | 1.44 | 0.05 | 8.0 |
|  |  | 10.0 | 1.40 | 0.05 | 7.1 |
|  |  | 15.0 | 1.89 | 0.05 | 4.4 |
|  | 2.00 | 5.0 | 1.17 | 0.05 | 9.3 |
|  |  | 6.5 | 1.61 | 0.05 | 6.8 |
|  |  | 8.5 | 1.44 | 0.05 | 4.8 |
|  |  | 10.0 | 1.89 | 0.05 | 3.8 |
|  |  | 15.0 | 1.33 | 0.05 | 2.6 |
|  | 3.00 | 5.0 | 1.54 | 0.05 | 5.8 |
|  |  | 6.5 | 1.48 | 0.05 | 4.6 |
|  |  | 8.5 | 1.65 | 0.05 | 3.5 |
|  |  | 10.0 | 1.72 | 0.05 | 2.85 |
|  |  | 15.0 | 1.33 | 0.05 | 1.85 |
|  | 4.00 | 5.0 | 1.89 | 0.05 | 4.9 |
|  |  | 6.5 | 1.29 | 0.05 | 3.45 |
|  |  | 8.5 | 1.89 | 0.05 | 2.45 |
|  |  | 10.0 | 1.57 | 0.05 | 1.9 |
|  |  | 15.0 | 1.77 | 0.05 | 1.4 |
| 30.0 | 1.00 | 5.0 | 2.00 | 0.05 | 28 |
|  |  | 6.5 | 1.97 | 0.05 | 21 |
|  |  | 8.5 | 0.97 | 0.05 | 14.5 |
|  |  | 10.0 | 0.94 | 0.05 | 13 |
|  |  | 15.0 | 1.44 | 0.05 | 8.7 |
|  | 2.00 | 5.0 | 1.01 | 0.05 | 15 |
|  |  | 6.5 | 1.36 | 0.05 | 11.5 |
|  |  | 8.5 | 0.87 | 0.05 | 9.2 |
|  |  | 10.0 | 1.89 | 0.05 | 7.3 |
|  |  | 15.0 | 1.40 | 0.05 | 5.1 |
|  | 3.00 | 5.0 | 0.97 | 0.05 | 11 |
|  |  | 6.5 | 1.26 | 0.05 | 7.6 |
|  |  | 8.5 | 1.06 | 0.05 | 6.6 |
|  |  | 10.0 | 1.65 | 0.05 | 5.3 |
|  |  | 15.0 | 1.65 | 0.05 | 3.2 |
|  | 4.00 | 5.0 | 1.44 | 0.05 | 9.2 |
|  |  | 6.5 | 1.09 | 0.05 | 6.8 |
|  |  | 8.5 | 1.40 | 0.05 | 5.8 |
|  |  | 10.0 | 1.36 | 0.05 | 4.0 |
|  |  | 15.0 | 2.06 | 0.05 | 3.1 |

that this path has a first-order dependence on $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ and an inverse dependence on $\left[\mathrm{Ag}^{\mathrm{I}}\right]$. The rate law of the second-
${ }^{19}$ Z. G. Szabo in 'Comprehensive Chemical Kinetics,' vol. 2, eds. C. H. Bamford and C. F. H. Tipper, Elsevier, Amsterdam, 1969.
order path can be represented as in (7). Values of $k_{\mathrm{II}^{0}}{ }^{0}$ are

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{Ag} \mathrm{II}^{\mathrm{II}}\right] / \mathrm{d} t=k_{\mathrm{II}}{ }^{0}\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}\left[\mathrm{HCO}_{2} \mathrm{H}\right] /\left[\mathrm{Ag}^{\mathrm{I}}\right] \tag{7}
\end{equation*}
$$

in Table 4. When very large amounts of $\mathrm{Ag}^{\mathrm{I}}\left(\geqslant 5 \times 10^{-2} \mathrm{M}\right)$ were present, the $\left[\mathrm{Ag}^{I I}\right]^{2}$ term was strongly depressed so


Figure 2 Plot, according to equation (6), at $\left[\mathrm{AgII}^{\mathrm{II}}\right]_{0}=1.40 \times$ $10^{-3},\left[\mathrm{HCO}_{2} \mathrm{H}\right]=0.050,[\mathrm{Ag}]_{\mathrm{T}}=1.0 \times 10^{-2},\left[\mathrm{HClO}_{4}\right]=1.00$, and $I=4.0 \mathrm{~m}$ and $22.0^{\circ} \mathrm{C}$; the value adopted for $k_{1}$ was $2.4 \mathrm{~s}^{-1}$


Figure 3 Plot of $k_{\mathrm{II}}$ as a function of $\left[\mathrm{HCO}_{2} \mathrm{H}\right] /\left[\mathrm{Ag}^{1}\right]_{\mathrm{arv}^{2}}$ at $[\mathrm{Agir}]_{0}$ $=3 \times 10^{-4}-12 \times 10^{-4}, \quad[\mathrm{Ag}]_{\mathbf{T}}=5 \times 10^{-3}-12 \times 10^{-3}$, $\left[\mathrm{HCO}_{2} \mathrm{H}\right]=0.10-0.50,\left[\mathrm{HClO}_{4}\right]=2.50$, and $I=4.0 \mathrm{M}$ and
that only the first points deviated from a pseudo-first-order treatment; $k_{\mathrm{I}}$ values (determined by neglecting the first points of the reaction traces) were in agreement with the previously reported values.

Table 4
Values of the second-order rate constant $10^{-2} k_{\text {II }}{ }^{0}$
$\left(1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ at $I=4.0 \mathrm{~m}$
$\left[\mathrm{HClO}_{4}\right] / \mathrm{moll}^{-1}$

|  | $\left[\mathrm{HClO}_{4}\right] / \mathrm{moll}^{-1}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta_{c} /{ }^{\circ} \mathrm{C}$ | $\overbrace{1.00}$ | 1.20 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 |
| 14.0 | 5.8 | 5.5 | 4.6 | 3.45 | 2.9 | 2.35 | 2.15 | 1.75 |
| 22.0 | 12.5 |  |  | 7.6 |  | 5.2 |  | 3.9 |
| 30.0 | 23 |  |  | 14 |  | 10 |  | 8.0 |

Hydrogen-ion dependence. Plots of $1 / k_{\mathrm{II}}{ }^{0}$ against $\left[\mathrm{H}^{+}\right]$ were linear with significant intercepts (Figure 4) and the
overall rate law can be written as (8). Values obtained for $C$ are $(7.8 \pm 1.4) \times 10^{2},(1.7 \pm 0.3) \times 10^{3}$, and $(3.6 \pm$ $0.8) \times 10^{3} \mathrm{~s}^{-1}$ and for $D 0.35 \pm 0.12,0.42 \pm 0.18$, and

$$
\begin{equation*}
-\frac{\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right]}{\mathrm{d} t}=\frac{C\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}\left[\mathrm{HCO}_{2} \mathrm{H}\right]\left[\mathrm{H}^{+}\right]^{-1}}{\left(\mathrm{l}+D\left[\mathrm{H}^{+}\right]^{-1}\right)\left[\mathrm{Ag}^{1}\right]} \tag{8}
\end{equation*}
$$

$0.50 \pm 0.22 \mathrm{~mol} \mathrm{l}^{-1}$ at $14.0,22.0$, and $30.0^{\circ} \mathrm{C}$ respectively. No effect of sodium perchlorate was observed ( $I=$ $1.0-4.0 \mathrm{~m})$.
Expression for the Kinetic Dependence on [AgII].-In order to test the consistency of the previous findings, for

$\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{l}^{-1}$
Figure 4 Plot of $1 / k_{\mathrm{II}^{0}}$ against $\left[\mathrm{H}^{+}\right]$at $14.0^{\circ} \mathrm{C}$ and $I=4.0 \mathrm{~m}$
various experimental conditions where both paths are present, the absorbance data were fitted to expression (9)

$$
\begin{equation*}
A_{t}=A_{0} \frac{k_{\mathrm{I}}}{\mathrm{e}^{k_{\mathrm{I}} t}\left(k_{\mathrm{I}}+k_{\mathrm{II}}\left[\mathrm{Ag}^{\mathrm{II}}\right]_{0}\right)-k_{\mathrm{II}[ }[\mathrm{Ag}]_{0}^{\mathrm{II}}} \tag{9}
\end{equation*}
$$

derived from (5); $A_{t}$ is the absorbance at time $t, A_{0}$ and $\left[\mathrm{Ag}^{I I}\right]_{0}$ the initial absorbance and concentration of $\mathrm{Ag}{ }^{I I}$ respectively, and $k_{\mathrm{I}}$ and $k_{\mathrm{II}}$ are the rate constants of the first- and second-order paths. Figure 5 shows one fit


Figure 5 Typical fit of computed absorbances at various times with experimental (O) data; the computed line was evaluated according to equation (9) using $k_{\mathrm{I}}{ }^{0}=14.5$ and $k_{\mathrm{II}}{ }^{0}=4.6 \times 10^{2}$ $1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. The solutions contained $\left[\mathrm{AgII}_{0}\right]_{0}=1.23 \times 10^{-3}$, $\left[\mathrm{HCO}_{2} \mathrm{H}\right]=0.013$, and $[\mathrm{Ag}]_{\mathrm{T}}=5.0 \times 10^{-2} \mathrm{M}$ at $14.0{ }^{\circ} \mathrm{C}$ and
obtained; the experimental absorbances were generally reproduced with an accuracy of $\pm \mathbf{5 \%}$ over three half-lives.

Temperature Dependence.-Tables 2 and 4 collect the values of $k_{\mathrm{I}}{ }^{0}$ and $k_{\mathrm{II}}{ }^{0}$ at different temperatures. The overall activation enthalpies calculated by means of a weighted least-squares method are $\Delta H_{\mathrm{I}^{\ddagger}}=19 \pm 3$ and $\Delta H_{\mathrm{II}^{\ddagger}}=$ $16 \pm 5 \mathrm{kcal} \mathrm{mol}^{-1}$.

## DISCUSSION

Mechanism of the First-order Path.--The hydrogen-ion dependence can be explained taking into account the fact that $\mathrm{Ag}^{I I}$ exists in the forms $\mathrm{Ag}^{2+}$ and $[\mathrm{Ag}(\mathrm{OH})]^{+}$. Honig et al. ${ }^{9}$ reported a large value for the hydrolysis constant of $\mathrm{Ag}^{2+}\left(0.32 \pm 0.14 \mathrm{~mol} \mathrm{l}^{-1}\right.$ at $22{ }^{\circ} \mathrm{C}$ and $I=5.95 \mathrm{~m})$. Bearing in mind that at least four species are available for reaction, i.e. $\mathrm{Ag}^{2+},[\mathrm{Ag}(\mathrm{OH})]^{+}, \mathrm{HCO}_{2} \mathrm{H}$, and $\mathrm{HCO}_{2}{ }^{-}$, the sequence (10)-(15) is proposed. If the

$$
\begin{align*}
& \mathrm{Ag}^{2+}(\mathrm{aq}) \stackrel{K_{10}}{\rightleftharpoons}[\mathrm{Ag}(\mathrm{OH})]^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})  \tag{10}\\
& \mathrm{Ag}^{2+}+\mathrm{HCO}_{2} \mathrm{H} \xrightarrow{k_{11}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\text { Radical }  \tag{11}\\
& {[\mathrm{Ag}(\mathrm{OH})]^{+}(\mathrm{aq})+\mathrm{HCO}_{2} \mathrm{H} \xrightarrow{k_{12}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\text { Radical }}  \tag{12}\\
& \mathrm{Ag}^{2+}(\mathrm{aq})+\mathrm{HCO}_{2}^{-} \xrightarrow{k_{13}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\text { Radical }  \tag{13}\\
& {[\mathrm{Ag}(\mathrm{OH})]^{+}(\mathrm{aq})+\mathrm{HCO}_{2}^{-} \xrightarrow{k_{14}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\text { Radical }}  \tag{14}\\
& \mathrm{Ag}^{\mathrm{II}}+\text { Radical } \xrightarrow{k_{15}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\mathrm{CO}_{2} \tag{15}
\end{align*}
$$

hydrolysis and dissociation equilibria and reaction (15) can be considered faster than reactions (11)-(14), rate law (16) can be derived where $K_{\mathrm{a}}$ is the dissociation

$$
\begin{align*}
\frac{\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right]}{\mathrm{d} t} & = \\
& \frac{2\left(k_{11}+k_{12} K_{10}\left[\mathrm{H}^{+}\right]^{-1}+k_{13} K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-1}+\right.}{\left.k_{14} K_{10} K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-2}\right)\left[\mathrm{Ag}^{\mathrm{II}}\right]\left[\mathrm{HCO}_{2} \mathrm{H}\right]} \tag{16}
\end{align*}
$$

equilibrium constant of formic acid. The expression reduces to (3) when $\left(k_{11}+k_{14} K_{10} \mathrm{~K}_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-2}\right) \ll\left(k_{12}\right.$ $\left.K_{10}+k_{13} K_{\mathrm{a}}\right)\left[\mathrm{H}^{+}\right]^{-1}$ and $K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-1} \ll 1 .{ }^{20}$ It follows that $A=2\left(k_{12} K_{10}+k_{13} K_{\mathrm{a}}\right)$ and $B=K_{10}$.

A sequence of the kind (10)-(15) has been previously suggested in the oxidation of formic acid with oneelectron acceptor metal ions. ${ }^{1-5}$ The variation in rate with $\left[\mathrm{H}^{+}\right]$for several cations suggests a major path involving loss of a proton. Although in several cases the formate ion has been proposed as reactant, this mechanism is not definitive. In other cases, such as $\mathrm{Ce}^{1 \nabla}$ (ref. 4) and $\mathrm{Mn}^{I I I}$, ${ }^{3}$ a large contribution is due to a path involving precursor complexes between aquametal ions and undissociated acid. In the present case it is not possible to give a definitive assignment. The reaction proceeds more rapidly than those previously

[^1]investigated, confirming a correlation between increasing rate and increasing redox potential of the metal-ion couple.

Mechanism of the Second-order Path.-This path can be explained if equilibrium (17) is taken into account.

$$
\begin{equation*}
2 \mathrm{Ag}^{\mathrm{II}} \stackrel{K_{17}}{\rightleftharpoons} \mathrm{Ag}^{\mathrm{III}}+\mathrm{Ag}^{\mathrm{I}} \tag{17}
\end{equation*}
$$

This equilibrium lies far to the left. ${ }^{10,21}$ The $\left[\mathrm{H}^{+}\right]$dependence can also be assigned to different reaction paths. In previously assessed mechanisms involving an $\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}$ dependence, strong dependences on $\left[\mathrm{H}^{+}\right]$have been found $\left(\left[\mathrm{H}^{+}\right]^{-2}\right),{ }^{10-13}$ attributed to highly solvated and hydrolyzed species of $\mathrm{Ag}^{3+}$, such as $[\mathrm{AgO}]^{+}$. If the $\mathrm{Ag}^{\text {III }}$ is present to a large extent as the hydrolyzed species $[\mathrm{Ag}(\mathrm{OH})]^{2+}$ the sequence can (18)-(22) be proposed.
$\mathrm{Ag}^{3+}(\mathrm{aq}) \stackrel{K_{18}}{\rightleftharpoons}[\mathrm{Ag}(\mathrm{OH})]^{2+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
$\mathrm{Ag}^{3+}(\mathrm{aq})+\mathrm{HCO}_{2} \mathrm{H} \xrightarrow{k_{10}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\mathrm{CO}_{2}$
$[\mathrm{Ag}(\mathrm{OH})]^{2+}(\mathrm{aq})+\mathrm{HCO}_{2} \mathrm{H} \xrightarrow{k_{30}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\mathrm{CO}_{2}$
$\mathrm{Ag}^{3+}(\mathrm{aq})+\mathrm{HCO}_{2} \xrightarrow{k_{21}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\mathrm{CO}_{2}$
$[\mathrm{Ag}(\mathrm{OH})]^{2+}(\mathrm{aq})+\mathrm{HCO}_{2} \xrightarrow{k_{32}} \mathrm{Ag}^{\mathrm{I}}(\mathrm{aq})+\mathrm{CO}_{2}$
Assuming the steps ( 17$)^{16,22}$ and (18) always equilibrated and in the light of the very small extent of $\mathrm{Ag}^{\text {iII }}$ present, ${ }^{10,21}$ rate law (23) can be deduced. As previously,

$$
\begin{align*}
& -\frac{\mathrm{d}\left[\mathrm{Ag}^{\mathrm{II}}\right]}{\mathrm{d} t}= \\
& \quad \begin{array}{l}
2 K_{17}\left(k_{19}+k_{20} K_{18}\left[\mathrm{H}^{+}\right]^{-1}+k_{21} K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-1}+\right. \\
\\
\\
\\
\quad \frac{\left.k_{22} K_{18} K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-2}\right)\left[\mathrm{Ag}^{\mathrm{II}}\right]^{2}\left[\mathrm{HCO}_{2} \mathrm{H}\right]}{\left(1+K_{18}\left[\mathrm{H}^{+}\right]^{-1}\right)\left(1+K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-1}\right)\left[\mathrm{Ag}^{\mathrm{T}}\right]}
\end{array}
\end{align*}
$$

equation (23) agrees with rate law (8) if $k_{19}+k_{22}$ $K_{18} K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-2} \ll\left(k_{20} K_{18}+k_{21} K_{\mathrm{a}}\right)\left[\mathrm{H}^{+}\right]^{-1}$ and $K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{-1} \ll$ 1; it follows that $C=2 K_{17}\left(k_{20} K_{18}+k_{21} K_{\mathrm{a}}\right)$ and $D=K_{18}$.

The available data are not sufficient to distinguish between a reaction involving a two-equivalent step [reactions (19)-(22)] or two successive steps involving formation of $\mathrm{Ag}^{\mathrm{II}}$ and a radical which is then further oxidized to the reaction products. With $\mathrm{Tl}^{\mathrm{III}}(\mathrm{aq})$ and $\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})$ the oxidation of formic acid proceeds through intermediate-complex formation and via a single two-electron transfer step. ${ }^{2}$ Such features could probably apply in the present case, although no experimental evidence was obtained. Similar kinetic behaviour, showing two competitive paths in $\left[\mathrm{Ag}^{\mathrm{II}}\right]$ and $\left[\mathrm{Ag}^{I I}\right]^{2}$, was found in the oxidation of water in nitrate media. ${ }^{11 a}$
The present findings, using the previous assumptions, allow the hydrolysis equilibrium constants for $\mathrm{Ag}^{2+}$ and

## ${ }^{21}$ J. A. McMillan, Chem. Rev., 1962, 62, 65.

${ }^{22}$ J. Pumies, W. Roebke, and A. Henglein, Ber. Bunsengesellschaft Phys. Chem., 1968, '72, 844.
$\mathrm{Ag}^{3+}$ to be estimated. In the oxidation of water ${ }^{10-13}$ (which involves an $\left[\mathrm{H}^{+}\right]^{-2}$ dependence), the active form of $\mathrm{Ag}^{3+}$ is $[\mathrm{AgO}]^{+}$, but the oxidation of phosphorous acid showed a more complex inverse dependence on
$\left[\mathrm{H}^{+}\right]{ }^{14}$ The present data indicate that the first hydrolysis constant of $\mathrm{Ag}^{3+}$ is large, but give no information on the second hydrolysis constant.
[5/252 Received, 6th February, 1975]


[^0]:    $\dagger 1 \mathrm{~m}=1 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 1 \mathrm{cal}=4.184 \mathrm{~J}$.
    1 ' Oxidation in Organic Chemistry,' ed. K. B. Wiberg, Academic Press, New York, 1965, part A.
    ${ }^{2}$ J. Halpern and S. M. Taylor, Discuss. Favaday Soc., 1960, 29, 174.
    ${ }^{3}$ C. F. Wells and D. Whatley, J.C.S. Faraday I, 1972, 434.
    ${ }^{4}$ C. F. Wells and M. Husain, J. Chem. Soc. (A), 1971, 380.
    ${ }^{5}$ M. Thompson and J. C. Sullivan, Inorg. Chem., 1972, 11, 1707.

    6 W. M. Latimer, ' Oxidation Potentials,' 2nd edn., PrenticeHall, Englewood Cliffs, New Jersey, 1952.
    ${ }^{7}$ D. H. Huchital, N. Sutin, and B. Warnquist, Inorg. Chem., 1967, 6, 838; E. Baumgartner and D. S. Honig, J. Inorg. Nuclear Chem., 1974, 36, 196.
    ${ }^{8}$ G. Veith, E. Guthals, and A. Viste, Inorg. Chem., 1967, 6, 667.
    ${ }^{9}$ D. S. Honig, K. Kustin, and J. F. Martin, Inorg. Chem., 1972, 11, 1895.

[^1]:    ${ }^{20}$ L. G. Sillèn and A. E. Martell, ' Stability Constants of MetalIon Complexes,' Special Publ., nos. 17 and 25, The Chemical Society, London, 1964 and 1970; C. F. Wells, Trans. Faraday Soc., 1965, 61, 2194; 1966, 62, 2815; 1967, 63, 147.

