Metallaborane Chemistry. Part IV. ${ }^{1}$ Molecular and Crystal Structures of a Ten-atom, Twentytwo-electron nido-Metallacarbaborane: 2,7-Dimethyl-9,9-bis(triethylphosphine)-2,7-dicarba-9-platina-nidodecaborane(7) \dagger

By Alan J. Welch,* Department of Inorganic Chemistry, The University, Bristol BS8 1 TS
The molecular structure of the title compound has been elucidated by single-crystal X-ray diffraction and refined to $R 0.036$ for 3185 independent observed reflections. The compound crystallises in a monoclinic cell of dimensions $a=17.23(1), b=18.86(1), c=10.093(6) \AA$, and $\beta=126.96(4)^{\circ}$, space group $P 2_{1} / a$. The polyhedral geometry approximates to that of a bicapped (B and C) square antiprism, with the metal atom in a CBBPt prism face, adjacent to the boron cap. The platinum-carbon distance $\left[2.83\left(1_{5}\right) \AA\right.$ is non-bonding and thus the mole-
cule has a nido-structure with an open $B C B P t$ face. Distortions from the expected closo-structure are ascribed to the preferred planar co-ordination of $\mathrm{Pt}^{\mathrm{II}}$ and low polyhedral connectivity of carbon.

The direct addition of a nucleophilic $\mathrm{Ni}^{0}, \mathrm{Pd}^{0}$, or Pt^{0} species to closo-carbaboranes has recently led ${ }^{1-5}$ to the isolation of a variety of novel d^{8} metallacarbaboranes via relatively smooth polyhedral expansion reactions.

In a typical example of this technique $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2^{-}}\right.$ (trans-stilbene)] was treated with $1,6-\mathrm{Me}_{2}-1,6-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}$ to produce a high yield of a complex $\left[\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}\right)\right.$ $\left(\mathrm{PEt}_{3}\right)_{2}$] as the only isolable product. Since spectral

[^0]data ${ }^{4}$ did not unambiguously define its structure the reaction product has been subjected to a single-crystal X-ray study. ${ }^{4}$

EXPERIMENTAL

Crystals (m.p. ca. $153{ }^{\circ} \mathrm{C}$, in vacuo) from methylene chloride-light petroleum were pale yellow transparent hexagonal prisms, elongated along [101]. Of several single crystals mounted on thin glass fibres with epoxy resin
${ }^{3}$ M. Green, J. L. Spencer, F. G. A. Stone, and A. J. Welch, J.C.S. Dalton, 1975, 179.
${ }^{\text {a }}$ M. Green, J. L. Spencer, F. G. A. Stone, and A. J. Welch, J.C.S. Chem. Comm., 1974, 571.

5 M. Green, J. L. Spencer, F. G. A. Stone, and A. J. Welch, J.C.S. Chem. Comm., 1974, 794.
adhesive, one of dimensions ca. $0.025 \times 0.011 \times 0.010 \mathrm{~cm}$ was selected for analysis. Oscillation and equi-inclination Weissenberg X-ray photography showed the Laue symmetry to be $2 / m$. The crystal was then transferred to a Syntex $P 2_{1}$ four-circle diffractometer, and the precise unit-cell constants and asymmetric set of diffracted intensities were recorded as reported previously. ${ }^{6} \quad 15$ reflections, $11^{\circ}<20<24^{\circ}$, were taken from a 15 min rotation photograph recorded with generator settings of $c a .50 \mathrm{kV}$ and 20 mA : these were centred and used to derive the unit-cell vectors, their associated standard deviations, and orientation matrix. Graphite-monochromated Mo- K_{α} radiation ($\lambda_{\alpha_{1}}=0.70926 ; \lambda_{\alpha 2}=0.71354 \AA$) and a 96 -step $\theta-2 \theta$ scan procedure were used to collect one asymmetric unit of intensity data in the range $2.9^{\circ} \leqslant 20 \leqslant 50.0^{\circ}$. Scan rates were determined from initial 2 s peak counts and varied from 0.0337 (for counts $\leqslant 150$) to $0.4883^{\circ} \mathrm{s}^{-1}$ (for counts $\geqslant 1500$): regular remeasurement of the beams diffracted by the (612), (343), and (080) planes showed that no significant crystal decomposition or machine variance had occurred over the ca. 123 h exposure. All net intensities were scaled to a $1.0^{\circ} \min ^{-1}$ basis. Analysis by a local program ${ }^{7}$ showed that of 4364 measured reflections, 3185 had $I \geqslant 2.5$ $\sigma(I)$ and were considered observed. The observed intensities were corrected for absorption by the Gaussian integration approximation.

Crystal Data. ${ }^{*}-\mathrm{C}_{16} \mathrm{H}_{43} \mathrm{~B}_{7} \mathrm{P}_{2} \mathrm{Pt}, M=568.23$, Monoclinic, $a=17.23(1), b=18.86(1), c=10.093(6) \AA, \beta=126.96(4)^{\circ}$, $U=2621(3) \AA^{3}, D_{\mathrm{m}}=1.42$ (by flotation), $Z=4, D_{\mathrm{c}}=$ 1.440, $F(000)=1128 . \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=57.5 \mathrm{~cm}^{-1} . \quad$ Space group $P 2_{1} / a$.

Data were corrected for Lorentz and polarisation effects, and from a three-dimensional Patterson map co-ordinates of the platinum and phosphorus atoms were easily deduced. These were refined to $R c a .0 .19$ by three cycles of isotropic full-matrix least-squares. A difference electron-density synthesis, computed after the final cycle, revealed all the remaining non-hydrogen atom positions. The metal and phosphorus atoms were then assigned anisotropic thermal parameters and subsequent refinement converged R to $c a$. 0.062 .

Although the seven cage hydrogen atoms were located from an accompanying difference Fourier, methylene protons were introduced in calculated positions with $r(\mathrm{C}-\mathrm{H}) 1.10 \AA$, $U_{\mathrm{H}} 0.08 \AA^{2}$ and were not thereafter refined. With the Hughes-type ${ }^{8}$ weighting scheme (F^{*} set at 105.0 on an absolute scale) introduced, all non-hydrogen atoms were then allowed anisotropic temperature factors. The variables were divided between two approximately equally dimensioned blocks and refined to final residuals of $R 0.036$, $R^{\prime} 0.043$. The mean shift-to-error ratio was <0.001, and the most prominent feature on a final difference synthesis was a peak of $c a .0 .7 \mathrm{e}^{-3}$ near the metal atom.

Scattering factors for neutral atoms were obtained from refs. 9 (platinum and boron), 10 (phosphorus and carbon), and 11 (hydrogen), those of platinum and phosphorus being corrected ${ }^{12}$ for both parts of the anomalous dispersion. Programs used in the structure determination were as

* The previously reported unit-cell data (ref. 4) were calculated from 2θ values of only the six strongest reflections.
${ }^{6}$ A. G. Modinos and P. Woodward, J.C.S. Dalton, 1974, 2065.
${ }^{7}$ A. G. Modinos, DRSYN, a Fortran program for data analysis.
${ }^{8}$ E. W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.
${ }^{9}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.

Table 1
Final positional parameters (fractional co-ordinates) of the non-hydrogen atoms, with estimated standard deviations in parentheses

Atom	x	y	z
B(1)	0.4090(9)	0.0948(8)	0.913(2)
C(2)	0.3209 (8)	$0.0454_{5}(6)$	0.882(2)
B(3)	$0.338(1)$	0.0362(8)	0.741 (2)
B(4)	0.3779 (9)	$0.1174(8)$	0.718(2)
B(5)	0.3616(7)	$0.1809(7)$	0.831(1)
$\mathrm{B}(6)$	$0.3131(8)$	0.1270 (7)	0.914(1)
$\mathrm{C}(7)$	0.2605 (8)	$0.0895(6)$	0.586(1)
B(8)	$0.2768(9)$	$0.1738(8)$	0.610(2)
$\mathrm{Pt}(9)$	$0.19599(3)$	$0.18921(2)$	$0.71039(5)$
B(10)	0.2244 (9)	$0.0699(6)$	0.705(2)
C(21)	$0.335(1)$	-0.0158(7)	0.991 (2)
C(71)	$0.215(1)$	0.0587(8)	0.414(2)
$\mathrm{P}(1)$	0.0975	$0.1733_{5}(2)$	0.79375 (4)
$\mathrm{P}(2)$	0.1254(2)	0.2866 (2)	0.5352(4)
C(110)	$0.111(1)$	$0.2455(9)$	$0.935(2)$
C(120)	$0.1180(9)$	0.0923 (8)	$0.904(2)$
C(130)	-0.0343(8)	$0.1705(9)$	0.630(2)
C(111)	0.210 (1)	$0.259(1)$	$1.084(2)$
C(121)	0.050(1)	0.071 (1)	0.946(2)
C(131)	-0.068(1)	$0.111(1)$	$0.505(2)$
$\mathrm{C}(210)$	$0.218(1)$	0.3549 (7)	0.596(2)
$\mathrm{C}(220)$	$0.033(1)$	0.3385 (7)	0.526(2)
C(230)	0.067 (1)	0.2681 (8)	$0.314(2)$
C(211)	$0.265(1)$	0.3818(8)	0.770(2)
C(221)	-0.004(1)	$0.4077(7)$	0.428(2)
C(231)	-0.004(1)	0.2063 (9)	0.245(2)

Table 2
Anisotropic thermal parameters* $\left(\AA^{2}, \times 10^{3}\right)$ of the non-hydrogen atoms, with estimated standard deviations in parentheses

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{~B}(1)$	$44(7)$	$92(11)$	$76(9)$	$14(7)$	$29(7)$	$9(8)$
$\mathrm{C}(2)$	$64(7)$	$58(7)$	$84(8)$	$19(6)$	$42(7)$	$5(6)$
$\mathrm{B}(3)$	$69(9)$	$62(9)$	$90(11)$	$22(7)$	$38(8)$	$-8(8)$
$\mathrm{B}(4)$	$57(8)$	$80(10)$	$70(9)$	$13(7)$	$39(7)$	$-2(7)$
$\mathrm{B}(5)$	$36(6)$	$67(8)$	$61(7)$	$1(6)$	$29(5)$	$-16(6)$
$\mathrm{B}(6)$	$39(6)$	$73(9)$	$50(7)$	$3(6)$	$24(5)$	$8(6)$
$\mathrm{C}(7)$	$65(7)$	$59(7)$	$59(7)$	$8(5)$	$37(6)$	$-5(5)$
$\mathrm{B}(8)$	$61(8)$	$86(11)$	$81(9)$	$11(7)$	$57(7)$	$15(8)$
$\mathrm{Pt}(9)$	$40(1)$	$45(1)$	$52(1)$	$1.2(2)$	$31.1(7)$	$2.0(2)$
$\mathrm{B}(10)$	$63(8)$	$33(6)$	$79(8)$	$-3(5)$	$41(7)$	$-6(6)$
$\mathrm{C}(21)$	$111(11)$	$71(9)$	$105(11)$	$35(8)$	$65(9)$	$42(8)$
$\mathrm{C}(71)$	$102(10)$	$112(12)$	$67(8)$	$19(9)$	$38(8)$	$-28(8)$
$\mathrm{P}(1)$	$48(2)$	$73(2)$	$75(2)$	$-3(1)$	$45(2)$	$4(2)$
$\mathrm{P}(2)$	$56(2)$	$66(2)$	$68(2)$	$10(1)$	$47(2)$	$12(1)$
$\mathrm{C}(110)$	$113(12)$	$139(14)$	$134(14)$	$6(11)$	$108(12)$	$-14(11)$
$\mathrm{C}(120)$	$74(9)$	$115(12)$	$118(11)$	$-0.08(8)$	$69(9)$	$35(9)$
$\mathrm{C}(130)$	$45(7)$	$129(13)$	$134(13)$	$6(7)$	$57(8)$	$32(10)$
$\mathrm{C}(111)$	$86(11)$	$196(19)$	$102(12)$	$-18(22)$	$60(10)$	$-53(12)$
$\mathrm{C}(121)$	$97(11)$	$185(18)$	$119(13)$	$-19(12)$	$72(10)$	$52(12)$
$\mathrm{C}(131)$	$83(11)$	$165(17)$	$91(11)$	$-56(11)$	$31(9)$	$-32(11)$
$\mathrm{C}(210)$	$88(9)$	$66(9)$	$118(11)$	$9(7)$	$68(9)$	$33(8)$
$\mathrm{C}(220)$	$100(10)$	$81(9)$	$120(12)$	$21(8)$	$79(10)$	$20(8)$
$\mathrm{C}(230)$	$91(10)$	$113(12)$	$71(8)$	$36(9)$	$54(8)$	$32(8)$
$\mathrm{C}(211)$	$105(11)$	$96(11)$	$75(9)$	$-25(9)$	$33(9)$	$-12(8)$
$\mathrm{C}(221)$	$119(12)$	$70(9)$	$111(11)$	$42(8)$	$60(10)$	$30(8)$
$\mathrm{C}(231)$	$111(12)$	$122(14)$	$70(9)$	$-22(10)$	$33(9)$	$-11(9)$
$*$	Defined as	$q_{j}=\exp =2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+\right.$	$U_{22} b^{* 2} k^{2}$	$+U_{33} c^{* 2} l^{2}$		
$+2 U_{12} a^{*} b * h k$	$\left.+2 U_{13} a^{*} c^{*} h l+2 U_{13} b^{*} c^{*} k l\right)$.					

reported previously. ${ }^{1}$ Tables $1-3$ list the derived atomic parameters, and Figure 1 shows a view of the molecule.

[^1]Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 21360. (15 Pp., 1 microfiche).*

Table 3
Positional (fractional co-ordinates) and isotropic thermal * parameters $\left(\AA^{2}, \times 10^{2}\right)$ of the hydrogen atoms, with estimated standard deviations in parentheses

Atom	x	y	z	U_{j}
$\mathrm{H}(1)$	0.470 (7)	0.083(5)	1.01(1)	8(3)
$\mathrm{H}(3)$	0.341 (6)	-0.016(5)	0.71 (1)	6(3)
$\mathrm{H}(4)$	0.434(8)	$0.111(6)$	0.70 (1)	9(4)
$\mathrm{H}(5)$	$0.407(6)$	$0.236(5)$	0.90 (1)	6 (3)
$\mathrm{H}(6)$	0.323 (5)	$0.130(4)$	1.026(9)	$4(2)$
$\mathrm{H}(8)$	$0.269(5)$	$0.209(4)$	0.515(9)	4(2)
$\mathrm{H}(10)$	$0.162(6)$	0.042 (5)	0.65(1)	6 (3)
$\mathrm{H}(111)$	0.082	0.291	0.864	8
$\mathrm{H}(112)$	0.067	0.233	0.967	8
$\mathrm{H}(121)$	0.116	0.051	0.833	8
$\mathrm{H}(122)$	0.187	0.093	1.010	8
H(131)	-0.068	0.167	0.684	8
H(132)	-0.055	0.219	0.569	8
$\mathrm{H}(211)$	0.269	0.333	0.586	8
$\mathrm{H}(212)$	0.186	0.395	0.512	8
H (221)	-0.026	0.306	0.481	8
$\mathrm{H}(222)$	0.059	0.349	0.647	8
H(231)	0.033	0.313	0.247	8
H(232)	0.121	0.259	0.301	8

Figure 1 Perspective view of a single molecule. Hydrogen atoms $\mathrm{H}(1)$ and $\mathrm{H}(5)$ are obscured by $\mathrm{C}(2)$ and $\mathrm{Pt}(9)$ respectively

RESULTS AND DISCUSSION

The Metallacarbaborane Cage.-The polyhedron is best described in geometrical terms as a very distorted

[^2]bicapped Archimedian square antiprism. Whilst the upper prism face, $\bar{B}(1) \mathrm{B}(3) \mathrm{B}(10) \mathrm{B}(6)$, is capped approximately symmetrically by $\mathrm{C}(2)$, the lower face, defined by $\mathrm{C}(7) \mathrm{B}(4) \mathrm{B}(5)$, and $\mathrm{Pt}(9)$, and capped by $\mathrm{B}(8)$, deviates dramatically from ideal geometry. Although the other three tropical bond lengths are quite normal, the $\mathrm{Pt}(9) \cdots \mathrm{C}(7)$ distance $2.83\left(1_{5}\right) \AA$ must be considered non-bonding. The open face, $\overline{\mathrm{B}(8) \mathrm{C}(7) \mathrm{B}(10) \mathrm{Pt}(9) \text { thus }}$ produced necessitates the classification of this molecule as a nido-species, and is unprecedented amongst structural studies of borane ${ }^{13}$ and metallacarbaborane ${ }^{14,15}$ ten-atom polyhedra.
The $\overline{\mathrm{B}(1) \mathrm{B}(3) \mathrm{B}(10) \mathrm{B}}(6)$ and $\mathrm{C}(7), \mathrm{B}(4), \mathrm{B}(5), \operatorname{Pt}(9)$ units are planar to within 0.05 and $0.04 \AA$ respectively and are nearly parallel (dihedral angle 5.2°).

Boron-carbon distances range from 1.59(2) to 1.69(3) \AA and are typical of those measured, by X-ray, $4,14-22$ electron diffraction, ${ }^{23,24}$ and microwave studies, ${ }^{25-27}$ in

Figure 2 Suggested interconversion of geometrical isomers, viewed normal to the metalla-co-ordinated B_{4} unit
polyhedra containing carbon bound to four other cage atoms.

The boron-boron lengths are also as expected, except for $B(6)-\mathrm{B}(10)$ which is unusually long $[2.02(2) \AA]$. The implied weakness of this bond is consistent with our interpretation of the room-temperature n.m.r. data ${ }^{4}$ which suggest molecular C_{s} symmetry. It is suggested that, in solution at normal temperatures, continuous interchange exists between one geometrical isomer and its mirror image (Figure 2) at a greater frequency than is resolvable on the spectrometer. The interchange essentially involves the simultaneous breaking of the $\mathrm{B}(6)-\mathrm{B}(10)$ bond, formation of a $\mathrm{B}(8)-\mathrm{B}(10)$ bond, and

[^3]rotation of the PEt_{3} moieties $c a .70^{\circ}$ about the bisector of the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle. ${ }^{28}$

Co-ordination of the Metal Atom.--The platinum is co-ordinated to four (endopolyhedral) boron atoms, at $2.16(1)-2.34(1) \AA$, and two (exopolyhedral) phosphorus atoms $[2.322(3)$ and $2.322(5) \AA]$. Although the four boron atoms are not required by the polyhedron to be coplanar (and, indeed, are not so), we have calculated the dihedral angle between the B_{4} and PtP_{2} units to be 81.3°. Figure 2, a view perpendicular to the best plane through the B_{4} moiety, shows that $\mathrm{P}(1)$ and $\mathrm{P}(2)$ lie trans to points on the $\mathrm{B}(5)-\mathrm{B}(8)$ and $\mathrm{B}(6)-\mathrm{B}(10)$ bonds respectively. These points are displaced towards $B(8)$ and $B(6)$, the more so for the former. Thus, if the coordination geometry about the platinum atom is regarded

Table 4
Interatomic distances (\AA), with estimated standard deviations in parentheses
(a) Within the polyhedron

$\mathrm{B}(1)-\mathrm{C}(2)$	$1.64_{5}(2)$	$\mathrm{B}(4)-\mathrm{C}(7)$	$1.70(2)$
$\mathrm{B}(1)-\mathrm{B}(3)$	$1.78(2)$	$\mathrm{B}(4)-\mathrm{B}(8)$	$1.75(2)$
$\mathrm{B}(1)-\mathrm{B}(4)$	$1_{2} .74_{5}\left(2_{5}\right)$	$\mathrm{B}(5)-\mathrm{B}(6)$	$1.81(2)$
$\mathrm{B}(1)-\mathrm{B}(5)$	$1.78(2)$	$\mathrm{B}(5)-\mathrm{B}(8)$	$1.79(2)$
$\mathrm{B}(1)-\mathrm{B}(6)$	$1.77(2)$	$\mathrm{B}(5)-\mathrm{Pt}(9)$	$2.34(1)$
$\mathrm{C}(2)-\mathrm{B}(3)$	$1.62(3)$	$\mathrm{B}(6)-\mathrm{Pt}(9)$	$1.26(1)$
$\mathrm{C}(2)-\mathrm{B}(6)$	$1.59(2)$	$\mathrm{B}(6)-\mathrm{B}(10)$	$2.02(2)$
$\mathrm{C}(2)-\mathrm{B}(10)$	$1.61(1)$	$\mathrm{C}(7)-\mathrm{B}(8)$	$1.69(3)$
$\mathrm{B}(3)-\mathrm{B}(4)$	$1.75(2)$	$\mathrm{B}(8)-\mathrm{Pt}(9)$	$2.18(2)$
$\mathrm{B}(3)-\mathrm{C}(7)$	$1.65(2)$	$\mathrm{B}(10)-\mathrm{C}(7)$	$1.69(3)$
$\mathrm{B}(3)-\mathrm{B}(10)$	$1.87\left(2_{5}\right)$	$\mathrm{B}(10)-\mathrm{Pt}(9)$	$2.31(1)$
$\mathrm{B}(4)-\mathrm{B}(5)$	$1.79(2)$		
$(b) \mathrm{Other}$ bonds			
$\mathrm{Pt}(9)-\mathrm{P}(1)$	$2.322(5)$	$\mathrm{C}(220)-\mathrm{C}(221)$	$1.53(2)$
$\mathrm{Pt}(9)-\mathrm{P}(2)$	$2.322(3)$	$\mathrm{C}(230)-\mathrm{C}(231)$	$1.52(2)$
$\mathrm{P}(1)-\mathrm{C}(110)$	$1.87(2)$	$\mathrm{B}(1)-\mathrm{H}(1)$	$0.93(8)$
$\mathrm{P}(1)-\mathrm{C}(120)$	$1.80(2)$	$\mathrm{B}(3)-\mathrm{H}(3)$	$1.0(1)$
$\mathrm{P}(1)-\mathrm{C}(130)$	$1.84(1)$	$\mathrm{B}(4)-\mathrm{H}(4)$	$1.1(2)$
$\mathrm{P}(2)-\mathrm{C}(210)$	$1.84\left(1_{5}\right)$	$\mathrm{B}(5)-\mathrm{H}(5)$	$1.23(8)$
$\mathrm{P}(2)-\mathrm{C}(220)$	$1.83(2)$	$\mathrm{B}(6)-\mathrm{H}(6)$	$1.0(1)$
$\mathrm{P}(2)-\mathrm{C}(230)$	$1.85\left(1_{5}\right)$	$\mathrm{B}(8)-\mathrm{H}(8)$	$\left.1.10(9)_{5}\right)$
$\mathrm{C}(110)-\mathrm{C}(111)$	$1.46_{5}(2)$	$\mathrm{B}(10)-\mathrm{H}(10)$	$1.02(9)$
$\mathrm{C}(120)-\mathrm{C}(121)$	$1.52(3)$	$\mathrm{C}(2)-\mathrm{C}(21)$	$1.51(2)$
$\mathrm{C}(130)-\mathrm{C}(131)$	$1.52\left(2_{5}\right)$	$\mathrm{C}(7)-\mathrm{C}(71)$	$1.52_{5}(2)$
$\mathrm{C}(210)-\mathrm{C}(211)$	$1.51(2)$		

as essentially square-planar, and assuming the metalphosphorus bonds are of the same strength, we would expect the $\mathrm{Pt}-\mathrm{B}$ lengths to vary in the sequence $\mathrm{B}(8)<$ $\mathrm{B}(6) \ll \mathrm{B}(10)<\mathrm{B}(5)$. The respective separations determined were 2.18(2), 2.16(1), 2.31(1), and 2.34(1) \AA.

In recent structural studies ${ }^{1,29}$ we have emphasised the square-planar description of the d^{8} metal co-ordination and noted the increasing length of the metal-cage carbon bonds, doubtless aided by the carbon atoms' preference for only four cage connectivities. ${ }^{\mathbf{3 0 , 3 1}}$ Metal-carbon lengths of $2.422(7)$ and $2.452(8) \AA$ (Pt -carbaborane) and $2.600(6) \AA$ (Pd-carbaborane) have been recorded. For the present compound the equivalent interaction, $\mathrm{Pt}(9)$ to $C(7)$, is non-bonding at $2.83\left(l_{5}\right) \AA$. We thus conclude that the decrease in molecular potential-energy due to the acquisition of the approximately square-planar d^{8}

[^4]metal co-ordination, and to the relatively low cage connectivity of $C(7)$, is sufficient to warrant the breaking of the $\mathrm{Pt}(9)-\mathrm{C}(7)$ bond in the otherwise closo-polyhedron.

The exo-Polyhedral Atoms.-Tables $4(b)$ and $5(b)$

Table 5
Inter-bond angles
(a) Within the polyhedron

$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{B}(3)$	56(1)	$\mathrm{B}(1)-\mathrm{B}(6)-\mathrm{C}(2)$	58.35 ${ }^{(9)}$
$\mathrm{B}(3)-\mathrm{B}(1)-\mathrm{B}(4)$	59.6(9)	$\mathrm{C}(2)-\mathrm{B}(6)-\mathrm{B}(10)$	51.5(6)
$\mathrm{B}(4)-\mathrm{B}(1)-\mathrm{B}(5)$	$60.85{ }_{5}(9)$	$\mathrm{B}(10)-\mathrm{B}(6)-\mathrm{Pt}(9)$	67.1(4)
$\mathrm{B}(5)-\mathrm{B}(1)-\mathrm{B}(6)$	$61.2(9)$	$\mathrm{Pt}(9)-\mathrm{B}(6)-\mathrm{B}(5)$	$71.6\left(5_{5}\right)$
$\mathrm{B}(6)-\mathrm{B}(1)-\mathrm{C}(2)$	55.5(9)	$\mathrm{B}(5)-\mathrm{B}(6)-\mathrm{B}(1)$	59.8(9)
$\mathrm{B}(1)-\mathrm{C}(2)-\mathrm{B}(3)$	66(1)	$\mathrm{B}(3)-\mathrm{C}(7)-\mathrm{B}(4)$	69.9(8)
$\mathrm{B}(3)-\mathrm{C}(2)-\mathrm{B}(10)$	71 (1)	$\mathrm{B}(4)-\mathrm{C}(7)-\mathrm{B}(8)$	$63.9\left(7_{5}\right)$
$\mathrm{B}(10)-\mathrm{C}(2)-\mathrm{B}(6)$	78(7)	$\mathrm{B}(8)-\mathrm{C}(7)-\mathrm{B}(10)$	102(1)
$\mathrm{B}(6)-\mathrm{C}(2)-\mathrm{B}(1)$	66.1(9)	$\mathrm{B}(10)-\mathrm{C}(7)-\mathrm{B}(3)$	68(1)
$\mathrm{B}(1)-\mathrm{B}(3)-\mathrm{C}(2)$	58(1)	$\mathrm{B}(4)-\mathrm{B}(8)-\mathrm{B}(5)$	60.5(8)
$\mathrm{C}(2)-\mathrm{B}(3)-\mathrm{B}(10)$	54.5(9)	$\mathrm{B}(5)-\mathrm{B}(8)-\mathrm{Pt}(9)$	$71.4(85)$
$\mathrm{B}(10)-\mathrm{B}(3)-\mathrm{C}(7)$	57.0(9)	$\mathrm{Pt}(9)-\mathrm{B}(8)-\mathrm{C}(7)$	96(1)
$\mathrm{C}(7)-\mathrm{B}(3)-\mathrm{B}(4)$	$59.9\left(7_{5}\right)$	$\mathrm{C}(7)-\mathrm{B}(8)-\mathrm{B}(4)$	$60.7518)$
$\mathrm{B}(4)-\mathrm{B}(3)-\mathrm{B}(1)$	59.2(9)		
$\mathrm{B}(1)-\mathrm{B}(4)-\mathrm{B}(3)$	61.2(9)	$\mathrm{B}(5)-\mathrm{Pt}(9)-\mathrm{B}(6)$	47.1(6)
$\mathrm{B}(3)-\mathrm{B}(4)-\mathrm{C}(7)$	57.2(7)	$\mathrm{B}(6)-\mathrm{Pt}(9)-\mathrm{B}(10)$	53.5(4)
$\mathrm{C}(7)-\mathrm{B}(4)-\mathrm{B}(8)$	55.4(7)	$\mathrm{B}(10)-\mathrm{Pt}(9)-\mathrm{B}(8)$	69.8 (6)
$\mathrm{B}(8)-\mathrm{B}(4)-\mathrm{B}(5)$	60.9 (8)	$\mathrm{B}(8)-\mathrm{Pt}(9)-\mathrm{B}(5)$	46.6(5)
$\mathrm{B}(5)-\mathrm{B}(4)-\mathrm{B}(1)$	60.6(9)		
$\mathrm{B}(1)-\mathrm{B}(5)-\mathrm{B}(4)$	58.6(9)	$\mathrm{C}(2)-\mathrm{B}(10)-\mathrm{B}(3)$	55.0(9)
$\mathrm{B}(4)-\mathrm{B}(5)-\mathrm{B}(8)$	58.6. ${ }^{\text {(8) }}$	$\mathrm{B}(3)-\mathrm{B}(10)-\mathrm{C}(7)$	55.1(9)
$\mathrm{B}(8)-\mathrm{B}(5)-\mathrm{Pt}(9)$	62.0(7)	$\mathrm{C}(7)-\mathrm{B}(10)-\mathrm{Pt}(9)$	88.75 (68)
$\mathrm{Pt}(9)-\mathrm{B}(5)-\mathrm{B}(6)$	61.3 (5)	$\mathrm{Pt}(9)-\mathrm{B}(10)-\mathrm{B}(6)$	$59.5(5)$
$\mathrm{B}(6)-\mathrm{B}(5)-\mathrm{B}(1)$	59.0(9)	$\mathrm{B}(6)-\mathrm{B}(10)-\mathrm{C}(2)$	50.6 (6)
(b) Other angles			
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{B}(1)$	124.9(95)	$\mathrm{Pt}(9)-\mathrm{P}(1)-\mathrm{C}(110)$	113.6(7)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{B}(3)$	122(1)	$\mathrm{Pt}(9)-\mathrm{P}(1)-\mathrm{C}(120)$	114.8(7)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{B}(10)$	129(1)	$\mathrm{Pt}(9)-\mathrm{P}(1)-\mathrm{C}(130)$	$116.9(7)$
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{B}(6)$	126(1)	$\mathrm{Pt}(9)-\mathrm{P}(2)-\mathrm{C}(210)$	$110.3(4)$
		$\mathrm{Pt}(9)-\mathrm{P}(2)-\mathrm{C}(220)$	$120.2{ }_{5}(6)$
$\mathrm{C}(71)-\mathrm{C}(7)-\mathrm{B}(3)$	115(1)	$\mathrm{Pt}(9)-\mathrm{P}(2)-\mathrm{C}(230)$	$115.2(5)$
$\mathrm{C}(71)-\mathrm{C}(7)-\mathrm{B}(4)$	125(1)		
$\mathrm{C}(71)-\mathrm{C}(7)-\mathrm{C}(8)$	118(1)	$\mathrm{C}(110)-\mathrm{P}(1)-\mathrm{C}(120)$	$104 \cdot 4_{5}(9)$
$\mathrm{C}(71)-\mathrm{C}(7)-\mathrm{B}(10)$	124(1)	$\mathrm{C}(110)-\mathrm{P}(1)-\mathrm{C}(130)$	103.3 (8)
		$\mathrm{C}(120)-\mathrm{P}(1)-\mathrm{C}(130)$	102.1(7)
$\mathrm{P}(1)-\mathrm{Pt}(9)-\mathrm{B}(5)$	137.0(4)	$\mathrm{C}(210)-\mathrm{P}(2)-\mathrm{C}(220)$	101.2(7)
$\mathrm{P}(1)-\mathrm{Pt}(9)-\mathrm{B}(6)$	93.15 (5)	$\mathrm{C}(210)-\mathrm{P}(2)-\mathrm{C}(230)$	105.6(8)
$\mathrm{P}(1)-\mathrm{Pt}(9)-\mathrm{B}(10)$	95.5 (5)	$\mathrm{C}(220)-\mathrm{P}(2)-\mathrm{C}(230)$	102.6(7)
$\mathrm{P}(1)-\mathrm{Pt}(9)-\mathrm{B}(8)$ $\mathrm{P}(2)-\mathrm{Pt}(9)-\mathrm{B}(5)$	$164.1(4)$ $111.4\left(3_{5}\right)$	$\mathrm{P}(1)-\mathrm{C}(110)-\mathrm{C}(111)$	117(2)
$\mathrm{P}(2)-\mathrm{Pt}(9)-\mathrm{B}(5)$ $\mathrm{P}(2)-\mathrm{Pt}(9)-\mathrm{B}(6)$	$111.4\left(3_{5}\right)$ $156.0(4)$	$\mathrm{P}(1)-\mathrm{C}(120)-\mathrm{C}(121)$ $\mathrm{P}(1)-\mathrm{C}(130)-\mathrm{C}(131)$	107(1)
$\mathrm{P}(2)-\mathrm{Pt}(9)-\mathrm{B}(10)$	$140.6(4)$	$\mathrm{P}(1)-\mathrm{C}(130)-\mathrm{C}(131)$ $\mathrm{P}(2)-\mathrm{C}(210)-\mathrm{C}(211)$	$114(1)$ $112(1)$
$\mathrm{P}(2)-\mathrm{Pt}(9)-\mathrm{B}(8)$	86.5(4)	$\mathrm{P}(2)-\mathrm{C}(220)-\mathrm{C}(221)$	120(2)
$\mathrm{P}(1)-\mathrm{Pt}(9)-\mathrm{P}(2)$	102.5(1)	$\mathrm{P}(2)-\mathrm{C}(230)-\mathrm{C}(231)$	113(1)

(c) Summary of angles $\left({ }^{\circ}\right)$ involving cage H atoms

	No., N	Range	Mean*
$\mathrm{H}-\mathrm{B}-\mathrm{Pt}$	4	$110(5)-123(5)$	$116(5)$
$\mathrm{H}-\mathrm{B}-\mathrm{B}$	22	$112(6)-138(4)$	$125(7)$
$\mathrm{H}-\mathrm{B}-\mathrm{C}$	8	$107(4)-125(5)$	$117(6)$

* Estimated standard deviation of the mean from the expression $\sigma^{2}=\left\{\sum_{i=1}^{N}\left(\chi_{i}-\bar{\chi}\right)^{2}\right\} /(N-1)$, where χ_{i} is the $i^{\text {th }}$ and $\bar{\chi}$ the mean of N similar types.
demonstrate no unusual molecular parameters involving the exo-polyhedral atoms save those of $\mathrm{C}(110)$. $\mathrm{P}(1)^{-}$ $\mathrm{C}(110)$ is long $[1.87(2) \AA]$, and $\mathrm{C}(110)-\mathrm{C}(111)$ short

[^5]$\left[1.46_{5}(2) \AA\right]$; an indication of the inability of our model to describe this atom satisfactorily may lie in the fact that it has the largest mean $U_{i i}$ of all the methylene carbon atoms.
The B-H bonds are, as expected, ${ }^{32}$ generally ca. $0.1 \AA$ shorter than the predicted ${ }^{33}$ internuclear separation.

Figure 3 Packing diagram, as seen along the c axis, looking towards the origin. Hydrogen atoms are omitted for clarity

Figure 3 is a view of the contents of one unit cell, looking along the c axis, towards the origin, and Table 6 lists the unique non-bonded interligand contacts shorter than the appropriate van der Waals sum ${ }^{33}$ (the contact
radius for methyl groups has been estimated at $2.0 \AA$). The absence of unusually short contacts implies that

Table 6
Non-bonded contacts (\AA)
(a) Intramolecular

$\mathrm{H}(6) \cdots \mathrm{H}(122)$	x, y, z	2.4
$\mathrm{H}(9) \cdots \mathrm{H}(232)$	x, y, z	2.3
$\mathrm{H}(10) \cdots \mathrm{H}(121)$	x, y, z	2.4
$\mathrm{H}(111) \cdots \mathrm{H}(222)$	x, y, z	2.3
$\mathrm{H}(132) \cdots \mathrm{H}(221)$	x, y, z	2.1
ntermolecular		
$\mathrm{H}(131) \cdots \mathrm{H}\left(211^{\mathrm{I}}\right)$		2.3
$\mathrm{C}(121) \cdots \mathrm{C}\left(71^{\text {II }}\right)$		$2.78(2)$
$\mathrm{C}(221) \cdots \mathrm{C}\left(221^{\text {III }}\right)$		$3.68(3)$
$\mathrm{H}(5) \cdots \mathrm{C}\left(231^{\text {IV }}\right)$		$3.0(1)$

Roman numeral superscripts define the following equivalent positions relative to the reference molecule at x, y, z :

$$
\begin{array}{ll}
\text { I } x-\frac{1}{2}, \frac{1}{2}-y, z & \text { III }-x, 1-y, 1-z \\
\text { II } x, y, 1+z & \text { IV } \frac{1}{3}+x, \frac{1}{3}-y, 1+
\end{array}
$$

packing forces play only a minimal rôle in determining the stereochemistry adopted.

I thank Dr. J. L. Spencer for supplying the crystalline sample, and Professor F. G. A. Stone and Dr. P. Woodward for helpful discussions.
[4/2677 Received, 23yd December, 1974]
${ }^{32}$ M. R. Churchill, Inorg. Chem., 1973, 12, 1213.
${ }^{33}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.

[^0]: \dagger We have chosen to regard the polyhedron as a heteroborane, and since the preliminary communication ${ }^{4}$ have slightly modified the numbering of atoms in the open face.
 ${ }^{1}$ Part III, W. E. Carroll, M. Green, F. G. A. Stone, and A. J. Welch, preceding paper.
 ${ }_{2}$ J. L. Spencer, M. Green, and F. G. A. Stone, J.C.S. Chem. Comm., 1972, 1178.

[^1]: ${ }^{10}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
 ${ }^{11}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
 12 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

[^2]: * For details see Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.
 ${ }^{13}$ R. D. Dobrott and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 1779.

 14 D. St. Clair, A. Zalkin, and D. H. Templeton, Inorg. Chem., 1972, 11, 377.
 ${ }^{15}$ E. L. Hoel, C. E. Strouse, and M. F. Hawthorne, Inorg. Chem., 1974, 13, 1388.
 ${ }_{16}$ T. F. Koetzle and W. N. Lipscomb, Inorg. Chem., 1970, 9, 2279.
 ${ }^{17}$ H. Hart and W. N. Lipscomb, Inorg. Chem., 1968, 7, 1070.

[^3]: ${ }^{18}$ T. F. Koetzle, F. E. Scarbrough, and W. N. Lipscomb, Inorg. Chem., 1968, $7,1076$.

 19 J. C. Huffman and W. E. Streib, J.C.S. Chem. Comm., 1972, 665.
 ${ }^{20}$ F. J. Hollander, D. H. Templeton, and A. Zalkin, Inovg. Chem., 1973, 12, 2262.
 ${ }^{21}$ G. Evrard, J. A. Ricci, jun., I. Bernal, W. J. Evans, D. F. Dustin, and M. F. Hawthorne, J.C.S. Chem. Comm., 1974, 234.
 ${ }_{22}$ K. P. Callahan, C. E. Strouse, A. L. Sims, and M. F. Hawthorne, Inorg. Chem., 1974, 13, 1393.
 ${ }_{23}$ V. S. Mastryukov, O. V. Dorofeeva, L. V. Vilkov, A. F. Zhigach, V. T. Laptev, and A. B. Petrunin, J.C.S. Chem. Comm., 1973, 276.
 ${ }^{24}$ E. A. McNeill, K. L. Gallaher, F. R. Scholer, and S. H. Bauer, Inorg. Chem., 1973, 12, 2108.
 ${ }_{25}^{25}$ R. A. Beaudet and R. L. Poynter, J. Chem. Phys., 1965, 43, 2166.
 ${ }_{26}$ R. A. Beaudet and R. L. Poynter, J. Chem. Phys., 1970, 53,
 1899.
 ${ }_{27}$ G. L. McKown and R. A. Beaudet, Inovg. Chem., 1971, 10, 1350.

[^4]: ${ }^{28}$ J. L. Spencer, personal communication.
 29 A. J. Welch, J.C.S. Dalton, 1975, 1473.

[^5]: ${ }^{30}$ R. E. Williams, Progr. Boron Chem., 1970, 2, 37.
 ${ }^{31}$ W. J. Evans, G. B. Dunks, and M. F. Hawthorne, J. Amer. Chem. Soc., 1973, 95, 4565.

