Fluorophosphonate and Alkoxy- and Aroxy-fluorophosphine Complexes of Platinum(11) and Palladium(11). Part I. Reactions of Complexes of Tertiary Phosphines with Alkoxy- and Aroxy-difluorophosphines

By Jürgen Grosse and Reinhard Schmutzler,* Lehrstuhl B für Anorganische Chemie der Technischen Universität, D-3300 Braunschweig, Pockelsstrasse 4, Germany

A series of difluorophosphonato-complexes trans-[MCIL₂(PF₂O)] (M = Pt or Pd; L = PEt_{3-n}Ph_n; n = 0--3) have been prepared via a Michaelis-Arbuzov type reaction from $[MCl_2L_2]$ and $PF_2(OR)$ (R = allyl, Pr^a, or Bu^a). Preparation of complexes cis-[MCl₂(PEt₃){PF₂(OR)}] (M = Pt or Pd; R = Bu^a or Ph) and chloro-bridged binuclear complexes [{MCI(PEt₃)(PF₂O)}] is also reported. Substituent redistribution reactions of PF₂(OR) have been observed under the influence of the transition metal, M. Fluorine-19 and ³¹P n.m.r., i.r., and, in part, mass-spectroscopic data for the new complexes are reported and discussed in terms of the structures of the products obtained.

ALTHOUGH numerous transition-metal complexes of trifluorophosphine, PF₃, are known,¹ there are only a few examples of those containing the difluorophosphonato-group, [PF,0]⁻, which is isoelectronic with PF₃.

Kruck and his co-workers 2-5 obtained a number of $[PF_2O]^-$ derivatives by hydrolysis of the corresponding PF3 complexes under certain conditions, e.g. equation (1). A series of derivatives of PF_2E appear to be

$$2 [\operatorname{Ni}(\operatorname{PF}_3)_4] \xrightarrow{\operatorname{Ba}[\operatorname{OH}]_4} \operatorname{Ba}[\operatorname{Ni}(\operatorname{PF}_3)_3(\operatorname{PF}_2\operatorname{O})]_2 \quad (1)$$

formed in oxidative-addition reactions of $P(E)F_2X$ to iridium(I) complexes [equation (2) $(L = PPh_3 \text{ or }$

$$[Ir(CO)ClL_2] + P(E)F_2X \longrightarrow [IrCl(CO)(PEF_2)L_2X] (2)$$

PMePh₂; E = O or S; X = Cl or Br].⁶ Also, some complexes of type $[Fe(CO)_2(\eta - C_5H_5)(PEX_2)]$ (E = S, X = F; ⁶ E = O or S, $X = CF_3$ ⁷) are known [equations $(3)^{6}$ and $(4)^{7}$].

$$Na[Fe(CO)_{2}(\eta-C_{5}H_{5})] + PBrF_{2}(S) \longrightarrow [Fe(CO)_{2}(\eta-C_{5}H_{5})(PF_{2}S)] + NaBr \quad (3)$$

$$[Fe(CO)_{2}(\eta-C_{5}H_{5})\{P(CF_{3})_{2}\}] \xrightarrow{NO (E=O)} [Fe(CO)_{2}(\eta-C_{5}H_{5})\{P(CF_{3})_{2}E\}] \quad (4)$$

Recently, we have observed the formation of diffuorophosphonato-platinate(II) and -palladate(II) complexes,⁸ $[RL]_2[M(PF_2O)_4]$ $[R = CH_2:CH \cdot CH_2(C_3H_5);$ L = pyridine (py) or PPh_3 ; M = Pt or Pd] from the reaction of $[MCl_2L_2]$ with allyloxydifluorophosphine, $PF_2(OC_3H_5)$ (see also the following paper). This prompted us to study the reactions of a number of Pt11 and Pd11 derivatives $[MCl_2L_2, MCl_2, and [\{MCl_2(PEt_3)\}_2]$ (M = Pt or Pd; L = tertiary phosphine or amine) with $PF_2(OR)$ (R =

¹ J. F. Nixon, Adv. Inorg. Chem. Radiochem., 1970, **13**, 363. ² Th. Kruck, M. Höfler, K. Bauer, P. Junkes, and K. Glinka, Chem. Ber., 1968, 101, 3827. ³ Th. Kruck, Chimia (Switz.), 1970, 24, 375.

⁴ Th. Kruck, J. Waldmann, M. Höfler, G. Birkenhäger, and Ch. Odenbrett, Z. anorg. Chem., 1973, **402**, 16.

⁵ Th. Kruck, H. Jung, M. Höfler, and H. Blume, Chem. Ber., 1974, **107**, 2145.

C. B. Colburn, W. E. Hill, and D. W. A. Sharp, Inorg. Nuclear Chem. Letters, 1972, 8, 625.

⁷ (a) R. C. Dobbie, P. R. Mason, and R. J. Porter, J.C.S. Chem. Comm., 1972, 612; (b) R. C. Dobbie and P. R. Mason, J.C.S. Dalton, 1973, 1124; (c) M. J. Barrow, G. A. Sim, R. C. Dobbie, and P. R. Mason, J. Organometallic Chem., 1974, 69, C4.

C₃H₅, Prⁿ, Buⁿ, or Ph). This paper describes the reactions of the tertiary phosphine complexes with $PF_2(OR)$ and the following paper is concerned mainly with amine complexes of the two platinum metals.

RESULTS AND DISCUSSION

In the reaction of tertiary phosphine complexes of Pt^{II} and Pd^{II} with $PF_2(OR)$ a number of general types of reaction were observed.

Reaction.—The Type (a): Michaelis–Arbuzov Michaelis-Arbuzov reaction, (5), is common in the chemistry of phosphite esters,⁹ where R, R' = alkylor alkenyl and X = halogen. In complete analogy with

$$R-O-P \left\langle + R'X \rightarrow \left[R-O-P - R' X^{-} \right] \rightarrow O \doteq P - R' + RX (5)$$

this reaction, transition-metal diffuorophosphonatocomplexes were obtained on treating the appropriate chloride with alkoxydifluorophosphines [equation (6) $(M = Pt \text{ or } Pd; R = C_3H_5, Pr^n, \text{ or } Bu^n)].$ The ionic intermediate in equation (6) is not known, but analogous

$$PF_{2}(OR) + M^{II} - CI \rightarrow \begin{bmatrix} F_{1} \\ M^{II} - P - OR & CI^{-} \\ F \end{bmatrix}$$

$$M^{II}(PF_{2}O) + R - CI \quad (6)$$

ionic complexes $[ML_2L'X]Y$ (L = tertiary phosphine or arsine; L' = tertiary amine, phosphine, or phosphite; X = halogen or H; Y = ClO_4^- or NO_3^- ; M = Pt or Pd) have been described in the literature.¹⁰⁻¹³ Haines and his co-workers 14-16 have proposed a Michaelis-Arbuzov type mechanism for the formation of POY₂ complexes

⁸ J. Grosse and R. Schmutzler, Z. Naturforsch., 1973, B28, 515.
⁹ R. G. Harvey and E. R. De Sombre, in Topics Phosphorus Chem., 1964, 1, 57.

M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1968, 3074.
 K. R. Dixon, K. C. Moss, and M. A. R. Smith, Canad. J.

 Chem., 1974, 52, 692.
 ¹² D. A. Duddell, P. L. Goggin, R. J. Goodfellow, W. G. Norton, and J. G. Smith, J. Chem. Soc. (A), 1970, 545.
 ¹³ M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1970, 1938.
 ¹⁴ R. J. Haines, I. L. Marais, and C. R. Nolte, Chem. Comm., 1970, 547

¹⁵ R. J. Haines and C. R. Nolte, J. Organometallic Chem., 1970,

24, 725. ¹⁶ R. J. Haines, A. L. Du Preez, and I. L. Marais, *J. Organo-*16 R. J. Haines, A. L. Du Preez, and I. L. Marais, *J. Organo-*

such as $[Mo(CO)_2(\eta-C_5H_5)(POY_2)\{P(OR)Y_2\}]$ in the reaction of $[\{Mo(CO)_3(\eta - C_5H_5)\}_2]$ with $P(OR)Y_2$ (Y = Ph or OR; $R = alkyl \text{ or } C_3H_5$).

Type (b): Substituent Redistribution at the Phosphorus Atom.—On interaction of PF3 with P(OMe)3, redistribution of substituents at phosphorus was observed, followed, to some extent, by a Michaelis-Arbuzov rearrangement, according to equation (7).¹⁷ At room temperature alkoxydifluorophosphines are stable with respect to

substituent redistribution reactions; during the course of our study, samples were stored unchanged for several months. When such phosphines were allowed to react with Pt^{II} and Pd^{II} derivatives, redistribution reactions resulted in some cases (equation (8) (M = Pt or Pd; R = C_3H_5 , Buⁿ, or Ph)]. There distribution products were

$$PF_2(OR) \xrightarrow{M^{\Pi}} PF(OR)_2, P(OR)_3, PF_3$$
 (8)

obtained either as free ligands or bonded to the transition metal. Dialkylaminodifluorophosphines have been reported to undergo a similar redistribution reaction, preferably in the presence of PtCl₂ and other transitionmetal chlorides, 1,18 e.g. equation (9). As a consequence

$$2 \operatorname{PF}_{2}(\operatorname{NR}_{2}) + \operatorname{PtCl}_{2} \longrightarrow \\ [\operatorname{PtCl}_{2} \{\operatorname{PF}_{2}(\operatorname{NR}_{2})\}_{2}] \xrightarrow{2 \operatorname{PF}_{3}(\operatorname{NR}_{4})} \\ [\operatorname{PtCl}_{2} \{\operatorname{PF}(\operatorname{NR}_{2})_{2}\}_{2}] \qquad (9)$$

of the possible occurrence of reactions of type (b), a number of reactions were carried out employing reactants in a precise molar ratio in order to obtain defined products rather than mixtures.

Type (c): Cleavage of Chloro-bridged Binuclear Complexes.—Halogen-bridged binuclear complexes [{ML- X_{2}_{2} are known to react with a number of ligands L' with cleavage of the halogen bridge to give mononuclear complexes [MLL' X_2], e.g. equation (10) (M = Pt or Pd;

$$\begin{bmatrix} L & X & X \\ X & X & L \end{bmatrix} + 2L' \longrightarrow 2\begin{bmatrix} MLL'X_2 \end{bmatrix} (10)$$

L = tertiary phosphine or phosphite; L' = tertiaryphosphite; X = halogen).¹⁹⁻²¹ Alkoxyfluorophosphine complexes of platinum and palladium have not previously been described in the literature. We have been able to synthesize a number of alkoxydifluorophosphine complexes of Pt^{II} and Pd^{II} making use of reaction type (c) (reaction of $PF_2(OR)$ with $[\{MCl_2(PEt_3)\}_2]$). In some cases, combinations of reaction types (a)---(c) have been observed.

Difluoro- and Fluoro-phosphonato-complexes, trans-MClL_o(PF_oO)] and trans-[PdClL₂{PFO(OR)}].-Difluorophosphonato-complexes, trans-[MClL₂(PF₂O)],

M L R
(I) Pt PEt₃
$$C_3H_5$$
 or Buⁿ
PEt₂Ph C_3H_5 or Buⁿ
PEtPh₂ C_3H_5
PPh₃ Prⁿ or Buⁿ
PEt₂Ph C_3H_5 or Buⁿ
PEt₂Ph C_3H_5 , Prⁿ, or Buⁿ
PEtPh₂ C_3H_5 , Prⁿ, or Buⁿ
PEtPh₂ C_3H_5 Prⁿ, or Buⁿ
PEtPh₃ Buⁿ

were obtained from [MCl₂L₂] and PF₂(OR), according to reaction type (a); most of these reactions proceeded readily and were complete within a few minutes at room temperature, using benzene as solvent. Complex (II; $L = PPh_3$) crystallized with dichloromethane (1.5 mol CH_2Cl_2 per mol of complex) on recrystallization from that solvent. The complex is isoelectronic with trans-[RhCl(PPh₃)₂(PF₃)].²² Analogous complexes trans- $[PtL_{2}{PO(OR)_{2}}X]$ have been described in the literature $\overline{21,23}$ (L = PEt₃, PBuⁿ₃, or AsEt₃; X = halogen or pseudohalogen; R = Me or Ph).

For M = Pt, complexes (I) were the only products observed, while, for M = Pd, monofluorophosphonatocomplexes trans-[PdClL₂{PFO(OR)}] were formed as byproducts according to a combination of reaction types (a) and (b). In contrast to the corresponding diffuorophosphonato-complexes, complexes (III) could not be isolated in a pure state from the reaction mixtures. They were not formed in the absence of a large excess of PF₂(OR).

$$[PdCl_2L_2] + 2PF_2(OR) \longrightarrow trans-[PdCl L_2 \{PFO (OR)\}] + RCl + PF_3$$
(12)

Difluorophenoxyphosphine, PF2(OPh), was unreactive towards [PtCl₂(PEt₂Ph)₂] under the reaction conditions employed (see Experimental section); only at elevated temperature (10 d at 70 °C) and in a polar solvent, were trace amounts of (I; $L = PEt_2Ph$), together with an unidentified PF-containing product (from the ¹⁹F n.m.r. spectrum), formed, with some triphenyl phosphite (from the ³¹P n.m.r. spectrum). Again the reaction proceeded in accord with type (b). In complete agreement with the classical Michaelis-Arbuzov reaction,⁹ the ²¹ F. H. Allen, A. Pidcock, and C. R. Waterhouse, J. Chem.

¹⁷ D. H. Brown, K. D. Crosbie, G. W. Fraser, and D. W. A.

<sup>Sharp, J. Chem. Soc. (A), 1969, 872.
¹⁸ J. F. Nixon and M. D. Sexton, Chem. Comm., 1969, 827.
¹⁹ P. Schützenberger and M. Fontaine, Bull. Soc. chim. France,</sup>

^{1872, 17, 482.} 20 M. J. Church and M. J. Mays, J. Inorg. Nuclear Chem., 1971, 33, 253.

Soc. (A), 1970, 2087. 22 D. A. Clement, J. F. Nixon, and M. D. Sexton, Chem. Comm.,

^{1969, 1509.} ²³ A. Pidcock and C. R. Waterhouse, J. Chem. Soc. (A), 1970,

^{2080.}

reactivity of $PF_2(OR)$ towards $[MCl_2L_2]$ decreases in the order $R = C_3H_5 > alkyl \gg Ph$. Also, reactions of type (a) proceeded faster in polar than in non-polar solvents as expected because an ionic reaction intermediate is involved.

The products were characterized by ¹H, ¹⁹F, and ³¹P n.m.r., and i.r. and mass spectroscopy and elemental analysis. The magnitudes of the chemical shifts, $\delta_F^{2,6,8}$ and arising from 'virtual coupling' of the methyl protons with the trans-phosphorus atoms.^{10,11,28} The ¹⁹F and ³¹P n.m.r. spectra (Table 1) also clearly indicate the trans configuration of the complexes. There is only a single ³¹P n.m.r. signal assigned to the co-ordinated phosphine $(\delta_{P'})$; the PF₂O phosphorus and fluorine nuclei couple with two equivalent phosphorus nuclei of the phosphine $({}^{3}J_{P'-F} \text{ and } {}^{2}J_{P'-P})$, the magnitude of

TABLE 1

Fluorine-19 and ³¹P n.m.r. data for trans complexes $[PtCl(P'Et_{3-n}Ph_n)_2(PF_2O)]$ (I), $[PdCl(P'Et_{3-n}Ph_n)_2(PF_2O)]$ (II), and $[PdCl(P'Et_{3-n}Ph_n)_2[PFO(OR)]]$ (III) $(n = 0-3; R = C_3H_5 \text{ or } Bu^n)$

			δ _F	${}^{1}J_{P-F}$	$^{2}J_{\mathrm{Pt-F}}$	$^{3}J_{\mathbf{P'}-\mathbf{F}}$	δ _{P′}	$^{1}J_{Pt-P'}$	δρ	$^{1}J_{Pt-P}$	$^{2}J_{\mathbf{P}'-\mathbf{P}}$
	п	R	p.p.m.		Hz		p.p.m.	Hz	p.p.m.	H	Z
(I) <i>a</i>	0		12.4	$1\ 162$	1 0 2 6	6	-21.4	$2\ 245$	34.4	5846	28
(I) a	1		13.3	$1\ 169$	987	8	-18.0	2500	-34.1	Ь	30
(I) e,d	2		11.96	1175	952	9.8	-20.5	2 449	-34.5	5821	29.3
ÌΙ) σ	3		15.8	1 179	896	ь	-23.8	b	b	b	ь
(II) a	0		6.1	1 255		18	-25.3		63.4		12
(III) ª	0	$\mathbf{B}\mathbf{u}^n$	9.9	1 170		20	-24.9		-62.7		е
(II) a	1		6.9	$1\ 250$		20	-21.6		-61.8		12
(III) a,f	1	C_3H_5	9.8	1 191		23	-21.6		-63.6		е
(III) a,f	1	Bun	10.9	1 187		23	-21.5		-62.5		e
(II) •	2		6.5	1 266		22	-24.5		-61.2		ь
(III) a,f	2	C₃H₅	9.8	1 193		25	g		g		g
(III) and	2	Bun	13.0	1 183		26	-24.3		-63.2		е
(II) °	3		9.8	$1\ 262$		22	-27.9		-60.6		ь
(III) c.f	3	$\mathbf{B}\mathbf{u}^{n}$	12.7	1 180		28	g		g		g

• In C_6H_6 . • Not obtained due to limited solubility of sample. • In CH_2Cl_2 . • Spectra measured by Dr. M. Murray, University of Bristol; from ³¹P{¹H}, ²J_{P'-P}. 391 Hz. • ²J_{P'-P} not observed due to broadening of signal because of P-H coupling. ¹ Non-isolated by-product. • Not obtained due to insufficient concentration of by-product in the mixture.

TABLE 2 0.

Characteristic I.I. bands (cm ⁻) ⁻ for complexes (1)—(11)									
	L	ν(P=O)	$\nu(P-F)^{b}$	ν(MP)	v(M–Cl)				
(I) (I) (I) (II) (III; $R = Bu^n)^c$ (III; $R = C_3H_5)^d$ (II) (III; $R = C_3H_5)^d$	PEt ₃ PEt ₂ Ph PEtPh ₂ PPh ₃ PEt ₃ PEt ₃ PEt ₂ Ph PEt ₂ Ph PEtPh ₂	1 235vs 1 250s, 1 243vs 1 252vs, 1 221w 1 245 (sh), 1 233s 1 245 (sh), 1 233s 1 240m, 1 202s 1 238s 1 206s 1 240s 1 240s	803vs, 769vs 800vs, 790vs, 770s 803vs, 785 (sh) 820vs, 770 (sh) 790vs, 760vs 765vs 799vs, 788 (sh) 799vs, 765s 805vg 750 (ch)	421m, 401 (sh) 411m, 399 (sh) 437 (sh), 417m 440w, 421w 410m, 388 (sh) 432m, 416 (sh) 408m, 400 (sh) 424w, 402m	300m 305m 309m, 306 (sh) 310w, 306 (sh) 316m 304m 309m 311m				
(11)	11118	1 2103	00013, 100 (31)	12011, 10211	orim				

^a vs = Very strong, s = strong, m = medium, w = weak, and sh = shoulder. ^b There was no distinction between ν (P-F) and overlapping phosphine bands in some cases. $\nu(P-O)$ or $\nu(C-O)$ at 1 035s, and 990–965vs cm⁻¹. Mixture with (II; L = PEt₂Ph), all other bands overlapped.

and δ_{P} ,^{8,21} the platinum-phosphorus coupling constants, ${}^{1}J_{Pt-P}$, 21, 24 the platinum-fluorine coupling constants, ${}^{2}J_{Pt-F}$ (Table 1),^{8,25,26} and the P=O stretching frequencies, v(P=O) (Table 2) 3,4,7,8,23,27 of the diffuorophosphonate group, and the comparison of these data with literature values for similar complexes, suggest that the PF₂O ligand is bonded to the metal through phosphorus rather than oxygen. The same is true for the monofluorophosphonato-complexes. The methyl signals in the ¹H n.m.r. spectra of the co-ordinated ethylphosphines, $PEt_{3-n}Ph_n$ (n = 0-2), exhibited a 1:4:6:4:1 multiplet structure, characteristic of *trans*-Et-P-M-P-Et systems

²⁴ J. F. Nixon and A. Pidcock, Ann. Rev. N.M.R. Spectroscopy, 1969, **2**, 380.

²⁵ J. F. Nixon, personal communication to J. G., 1972.
 ²⁶ T. G. Appleton, H. C. Clark, and L. E. Manzer, *Co-ordination Chem. Rev.*, 1973, 10, 335.

 J. Chatt and B. T. Heaton, J. Chem. Soc. (A), 1968, 2745.
 H. C. Clark, K. R. Dixon, and W. J. Jakobs, J. Amer. Chem. Soc., 1968, 90, 2259.

 ${}^{2}J_{\mathbf{P'-P}}$ also being characteristic of *cis* coupling.^{21, 24, 29-31} On addition of phosphine L to trans- $[PdClL_2(PF_2O)]$ (II; $L = PEt_2Ph$ or $PEtPh_2$) in benzene solution, the P'-F coupling collapsed due apparently to rapid exchange between co-ordinated and unco-ordinated phosphine.³²

$$M-L+L' \Longrightarrow M-L'+L \qquad (13)$$

I.r. bands assigned included v(P=O), v(P-F), v(M-P), and ν (M-Cl) (Table 2).

The proposed structure of the complexes, especially in the presence of a metal-phosphorus bond, was fully confirmed by an X-ray crystal-structure analysis of

29 S. O. Grim, R. L. Keiter, and W. McFarlane, Inorg. Chem., 1967, **6**, 1183.

³⁰ F. B. Ogilvie, J. M. Jenkins, and J. G. Verkade, J. Amer. Chem. Soc., 1970, 92, 1916.

³¹ R. J. Goodfellow and B. F. Taylor, J.C.S. Dalton, 1974, 1676.

32 P. Haake and R. M. Pfeiffer, J. Amer. Chem. Soc., 1970, 92, 4996.

		Mass-s	spectral data	a for complex	ces (I)			
	$\mathbf{L} = \mathbf{P}\mathbf{E}\mathbf{i}$	$L = PEt_s at 115 °C$		Ph at 215 °C	$\mathbf{L} = \mathbf{PEtF}$	Ph2 at 230 °C	$L = PPh_3 at 270 \ ^\circ C$	
Assignment •	m/e	<u> </u>	mle		mle		mle	\overline{I}
[<i>M</i>]+ •	548	100.0	644	100.0	740	100.0	834	100.0
$[M - C_0H_i]^+$	- 557	31.8	654 617	13.0	-749	2 9	845	
[0 <u>8</u> e]	- 529	01.0	- 623	10.0	-718	2.0		
$[M - Cl \text{ or } HCl]^+$	514	5.2	609	4.5	705	1.9	802	7.4
	-520	5.0	-614	14.4	-710	1	-807	~~ -
$[m - Pr_2O]^{\circ}$	403 	5.9	- 587	14.4	655 	15.9	751	26.7
$[M - \mathrm{PClF}_1]^+$	444	43.3	542	16.8	635	11.3	733	23.6
	-451		- 547		-643		- 739	
$[PtL_2(-nH)]^+$	425	16.7	518	7.0	617	6.5	715	86.4
$[M - PC]F_{2} - C_{2}H_{2}]^{+}$		5 2	530 519	91	- 626	19	- 723	
	-422	0.2	-512	2.1	- 614	1.2		
$[PtL_2 - C_2H_4]^+$	395	24.4	490	7.9	588	6.2		
	-405	0 5	-501		- 598	• •		
[PtL]+	309	8.5	356	15.5	405	6.0	451	35.1
$[PtL - C_{a}H_{a}]^{+}$	279	5.7	$-300 \\ 325$	18.6	-412	48	400	
	-288		- 339		- 383			
[L•PF ₂ O]+	203	≥100	252	≥100	299	≥100	347	58.4
[IC]]+	205	11.6	- 254	950	- 303	0.0	348	10.0
	156	11.0	- 195	20.9	249 	9.8	297	18.8
[L]+	118	≥100	166	≥100	212	≫100	262	≫100
	-119		-167	-	-216	-	-264	-

TABLE 3

^a Further fragments observed include: $[M - L - Cl \text{ or } HCl]^+ (L = PEt_3, PEtPh_2, and PPh_3)$; $[M - PF_2O - HCl - 2C_2H_4]^+$, $[M - 190]^+ (L = PEt_3, PEt_2Ph, and PEtPh_2)$; $[M - 161]^+ (all L)$; $[PtL_{1,2} - nC_2H_4 \text{ or } -mC_6H_6]^+$; $[L - nC_2H_4 - mC_6H_6]^+$. ^b Relative to $I [M]^+ = 100$. ^c Parent peak; isotopic intensity pattern in good agreement with theory.

TABLE 4

Mass-spectral data for complex (III; $L = PEt_3$, $R = Bu^n$) and mixtures of (II) and (III; $R = Bu^n$) ^a

(11)	I; $L = PEI$	$f_{\mathbf{g}}, \mathbf{K} = \mathbf{B}\mathbf{u}^{\mathbf{n}}$:	m/e for (11)-(1	11; $\mathbf{R} = \mathbf{B}\mathbf{u}^{\mathbf{n}}$)	
Assignment ^b	 m/e	<i>I</i> °	$L = PEt_{s}$	PEt _g Ph	PEtPh ₂	PPh ₃
$[M']^{+ d}$	512 - 524	4.1	514 - 522	610-619	е	807-813
$[M]^{+d}$			454469	554566	650 - 662	e
$[M - C_2 H_4]^+$			438-442	574580	622632	
$[M - Cl \text{ or } HCl]^+$			421-434	520 - 528		714-721
[PdClL ₂]+	373	6.6	374 383	469-479	567578	659 - 672
$ \begin{bmatrix} M' - \operatorname{PClF}(\operatorname{OBu}^n) \end{bmatrix}^+ \\ \begin{bmatrix} M - \operatorname{PClF}_2 \end{bmatrix}^+ $	356-368	37.0	354	450460	548556	641-652
$[PdL_2]^+$	337348	100.0	337348	434—444	530 - 542	
$[PdL_{2} - C_{2}H_{4}]^{+}$	307318	23.7	307319	404-415	500 - 509	
[PdL]+	220 - 235	74.0	220 - 235	269 - 283	316	ca. 369
$[PdL - C_2H_4]^+$	192 - 207	49.0	191-201	240 - 250	289 - 296	
[Pd]+	102-110	ca. 5	101110	101110	102-107	
[L·PFO(OBu ⁿ)]+	257 - 259	25.9	257 - 261	305 - 306	352 - 357	ca. 401
$[L \cdot PF_2O]^+$			203 - 204	251 - 252	298 - 300	ca. 353
[L ·Cl]+	153 - 156	59.3	153 - 156	201 - 204	248 - 252	
[L]+	117—120	≥100	117120	165 - 168	213 - 217	261 - 263

^a Even in pure complexes (II), fragments assigned to the apparently more volatile complexes (III; $R = Bu^n$) were observed; therefore no relative intensities were obtained and only m/e values are given. ^b Further fragments are of the same type as in Table 3, footnote a. • Relative to $I[M]^+ = 100$. • The parent ions for complexes (II) and (III) are $[M]^+$ and $[M']^+$ respectively; characteristic for complexes (III) are the fragments $[M']^+$ and $[L^*PFO(OBu^n)]^+$. • Limited volatility, no parent ion observed.

(II; $L = PEt_2Ph$).³³ The bond lengths Pt-Cl [2.366(6)] and Pt-L [2.322(6) and 2.338(6) Å] are of the same magnitude as in comparable complexes trans-[PtL₂XY] (L = tertiary phosphine; X = Cl or Br; Y = H, Cl,Br, EtNC, CO, or SiR₃; see refs. 33-36 and refs. therein). The shorter Pt-PF₂O bond length [2.199(6) Å] can be accounted for as a result of π back bonding from platinum d to phosphorus 3d orbitals.³³ The P-F bond lengths

³³ J. Grosse, R. Schmutzler, and W. S. Sheldrick, Acta Cryst., 1974, B80, 1623.

³⁴ G. G. Mather, A. Pidcock, and G. J. N. Rapsey, J.C.S. Dalton, 1973, 2095.

³⁶ J. S. Field and P. H. Wheatley, J.C.S. Dalton, 1974, 702.

[1.530(15) and 1.523(15) Å] are virtually the same as in PF₃O [1.524(2) Å], the P-O distance [1.471(17) Å] being slightly larger than in PF_3O [1.346(2) Å].³⁷ There is also good agreement with P-O bond lengths in related systems, $[Fe(CO)_2(\eta-C_5H_5){P(CF_3)_2O}]$ [1.478(4)]^{7c} and $[HgCl{PO(OEt)_2}]$ [1.42(07) Å].³⁸ There is only a slight distortion from the 90° bond angles of an ideal square-planar structure.

³⁶ B. Jovanovic, L. Manojlovic-Muir, and K. W. Muir, J.C.S. Dalton, 1974, 195. ³⁷ T. Moritani, K. Kuchitsu, and Y. Morino, Inorg. Chem.,

1971, 10, 344.

³⁸ J. Bennett, A. Pidcock, C. R. Waterhouse, P. Coggon, and A. T. McPhail, J. Chem. Soc. (A), 1970, 2094.

Typical fragment ions, observed in the mass spectra of trans-[MClL₂(PF₂O)] and assigned by comparison with data for other platinum and palladium complexes,³⁹⁻⁴¹ included $[M]^+$ (parent peak), $[M - C_2H_4]^+$, [M - Cl orHCl]⁺, $[M - PF_2O]^+$, $[M - PClF_2]^+$, $[M - Cl - PF_2O$ $(-n H)]^+$, $[M - Cl - PF_2O - L(-n H)]^+$, $[L \cdot PF_2O]^+$, $[L \cdot Cl]^+$, and $[L]^+$ (Tables 3 and 4).

The monofluorophosphonato-complexes (III), which could not be isolated from the reaction mixtures, were characterized mainly by ¹⁹F and ³¹P n.m.r. spectroscopy (Table 1) and mass spectroscopy (Table 4). The *trans* configuration is assigned on the same grounds as discussed above. The complex *trans*-[PdCl(PEt₃)₂{PFO-(OBuⁿ)}], (III; L = PEt₃, R = Buⁿ), was synthesized

reactions proceeded with ease at room temperature in toluene or benzene as solvent. It is worth noting that

$$[\{MCl_2 (PEt_3)\}_2] + 2 PF_2(OR) \rightarrow 2 cis - [MCl_2(PEt_3)\{PF_2(OR)\}] (16)$$

$$(IV) \quad M = Pt, R = Bu^n \text{ or } Ph$$

$$(V) \quad M = Pd, R = Bu^n \text{ or } Ph$$

with pure PF_3 no reaction was observed,^{1,43} while $P(OPh)_3$ gave the same type of product.²¹ On reaction of excess of $PF_2(OR)$ with $[\{MCl_2(PEt_3)\}_2]$, defined products could not be isolated, probably due to competition of reaction types (a)—(c). The only exception was observed in reaction (17), in which a monofluorophosphine complex, (VI), was formed, starting from a

TABLE 5

Fluorine-19 and ³¹P n.m.r. and i.r. data (cm⁻¹) of the complexes cis-[PtCl₂(P'Et₃){PF₂(OR)}] (IV), cis-[PdCl₂-(P'Et₃){PF₂(OR)}] (V), and [PdCl₂(PEt₃){PF(OBuⁿ)}₂] (VI)

		$\delta_{\mathbf{F}}$	1J _{Р-F} 1	JPt-F	³ <i>J</i> _{Р'- F}	δ _P , «	δp ª	$^2J_{\mathbf{P'}-\mathbf{P}}$	ν (P–O) or			
	R	p.p.m.		Hz		p.p.	.m.	Hz	$\nu(C-O) b$	$\nu(P-F)$	ν(M−P)	ν(MCl)
(IV) °	Bu ⁿ	40.2	1 183	704	d	-19.8	-72.3	21	1 030vs	906 (sh), 885vs 880vs	436w, 406w, 396 (sh)	330m, 305 (sh), 301m
(IV) •	\mathbf{Ph}	38.7	1 209	717	d	-20.8	- 69.9	22	1 037s, 698vs	880vs, 910vs	435w, 381w	334m, 299m
(V) 'o,f	Bu ⁿ	36.7	1 270		d	(-47.7)		d	1 040 1 010 ¢	890860 •	427w, 400m, 380m	335m, 303m
(V) •	Ph	35.0	1 277		9	-47.3	-93.7	20	1 038s, 1 008m 965vs	910m, 870vs	438m, 429 (sh)	336m, 301s
(VI) °		38.8	1 205		14	-41.6	-99.0	d	1 050955 •	893w, 843vs	430w, 415 (sh), 395 (sh)	325m, 298m, 280 (sh)

• The constants ${}^{1}J_{Pt-P}$ and ${}^{1}J_{Pt-P'}$ were not observed due to limited solubility. • Not separately assigned; in some cases, there were overlapping phosphine or phenyl bands. • In C₆H₆. • No coupling observed. • In CH₂Cl₂. / Unstable in solution (see Results and Discussion section). • Extremely broad intense band with no fine structure.

via a different route, and could be isolated in a pure state: the complex cis-[PdCl₂(PEt₃)₂{PF(OBuⁿ)}], (VI) (preparation, see below), was treated with PEt₃, a Michaelis-Arbuzov reaction being induced through the presence of a neutral donor molecule [equation (14)].

$$cis-[PdCl_2(PEt_3){PF(OBu^n)_2}] + PEt_3 \longrightarrow trans-[PdCl(PEt_3)_2{PFO(OBu^n)}] + Bu^nCl \quad (14)$$

This reaction is closely related to one 42 dating back to 1896 [equation (15)]. The mass spectrum of (III; L = PEt₃, R = Buⁿ) exhibited most of the fragments that

$$[PdCl_{2}{P(OEt)_{3}}_{2}] \xrightarrow[-E^{tCl}]{-E^{tCl}} \rightarrow [PdCl(NH_{3}){P(OEt)_{3}}{PO(OEt)_{2}}] (15)$$

were observed for the PF_2O complexes (Table 4); the similarity of the n.m.r. (Table 1) and mass-spectral data of this complex to those observed for the other complexes (III), which could not be isolated in a pure state, provides further evidence for the nature of the latter.

Reactions of $PF_2(OR)$ with $[\{MCl_2(PEt_3)\}_2]$ ($R = C_3H_5$, Buⁿ, or Ph; M = Pt or Pd).—On reaction of $PF_2(OR)$ ($R = Bu^n$ or Ph) with $[\{MCl_2(PEt_3)\}_2]$ (M = Pt or Pd) in a molar ratio of 2:1, the chloro-bridge was cleaved and mononuclear $PF_2(OR)$ complexes *cis*- $[MCl_2(PEt_3)-\{PF_2(OR)\}]$ were obtained [reaction type (c)]. The ³⁹ P. Haake and S. H. Mastin, J. Amer. Chem. Soc., 1971, 93,

6823. ⁴⁰ F. Glockling, T. M. McBride, and R. J. I. Polloch, *Inorg. Chim. Acta*, 1974, **8**, 81. difluorophosphine, as a result of a combination of reaction types (b) and (c).

$$[\{PdCl_2(PEt_3)\}_2] + 4 PF_2(OBu^n) \longrightarrow \\ 2cis [PdCl_2(PEt_3)\{PF(OBu^n)_2\}] + 2PF_3 \quad (17)$$

Complexes (IV) and (V) have a cis configuration, as demonstrated by i.r. [two separate M-Cl stretching frequencies, v(M-Cl), being observed] and n.m.r. spectroscopy (Table 5): the magnitudes of the P-P' coupling constants $({}^{2}J_{P-P'}$ ca. 20 Hz) ${}^{21,24,29-31}$ and the Pt-P coupling constant $[{}^{2}J_{Pt-P}$ 6 075 Hz, (IV; R = Ph)] 24,44 are typical for cis complexes. Complex (V; R = Buⁿ) is unstable in solution and decomposes slowly in benzene, and more rapidly in dichloromethane, to give the binuclear diffuorophosphonato-complex, (VIII) [equation (18)]. Formation of butyl chloride was confirmed by 2 cis-[PdCl₂(PEt₂){PF₂(OBuⁿ)}] \longrightarrow

$$\frac{[{\rm PdCl}_{2}({\rm PE}_{3})({\rm PF}_{2}{\rm O})]}{[{\rm PdCl}({\rm PE}_{3})({\rm PF}_{2}{\rm O})]} + 2 \operatorname{Bu^{n}Cl} (18)$$

¹H n.m.r. spectroscopy. Complex (VIII), and its platinum analogue, (VII), were obtained directly, on reaction of $[{MCl_2(PEt_3)}_2]$ (M = Pt or Pd) with allyloxy-difluorophosphine [reaction types (a) and (c)].

$$[\{MCl_2(PEt_3)\}_2] + 2 PF_2(OC_3H_5) \longrightarrow [\{MCl(PEt_3)(PF_2O)\}_2] + 2 C_3H_5Cl \quad (19)$$

⁴¹ K. L. Klassen and N. V. Duffy, J. Inorg. Nuclear Chem., 1973, **35**, 2602.

⁴² E. Finck, Compt. rend., 1896, C123, 603.

⁴³ B. T. Heaton, Ph. D. Thesis, University of Sussex, 1967.
⁴⁴ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.

A large number of isomeric structures are possible for complexes $[{MLXY}_2]$ (L = neutral ligand, e.g. tertiary phosphine or arsine; X and Y = anionic ligand (potentially bridging); M = Pt or Pd).^{27,45,46} From a comparison of ¹⁹F chemical shifts, $\delta_{\rm F}$, and P-O stretching frequencies, v(P=O) (Table 6), with the values found for trans-[MClL₂(PF₂O)], complexes (VII) and (VIII) are

at room temperature, broad resonances were observed, while, at low temperatures, signals corresponding to three different kinds of PF2O and PEt3 groups were observed, two of which had the same intensity. In the i.r. spectra, large splittings were found for both P-O and P-F stretching frequencies of (VII) and (VIII) in the solid state. The only reasonable interpretation of

TABLE 6

Fluorine-19 and ³¹P n.m.r.^a and i.r. data (cm⁻¹) for the binuclear complexes [{PtCl(PEt₃)(PF₂O)}₂] (VII) and $[{PdCl(PEt_3)(PF_2O)}_2]$ (VIII)

	$\frac{\delta_F}{p.p.m.}$	<u>¹Ј</u> р-ғ	$\frac{{}^{2}J_{\mathrm{Pt}-\mathrm{F}}{}^{3}J_{\mathrm{P'}-\mathrm{F}}}{\mathrm{Hz}}$	$\frac{\delta_P}{p.p.m.}$	$\frac{{}^{1}J_{\text{Pt-P}}}{\text{Hz}}$	$\frac{\delta_{\mathbf{P}'}}{\mathrm{p.p.m.}}$	$\frac{{}^{1}J_{\rm Pt-P'}}{\rm Hz}$	² <i>J</i> _{P'-P}	ν(P= O)	ν(P-F) ^δ	ν(M-P)	ν (M–Cl) ^b
(VII) °,d	23.95	1 190	960 10.3	-93.6 °	$6\ 436$	-23.0	3 571.7	26.9	1 267 (sh),	841m,	446m,	330w,
	18.61	$1\ 156$	999 ca. 0	-1.1 e	6 445	-22.9	3779.5	39	1 254m,	820vs,	420w,	310m,
									1 139vs	770s,	402w	303 (sh),
										750m,		270w
										738m		
(VIII)	14.0 e,f	1 290	12	46.1		-49.5		15	1 275 (sh),	850	442m,	336m.
	14.0 h, i	1 292	7	- 46.8		-49.5 j	1	15	1 250vs.	810 9	411m.	310s.
	11.7 d,h	1263	13	47.7 °		-50.9 ^j	i	24	1 240s.	770	400m.	270m
	$15.8^{d,h}$	$1\ 275$	13	-100.2 e		-52.3	i	28	1 170 (sh)	730 0	387 (sh)	
									1 150vs			

^a Obtained by Dr. Murray, University of Bristol; ³¹P{¹H}, solvent CH₂Cl₂. ^b No definite assignment; other bands overlapping.¹² ^c At 20 °C. ^d Sets of signals applying to isomer (A) (see text). ^e It is not quite clear why the differences in δ_P should be so large. ^f Signals applying to an average position due to fast exchange at room temperature [or to isomer (B) ?]. ^g Very broad intense band. ^h Low-temperature spectra: ¹⁹F, -60; ³¹P, -90 °C. ^f Signals applying to isomer (B). ^j Uncertain as to which signal corresponds to which kind of PEt,

considered to contain terminal diffuorophosphonate groups. Chatt and Heaton 27 observed distinct v(PO)values for POR₂ complexes of platinum containing terminal [v(P=O) at 1 103 cm⁻¹] or bridging P-O groups [v(P-O)] at 960-990 cm⁻¹ in a M-P-O-M bridged system]. Fluorine atoms of (VII) coupled with only one platinum nucleus each; there was no indication of secondorder effects arising from possible phosphonate bridging structures. Thus, complexes (VII) and (VIII) are considered to contain chlorine bridges, which leaves isomers (A) and (B) for discussion.

In the ¹⁹F and ³¹P n.m.r. spectra of the platinum complex, (VII), two separate PF₂O and PEt₃ resonances of equal intensity were observed, arising from two sets of chemically non-equivalent PF₂O and PEt₃ groups. The n.m.r. spectra of (VIII) were temperature dependent:

 ded. C. A. McAuliffe, Macmillan, London, 1973, p. 35.
 ⁴⁶ J. G. Verkade and K. J. Coskran in 'Organic Phosphorus Compounds,' vol. 2, eds. G. M. Kosolapoff and L. Maier, Wiley-Interscience, New York, 1973, p. 1.

these results is that, in the solid state, isomer (A) applies for both complexes. The same should also be true for (VII) in solution, while for (VIII) a rapid equilibrium between isomers (A) and (B) must be assumed, which is slowed down at low temperatures. These arguments only hold on the assumption of non-symmetrical M-Cl bridges, as indicated above, which, in the case of isomer (A), renders the PF_2O and PEt_3 ligands non-equivalent. For a number of complexes $[{MLX_2}_2]$ of trans-isomer (B), significantly different M-X bridging bond lengths have been observed in X-ray crystal-structure investigations $(L = AsMe_3, PPr_3, or SMe_2; M = Pt or Pd; X = Cl or$ Br).⁴⁷⁻⁵⁰ The same was true for the thio-bridged com-plex $[{PtBr_2(SEt_2)}_2]$.^{47,49} An X-ray crystal-structure investigation is in progress to confirm the proposed structure of complex (VII), since no structural data are available for complexes of type (A).

¹H n.m.r. spectra were also obtained for all the complexes described in this paper, and are consistent with the proposed structures. Since the amount of information to be gained from such data is limited, they are not included in this paper.

EXPERIMENTAL

Most of the ¹H, ¹⁹F, and ³¹P n.m.r. spectra were measured on Varian HA 60 IL and Jeol C 60 HL spectrometers; some were also obtained on a Jeol PFT 100 instrument (courtesy of Dr. Murray, University of Bristol). Tetramethylsilane (¹H) and trichlorofluoromethane (¹⁹F) were used as internal

⁴⁷ P. L. Goggin, R. J. Goodfellow, D. L. Sales, J. Stokes, and P. Woodward, Chem. Comm., 1968, 31.

 ⁴⁸ S. F. Watkins, J. Chem. Soc. (A), 1970, 168.
 ⁴⁹ D. L. Sales, J. Stokes, and P. Woodward, J. Chem. Soc. (A), 1968, 1852

50 M. Black, R. H. B. Mais, and P. G. Owston, Acta Cryst., 1969, B25, 1760.

⁴⁵ K. K. Chow, W. Levason, and C. A. McAuliffe in ' Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands,

TABLE 7 Preparative, melting-point, and analytical data for complexes (I), (II), and (III; $L = PEt_3$, $R = Bu^n$)

		Molar M p $Analysis b(\%)$									
	L	PF ₂ (OR)	ratio ª	$(\theta_{\rm e}/^{\circ}{\rm C})$	C	Н	P	F	CI	Formula	M
(I) °	PEt ₃	C ₃ H ₅ , Bu ⁿ	1:45	109	26.3	5.2	17.1	7.1	6.4	$\mathrm{C_{12}H_{30}ClF_2OP_3Pt}$	551.5
(I) ^d	$\mathrm{PEt}_{2}\mathrm{Ph}$	C ₃ H ₅ , Bu ⁿ	1:5	121	(26.1) 37.2 (37.1)	(0.4) 4.8 (4.7)	(10.9) 14.4 (14.3)	(0.9) 5.7 (5.9)	(0.4)	$\mathrm{C_{20}H_{30}ClF_2OP_3Pt}$	648.0
(1) <i>d</i>	PEtPh_2	C_3H_5	1:5	181	45.2	4.1	12.6	5.0		$\mathrm{C}_{28}\mathrm{H}_{30}\mathrm{ClF}_{2}\mathrm{OP}_{3}\mathrm{Pt}$	743.6
(1)	PPh_{3}	Bu ^{n d-f}	1:7	267	(40.2) 51.6 (51.4)	(4.0) 3.8 (3.6)	(12.5) 11.0 (11.1)	(3.1) 4.1 (4.2)		$\mathrm{C_{36}H_{30}ClF_2OP_3Pt}$	840.2
		Pr ^{n d} , f, g	1:2		()	()	()	()			
(11) ^d	PEt ₃	C₃H₅, Bu¹	1:56	92	30.7	6.7	20.1	8.7		$C_{12}H_{30}ClF_2OP_3Pd$	462.9
(II) ^{<i>d</i>, <i>h</i>}	$\mathrm{PEt}_{2}\mathrm{Ph}$	C ₃ H ₅ , Bu ⁿ	1:5	145 (decomp.)	(31.1) 43.1 (43.0)	(6.5) 5.4 (5.4)	(20.1) 16.3 (16.6)	(8.2) 6.9 (6.8)		$\mathrm{C_{20}H_{30}ClF_2OP_3Pd}$	559.3
		Pr ⁿ d,g	1:2	· · ·	. ,	. ,	· ·	. ,			
(II) d,h	$PEtPh_2$	C ₃ H ₅	1:6	164	53.1 (51.3)	4.9 (4.6)	13.9 (14.2)	5.3 (5.8)		$C_{28}H_{30}ClF_2OP_3Pd$	654.9
		Pr ⁿ , Bu ⁿ d, y	1:2		()	()	(/	· · /			
(II) h,i	PPh_3	Bu ⁿ f	1:6	>145	50.0	4.1	10.2		16.3	$^{\circ}\mathrm{C_{36.5}H_{33}Cl_{4}F_{2}OP_{3}Pd'}$	'878.3'
$(III; \mathbf{R} = \mathbf{B}\mathbf{u}^n)^{n}$	i, j PEt ₃		1:4	(decomp.) 32	(51.9) 40.0 (36.9)	(3.7) 7.5 (7.6)	(10.5) 17.8 (17.9)	3.8 (3.7)	$(16.0) \\ 7.0 \\ (6.8)$	$\mathrm{C_{16}H_{39}ClFO_2P_3Pd}$	520.8

^a Of starting complex to $PF_2(OR)$ employed in the reaction; all reactions were at room temperature in benzene as solvent, unless otherwise stated. ^b Calculated values are given in parentheses. ^e Preparation described in detail in the Experimental section. ^d Prepared applying the same reaction conditions as for $[1; L = PEt_3]$. ^e Reaction temperature 70 °C. ^f Alloxydifluorophosphine reacted to give $[PPh_3(C_3H_5)]_2[M(PF_2O)_4]$ (M = Pt or Pd) (see text, ref. 8, and the following paper) ^e Using dichloromethane as solvent. ^h Formation of by-products (III) which could not be isolated; PF_2O complexes were obtained on extraction of the mixture with methylcyclohexane and recrystallization from that solvent. Formation of the by-products was not observed in absence of a large excess of $PF_2(OR)$. ^f Reaction at 70 °C in acetonitrile; the complex crystallized as a solvent adduct from dichloromethane, with 1.5 mol solvent per mol of complex (see text). ^j Prepared from complex (VI) by adding PEt_3 at room temperature in benzene solution.

TABLE 8 Preparative, a melting-point, and analytical data for complexes (IV)---(VIII)

				AI		0)			
	R	M.p. $(\theta_c/^{\circ}C)$	С	Н	P	F	Cl	Formula	M
(IV)	Bun	52	22.6	4.5	11.6	(7.9)	13.3	$\mathrm{C_{10}H_{24}Cl_2F_2OP_2Pt}$	526.3
(IV)	Ph	80	(22.8) 26.6	(4.7) 3.7	11.3	(1.3)	(13.5) 12.9	$\mathrm{C_{12}H_{20}Cl_2F_2OP_2Pt}$	546.2
(V)	Bu ⁿ	>100 (decom	(24.4) 1p.) c	(3.7) c	(11.3) c	с	(13.0) c	$C_{10}H_{24}Cl_{2}F_{2}OP_{2}Pd$	437.6
(V)	Ph	83	31.5 (31.5)	4.4 (4.4)	$13.5 \\ (13.5)$		15.3 (15.5)	$\mathrm{C_{12}H_{20}Cl_2F_2OP_2Pd}$	457.3
(VI) <i>d</i>		25	33.9 (40 0)	6.7 (6.7)	12.6		13.7	$\mathrm{C_{14}H_{33}Cl_2FO_2P_2Pd}$	494.4
(VII) °		192	16.7	3.4	14.4	8.9	8.3	$\mathrm{C_{12}H_{30}Cl_2F_4O_2P_4Pt_2}$	867.3
(VIII) ^f		153	(16.6) 20.7 (20.9)	$(3.5) \\ 4.2 \\ (4.4)$	$(14.3) \\ 17.7 \\ (18.0)$	(8.8) 10.8 (11.0)	(8.2) 10.3 (10.3)	$\mathrm{C_{12}H_{30}Cl_2F_4O_2P_4Pd_2}$	689.2

^a All reactions of $[{MCl_2(PEt_3)}_2]$ with $PF_2(OR)$ occurred at 20 °C in benzene or toluene solution as described for (V; R = Ph) in the text, using exact stoicheiometric amounts of reactants (starting complex: $ROPF_2 = 1:2$). ^b Calculated values are given in parentheses. ^e No data obtained due to instability (see Results and Discussion section). ^d Obtained by applying a 1:6 excess of $PF_2(OBu^n)$; the complex could not be recrystallized, but was obtained in the solid state by pumping off the solvent *in vacuo*. ^e Recrystallized from dichloromethane. ^f The complex could not be recrystallized, but precipitated in a pure state from the reaction mixture (solvent toluene).

references, 85% H₃PO₄, contained in sealed capillaries, as external reference. Chemical shifts to low field of the reference signals are negative, those to high field are positive. The ¹⁹F and ³¹P n.m.r. parameters are accurate to *ca*. \pm 7 Hz, unless otherwise stated. I.r. spectra were measured on Nujol mulls between KBr or CsI plates, using a Beckmann IR 20 A spectrometer, with an accuracy of \pm 5 cm⁻¹. Mass spectra were obtained on Varian MAT CH 4 and A.E.I. MS 9 spectrometers at 70 eV.* Elemental analyses were by J. Beller, Göttingen, Germany.

* 1 eV \approx 1.60 \times 10⁻¹⁹ J.

⁵¹ K. Sasse in Houben-Weyl, 'Methoden der Organischen Chemie,' Band 12/1, ed. E. Müller, Georg-Thieme-Verlag, Stuttgart, 1963, p. 33. Preparations.—Ligands. The compounds PEt_3 ,⁵¹ PEt_2 -Ph,⁵² $PEtPh_2$,⁵² and $PF_2(OR)$ ($R = C_3H_5$, Pr^n , Bu^n , or Ph) ⁵³ were prepared as described in the literature.

Complexes. Platinum and palladium precursors were prepared by standard literature methods (see ref. 54 and refs. therein). Solvents and starting materials were dried and purified according to standard literature procedures. The usual precautions regarding the exclusion of air and/or moisture were taken in the reaction of $PF_2(OR)$ with platinum and palladium complexes. All reactions were made in

⁵² L. Horner, H. Hoffmann, and H. G. Wippel, *Chem. Zentr.*, 1959, 12037; H. Hoffmann, DAS 1044813, Farbwerke Hoechst, 1957.

53 R. Schmutzler, Chem. Ber., 1963, 96, 2435.

54 F. R. Hartley, Organometallic Chem. Rev., 1970, A6, 119.

Schlenk tubes in an atmosphere of dry nitrogen or argon. The following preparations are typical.

trans-Chloro(difluorophosphonato)bis(triethylphosphine)platinum(II), trans-[PtCl(PEt₃)₂(PF₂O)] (I; $L = PEt_3$). The complex [PtCl₂(PEt₃)₂] (0.6 g, 1.2 mmol) was suspended in benzene (4 cm³), and PF₂(OC₃H₅) (0.5 cm³, ca. 4—5 mmol) was added from a syringe, with magnetic stirring, the starting complex being dissolved almost immediately. The Schlenk tube was sealed and, after stirring overnight, all volatile products were removed *in vacuo*. The colourless residue was dissolved in toluene (2 cm³); and a small amount of a dark residue was removed by centrifugation. After adding a few drops of methylcyclohexane to the then clear solution, complex (I; $L = PEt_3$) crystallized in the cold as colourless needles. The liquid was removed with a syringe, and the *product* washed with a little pentane and dried *in vacuo*.

cis-Dichloro(difluorophenoxyphosphine)(triethylphosphine)palladium(II), cis-[PdCl₂(PEt₃){PF₂(OPh)}] (V; R = Ph). To a suspension of [{PdCl₂(PEt₃)}₂] (0.5 g, 0.8 mmol) in toluene (3 cm³), PF₂(OPh) (0.3 g, 1.7 mmol) was added. With magnetic stirring, the starting complex was dissolved within 5 min. After 15 min a small amount of insoluble product was removed by centrifugation. On addition of a few drops of methylcyclohexane to the clear yellow solution the *product* crystallized as yellow needles in the cold. The precipitate was collected as above.

Di-µ-chloro-bis[(difluorophosphonato)(triethylphosphine)-

platinum(II)], [{PtCl(PEt₃)(PF₂O)}₂] (VII). Allyloxydifluorophosphine (0.23 g, 1.8 mmol) was added to a suspension of [{PtCl₂(PEt₃)}₂] (0.69 g, 0.9 mmol) in benzene (3 cm³). After 20 min of magnetic stirring, a white solid precipitated from the clear solution. The precipitate was collected and recrystallized twice from dichloromethane. Complex (VII) was obtained as colourless prisms.

All other reactions of $[MCl_2L_2]$ and $[\{MCl_2L_2]$ with $PF_2(OR)$ were made in a similar manner. Preparative details, melting points, and analytical data for the products are summarized in Tables 7 and 8.

We thank Dr. R. Schwarz, Degussa A.G., Wolfgang bei Hanau, Germany for generous supplies of platinum and palladium compounds, and Fonds der Chemischen Industrie, Frankfurt am Main, Germany, and Deutsche Forschungsgemeinschaft for support (to J. G.).

[5/631 Received, 4th April, 1975]