Rhodium Phosphinoether Complexes. Part I. Crystal and Molecular Structures of trans-[1,5-Bis(diphenylphosphino)-3-oxapentane-O,P, $\left.P^{\prime}\right]$]carbonyIrhodium(1) Hexafluorophosphate and trans-Aqua[1,11-bis-(diphenylphosphino)-3,6,9-trioxaundecane-P, $\left.P^{\prime}\right]$ carbonylrhodium(1) Hexafluorophosphate

By Nathaniel W. Alcock,* John M. Brown, and John C. Jeffery, Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL

Abstract

The crystal and molecular structures of the title compounds (4) and (5) have been determined. Crystals of both are triclinic, space group PT; data for (4): $a=10.907(3), b=11.047(2), c=13.405(3) A, \alpha=94.19$ (2). $\beta=$ 82.30(2). $\gamma=107.98(2)^{\circ} . Z=2.2389$ reflections, R 0.050: data for (5): $a=9.837(2), b=11.416(2), c=$ 17.554(3) A , $\alpha=94.08(2), \quad \beta=79.64(1), \gamma=111.98(1)^{\circ}, Z=2,3106$ reflections, $R \quad 0.057$. Data were measured by diffractometer, and the structures solved by the heavy-atom method. In both cations, the phosphorus atoms are co-ordinated trans [Rh-P, $2.300 \AA$ in (4), $2.338 \AA$ in (5)] with the carbonyl group (Rh-C. $1.77 \AA$) trans to an oxygen atom. In (4) this oxygen atom is the central atom of the phosphinoether ($\mathrm{Rh}-\mathrm{O}$ $2.112 \AA$) but in (5) it is derived from a water molecule ($\mathrm{Rh}-\mathrm{O} 2.107 \AA$) which is contained within the fourteenmembered ring. co-ordinated to the rhodium atom, and hydrogen bonded to two of the ring oxygen atoms.

The phosphinoethers (1)-(3) derived by treatment of the corresponding chloroether with lithium diphenylphosphide are potentially both oxygen- and phosphorusdonor ligands. Sacconi et al. ${ }^{1}$ have previously reported X-ray studies on the complexes $\left[\mathrm{LNiCl}_{2}\right]$ and $\left[\mathrm{LNiI}_{2}\right]$ [where $\mathrm{L}=(1)$ and (2) respectively] in which the ligand functions only as a bidentate phosphorus donor, with oxygen unbonded, resembling ligand behaviour in the complexes $\left[\mathrm{MX}_{2}\left\{\mathrm{Ph}_{2} \mathrm{P} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{PPh}_{2}\right\}\right]$ (where $\mathrm{M}=\mathrm{Co}$ or $\mathrm{Ni}, n=4$ or $5 ; \mathrm{M}=\mathrm{Pr}, n=9$ or 10$)$, $[\mathrm{ClIr}\{(\mathrm{CO})-$ $\left.\left\{\mathrm{Bu}_{2}{ }_{2} \mathrm{P} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{PBu}_{2}{ }_{2}\right\}\right]$ (where $n=9$ or 10). ${ }^{2}$ We now report the structures of the cations (4) and (5), derived from (1) and (3) respectively, which show oxygen

$$
\begin{array}{ll}
\mathrm{PPh}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot\left[\mathrm{OCH}_{2} \cdot \mathrm{CH}_{2}\right]_{n} \cdot \mathrm{PPh}_{2} \quad & \text { (1) } n=1 \\
& \text { (2) } n=2 \\
& \text { (3) } n=3
\end{array}
$$

donation either directly from the ligand chain, or by coordination of a water molecule hydrogen-bonded to oxygen atoms in the chain. A preliminary report has been published. ${ }^{3}$

EXPERIMENTAL

(4) and (5) were prepared as in ref. 4, and rapidly crystallised by cooling their hot $\left(50^{\circ} \mathrm{C}\right)$ saturated solutions in
${ }^{1}$ P. T. Greene and L. Sacconi, J. Chem. Soc. (A), 1970, 866; P. Dapporto and L. Sacconi, J. Amer. Chem. Soc., 1970, 92, 4133; J. Chem. Soc. (A), 1971, 1914.
methanol to $20^{\circ} \mathrm{C}$ over 5 min . The air-stable crystals separated as well formed, transparent, yellow prisms.

Crystal Data.-(a) $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Rh}$, (4), Triclinic, $M=$ 718, $a=10.907(3), b \stackrel{11.047(2), c=13.405(3) ~}{=}, \alpha=$ 94.19(2), $\beta=82.30(2), \gamma=107.98(2)^{\circ}, U=1521.7(6) \AA^{3}$, $D_{\mathrm{c}}=1.57, Z=2, D_{\mathrm{m}}=1.61$ (by flotation). Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=7.63 \mathrm{~cm}^{-1}$; range of transmission factors $0.89-0.96$.
(b) $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~F}_{8} \mathrm{P}_{3} \mathrm{Rh}, \quad$ (5), Triclinic, $\quad M=824, \quad a=$ $9.837(2), \quad b=11.416(2), \quad c=17.554(3) \quad \AA, \quad \alpha=94.08(2)$, $\beta=79.64(1), \quad \gamma=111.98(1)^{\circ}, \quad U=1798.3(6) \quad \AA^{3}, \quad D_{c}=$ 1.52, $Z=2$. Mo- K_{α} radiation, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=6.69 \mathrm{~cm}^{-1}$; range of transmission factors $0.96-0.97$.
Space group $P \overline{1}$ was assumed in each case, and confirmed by subsequent satisfactory refinement. Unit-cell constants and standard deviations were determined by least-squares fit to the reflecting positions of 15 reflections, by use of standard programs of a Syntex $P 2_{1}$ four-circle computercontrolled diffractometer. Data were collected on this instrument by use of $\mathrm{Mo}-K_{\alpha}$ radiation (graphite monochromator, $\theta-2 \theta$ scan mode) to 2θ max 50° for (4) and 55° for (5). A variable scan rate ($1-29^{\circ} \mathrm{min}^{-1}$) was used, depending upon a 2 s prescan; variable scan widths in 2θ were used in the ranges $\alpha_{1}-0.5$ to $\alpha_{2}+0.5(4)$, and $\alpha_{1}-0.7$ to $\alpha_{2}+0.7$ (5). Background counts (0.5 of scan time) were recorded on either side of the peak maximum. For both
${ }^{2}$ J. Gelsomini and L. Sacconi, Inorg. Chem., 1968, 7, 291; A. J. Pryde, B. L. Shaw, and B. Weeks, J.C.S. Chem. Comm., 1973, 947.
${ }^{3}$ N. W. Alcock, J. M. Brown, and J. C. Jeffery, J.C.S. Chem. Comm., 1974, 829.
${ }^{4}$ J. M. Brown and J. C. Jeffery, unpublished work.
compounds the intensities of 3 standard reflections measured every 150 reflections remained essentially constant throughout data collection. Lorentz and polarisation corrections were applied and the data for (4) was corrected for absorption, by the analytical method, ${ }^{s}$ with the program ABSCOR. Absorption corrections were not applied to (5) in view of the small range of calculated transmission coefficients for a sample of the data set. For (4) 2389 and for (5) 3106 reflections having $I / \sigma(I)>3.0$ were considered observed.

The rhodium atoms were readily located from threedimensional Patterson syntheses and the remaining nonhydrogen atoms were found by standard Fourier methods.

Table 1
Atomic co-ordinates ($\times 10^{4}$) for (4), with standard

deviations in parentheses			
Atom	X	Y	Z
$\mathrm{Rh}(1)$	11140 (1)	4 533(1)	$2089(1)$
$\mathrm{P}(1)$	$13059(3)$	${ }_{6} 181(3)$	$2004(3)$
$\mathrm{P}(2)$	9 523(3)	2 642(3)	2 345(2)
$\mathrm{P}(3)$	2 210(3)	2 285(4)	6 478(3)
F(1)	1 210(9)	2 984(9)	6 307(9)
$\mathrm{F}(2)$	3 175(9)	3 124(10)	$5626(8)$
$\mathrm{F}(3)$	2 776(11)	3 330(11)	7271 (8)
F(4)	$1642(11)$	$1259(10)$	5661 (8)
$\mathrm{F}(5)$	1236 (10)	$1417(10)$	7268 (8)
F(6)	3 248(9)	1 642(10)	6 637(9)
$\mathrm{O}(1)$	12 099(8)	3750 (8)	$3018(7)$
$\mathrm{O}(2)$	9 597(10)	5 616(10)	986(8)
$\mathrm{C}(21)$	14 085(11)	$6527(11)$	803(10)
C(22)	15 393(13)	$6547(13)$	703(11)
C(23)	$16111(13)$	$6855(13)$	- 298(11)
$\mathrm{C}(24)$	$15561(15)$	7 104(14)	- $1054(12)$
C (25)	14 251(16)	7 064(16)	-933(12)
C (26)	13 528(15)	$6791(15)$	10(11)
$\mathrm{C}(11)$	13 061(10)	$7741(11)$	$2534(9)$
$\mathrm{C}(12)$	11 899(11)	7 900(12)	3 104(10)
C(13)	11 907(13)	$9087(14)$	3 483(11)
$\mathrm{C}(14)$	13 076(13)	$10117(13)$	3 404(11)
$\mathrm{C}(15)$	14 200(13)	9 939(13)	$2911(11)$
$\mathrm{C}(16)$	14 232(12)	8743 (12)	2 480(10)
C(31)	$8114(12)$	2 643(11)	3251 (9)
$\mathrm{C}(32)$	7551 (13)	$1665(14)$	3 912(10)
$\mathrm{C}(33)$	6 418(14)	$1736(16)$	4601 (11)
$\mathrm{C}(34)$	5 904(14)	$2722(15)$	4 519(11)
$\mathrm{C}(35)$	6 468(15)	3 669(15)	$3862(13)$
$\mathrm{C}(36)$	$7622(12)$	3 668(13)	3 214(10)
$\mathrm{C}(41)$	8 914(11)	1 704(11)	$1258(9)$
$\mathrm{C}(42)$	9 636(13)	1910 (13)	344(11)
$\mathrm{C}(43)$	9 210(14)	$1229(14)$	-531(11)
$\mathrm{C}(44)$	$7995(15)$	354(14)	-480(12)
$\mathrm{C}(45)$	7 220(16)	114(15)	431(12)
$\mathrm{C}(46)$	7 688(14)	775(13)	$1318(11)$
C(1)	$10432(12)$	$1762(12)$	2930 (10)
C(2)	11 292(13)	2685 (13)	$3642(11)$
$\mathrm{C}(3)$	$13052(13)$	4711 (13)	3 586(10)
C(4)	13 993(12)	5 573(13)	2 793(10)
C(5)	10 247(12)	$5195(12)$	$1385(10)$

Block-diagonal least-squares refinement gave final R values of 0.050 (4) and 0.057 (5), with anisotropic temperature factors for all atoms (excluding hydrogen). Both final difference-Fourier syntheses showed the phenyl hydrogen atoms, but these were not included. The remainder of the maps showed only random low electron density ($\leqslant 1$ e). There was evidence of slight disorder in the $\left[\mathrm{PF}_{6}\right]^{-}$anions. For (5) more serious disorder was noted in the $\mathrm{C}(4)-\mathrm{O}(2)-$ $C(5)$ outermost portion of the chelate chain, which is reflected in the high anisotropic temperature factors of these atoms. A study of the Fourier maps and accurate scale

[^0] issue.
models indicates that this portion of the chelate chain is librating between two slightly different conformations. The low residual electron density in the difference Fourier synthesis of this region indicates that the libration is satisfactorily approximated by the temperature factors. Anomalous dispersion by Rh and P was allowed for, and scattering factors were from ref. 6. Computation was with the programs of Dr. D. R. Russell on an I.C.L. 4130 computer.

Figures 1 and 2 show the cations of (4) and (5) respectively. Final atomic co-ordinates are in Tables 1 and 2, bond lengths

Table 2
Atomic co-ordinates ($\times 10^{4}$) for (5), with estimated standard deviations in parentheses

Atom	X	Y	Z
$\mathrm{Rh}(1)$	$2395(1)$	313(0.8)	2 245(0.5)
$\mathrm{P}(1)$	2167 (3)	$2144(3)$	$1872(1)$
$\mathrm{P}(2)$	$2662(3)$	-1575(2)	2 489(2)
$\mathrm{P}(3)$	7 723(4)	3 921(3)	$3844(2)$
F(1)	$6735(10)$	3 686(9)	$4665(4)$
$\mathrm{F}(2)$	$8735(9)$	$4172(8)$	3 021(4)
$\mathrm{F}(3)$	$7151(13)$	4 966(9)	3 685(6)
F(4)	9 026(11)	4 913(8)	4 202(6)
F(5)	$6445(11)$	2 946(9)	3 458(5)
F (6)	8341 (10)	2 872(7)	3 975(5)
$\mathrm{O}(1)$	$2044(11)$	2827 (8)	3 715(6)
$\mathrm{O}(2)$	2 106(14)	1 349(11)	4 906(6)
$\mathrm{O}(3)$	2 179(10)	-863(7)	4 224(4)
$\mathrm{O}(4)$	4 413(13)	517 (8)	772(5)
$\mathrm{C}(11)$	1251 (14)	$1924(10)$	$1016(8)$
$\mathrm{C}(12)$	2070 (16)	$1792(11)$	300(7)
C(13)	$1354(19)$	1610 (12)	-401(9)
$\mathrm{C}(14)$	-80(17)	1 578(11)	-260(9)
C(15)	-924(19)	1 680(13)	437(11)
C(16)	-255(17)	$1874(12)$	$1134(10)$
$\mathrm{C}(21)$	3 969(11)	3 407(9)	1 609(6)
$\mathrm{C}(22)$	4 133(13)	4 408(9)	1 147(6)
$\mathrm{C}(23)$	5530 (13)	5 409(9)	$1015(6)$
C(24)	6 696(12)	5 398(9)	1337 (6)
$\mathrm{C}(25)$	6 510(13)	4 402(10)	$1821(6)$
$\mathrm{C}(26)$	5 126(13)	3 405(10)	1950 (8)
C(31)	2 293(11)	-2687(8)	1 687(6)
$\mathrm{C}(32)$	936(12)	$3705(9)$	$1731(6)$
$\mathrm{C}(33)$	643(13)	-4551(10)	$1104(7)$
$\mathrm{C}(34)$	1 673(13)	--4346(10)	423(6)
$\mathrm{C}(35)$	3 032(13)	3 320(9)	375(6)
$\mathrm{C}(36)$	3 329(12)	-2501(9)	1010 (6)
$\mathrm{C}(41)$	4 526(12)	- 1376 (10)	2 617(6)
$\mathrm{C}(42)$	4951 (14)	-2428(11)	2 597(7)
$\mathrm{C}(43)$	6 405(18)	-2239(14)	$2738(8)$
$\mathrm{C}(44)$	7 364(16)	-1013(14)	$2893(8)$
$\mathrm{C}(45)$	$6915(15)$	11(12)	2926 (8)
$\mathrm{C}(46)$	5500 (13)	-160(10)	$2789(6)$
C(1)	$1142(14)$	2960 (11)	2 566(7)
$\mathrm{C}(2)$	$1946(16)$	3 684(11)	3 205(8)
$\mathrm{C}(3)$	$2813(21)$	3 383(14)	4360 (9)
C(4)	2 410(29)	2 632(19)	4 999(12)
C(5)	3 288(19)	$1001(14)$	4 933(10)
C (6)	$2773(21)$	-356(14)	$4939(9)$
$\mathrm{C}(7)$	2031 (16)	-2131(10)	4100 (6)
$\mathrm{C}(8)$	1423 (14)	-2550(10)	$3324(6)$
C(9)	3 596(16)	413(10)	$1352(7)$
$\bigcirc(5)$	1173 (8)	356(6)	$3356(3)$

and angles in Tables 3 and 4, and equations of least-squares planes in Table 5. Final structure factors and atom temperature factors are listed in Supplementary Publication No. SUP 21608 (28 pp., 1 microfiche).*

[^1]Table 3
Distances (\AA) and angles (${ }^{\circ}$) for (4), with standard deviations in parentheses
(a) About rlodium

$(a) \mathrm{A}$	
$\mathrm{Rh}(1)-\mathrm{P}(1)$	$2.307(2)$
$\mathrm{Rh}(1)-\mathrm{P}(2)$	$2.294(2)$
$\mathrm{Rh}(1)-\mathrm{O}(1)$	$2.112(7)$
$\mathrm{Rh}(1)-\mathrm{C}(5)$	$1.78(1)$
(b) About	
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.82(1)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.83(1)$
$\mathrm{P}(1)-\mathrm{C}(4)$	$1.85(1)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.83(1)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.81(1)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.86(1)$

(c) About oxygen $\begin{array}{ll}\mathrm{Rh}(1)-\mathrm{O}(1)-\mathrm{C}(2) & 117.1(7) \\ \mathrm{Rh}(1)-\mathrm{O}(1)-\mathrm{C}(3) & 114.2(7) \\ \mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(3) & 112.5(9)\end{array}$
(d) Means * for phenyl rings

C-C(aryl)	$1.398(4)$
C-C-Caryl)	$119.96(8)$
P-C(1)(aryl)-C(2)(aryl)	$119.4(5)$

(f) Mean $*$ for anion

$$
\begin{gathered}
\mathrm{P}(3)-\mathrm{F} \\
\\
* \text { Weighted means. }
\end{gathered}
$$

Table 4

Distances (\AA) and angles (${ }^{\circ}$) for (5), with standard deviations in parentheses

(a) About rhodium

(a) About rhodium	
$\mathrm{Rh}(1)-\mathrm{P}(1)$	$2.334(3)$
$\mathrm{Rh}(1)-\mathrm{P}(2)$	$2.343(2)$
$\mathrm{Rh}(1)-\mathrm{O}(5)$	$2.107(6)$
$\mathrm{Rh}(1)-\mathrm{C}(9)$	$1.77(1)$

(b) About phosphorus

$\mathrm{P}(1)-\mathrm{C}(11)$	$1.84(1)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.82(1)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.86(1)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.82(1)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.81(1)$
$\mathrm{P}(2)-\mathrm{C}(8)$	$1.86(1)$

(c) About oxygen		$\mathrm{C}(41)-\mathrm{P}(2)$
$\mathrm{O}(5) \cdots \mathrm{O}(3)$	2.67(1)	$\mathrm{Rh}(1)-\mathrm{O}(5)$
$\mathrm{O}(5) \cdots \mathrm{O}(1)$	2.69(1)	$\mathrm{Rh}(1)-\mathrm{O}(5)$
$\mathrm{O}(1)-\mathrm{C}_{(2)}$	1.41(2)	$\mathrm{O}(1)-\mathrm{O}(5)-\mathrm{O}$
$\mathrm{O}(1)-\mathrm{C}(3)$	1.45(2)	$\mathrm{C}(2)-\mathrm{O}(1)-$
$\mathrm{O}(3)-\mathrm{C}(6)$	1.47(1)	$\mathrm{C}(3)-\mathrm{O}(1)-$
$\mathrm{O}(3)-\mathrm{C}(7)$	1.41(1)	$\mathrm{C}(6)-\mathrm{O}(3)-$
$\mathrm{O}(4)-\mathrm{C}(9)$	$1.15(1)$	$\mathrm{C}(6)-\mathrm{O}(3)$
(d) Means * for phenyl rings		
	C-C(aryl)	1.405(6)
	C-C-C(aryl)	119.9(1)
	$\mathrm{P}-\mathrm{C}-\mathrm{C}($ aryl)	119.2(3)
(e) Mean * for anion		
	$\mathrm{P}(3)-\mathrm{F}$	1.566(5)

Table 5
Equations of mean planes in orthogonal (\AA) co-ordinates with axes $X=a, Y=b^{*}, Z$ perpendicular. Deviations (\AA) of atoms from the planes are given in square brackets
(a) Compound (4)

Plane (1): $\mathrm{P}(1), \mathrm{P}(2), \mathrm{O}(1), \mathrm{C}(5), \mathrm{Rh}(\mathbf{1})$

$$
0.2535 X-0.8306 Y-0.4959 Z=0.2728
$$

$[\mathrm{P}(1) 0.033, \mathrm{P}(2) 0.035, \mathrm{O}(1)-0.038, \mathrm{C}(5)-0.034, \mathrm{Rh}(1)$ 0.003]

Plane (2): $\mathrm{P}(\mathbf{1}), \mathrm{O}(\mathbf{1}), \mathrm{Rh}(\mathbf{1})$

$$
0.2566 X-0.8396 Y-0.4787 Z=0.2692
$$

[C(3) $-0.411, \mathrm{C}(4) 0.013]$
Plane (3): $\mathrm{P}(\mathbf{2}), \mathrm{O}(1), \mathrm{Rh}(1)$

$$
0.2799 X-0.8240 Y-0.4927 Z=0.5858
$$

[C(1) 0.225, C(2) 0.0 .259$]$
(b) Compound (5)

Plane (1): $\mathrm{P}(1), \mathrm{P}(2), \mathrm{O}(5), \mathrm{C}(9), \mathrm{Rh}(1)$

$$
-0.7533 X-0.5377 Y-0.3787 Z=-3.876
$$

$[\mathrm{P}(1) 0.074, \mathrm{P}(2) 0.072, \mathrm{O}(5)-0.073, \mathrm{C}(9)-0.096, \mathrm{Rh}(1)$ 0.023]

Figure 1 The structure of cation (4) showing the atomic numbering scheme used in the analysis (carbon atoms are numbered only)

Figure 2 The structure of cation (5) showing the atomic numbering scheme used in the analysis

RESULTS AND DISCUSSION

Both complexes consist of discrete monomeric ions; the $\left[\mathrm{PF}_{6}\right]^{-}$groups are well removed from the cations and have normal dimensions.

Structure of (4).-Geometry about the metal. The geometry of the co-ordination polyhedron about the
rhodium atom is approximately square planar, with the rhodium atom lying $0.003 \AA$ above the plane defined by $\mathrm{P}(1), \mathrm{P}(2), \mathrm{O}(2), \mathrm{C}(5)$ and the metal atom itself. There is a very small distortion towards tetrahedral geometry with $\mathrm{P}(1)$ and $\mathrm{P}(2)$ lying 0.033 and $0.036 \AA$ above and $\mathrm{O}(2)$ and $C(5) 0.038$ and $0.034 \AA$ below the plane. The
marked, distortions are observed in dppe complexes of Rh and $\mathrm{Ir},^{8,9}$ and presumably arise from strain in the chelate rings in all these complexes.

The dominant feature governing the structure of the bicyclic ring system is the staggered conformation about the $\mathrm{C}-\mathrm{C}$ bonds. The ligand binds asymmetrically,

Table 6

Compound	$\mathrm{Rh}-\mathrm{P}$		$\mathrm{Rh}-\mathrm{CO}$	M-O	Co-ord. no.	Co-ord. geometry
(4) ${ }^{\text {a }}$	2.307	, 2.294(3)	1.78 (1)	$2.112(8)$	4	Dist. sq. planar
(5) "	2.334	, 2.343(3)	1.77(1)	2.107(6)		Dist. sq. planar
$\left[\mathrm{Rh}\left\{\mathrm{PhP}\left(\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{PPh}_{2}\right)_{2}\right\} \mathrm{Cl}\right]{ }^{\boldsymbol{b}}$	2.288	, $2.201(2)$			4	Sq. planar
$\left[\mathrm{Rh}(\mathrm{dppe})_{2}\right]^{+}\left[\mathrm{ClO}_{4}\right]^{-c}$	2.310	, $2.313(6)$			4	Sq. planar
	2.289(, $2.318(8)$		$2.026(8)$		Trig. bipy.
$\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{3}\right]_{e}^{6}$	2.32	2.32	1.829(28)		5	Trig. bipy.
$\left[\mathrm{RhCl}\left(\mathrm{PPL}_{3}\right)_{3}\right]^{f}{ }^{\text {a }}$	2.320	2.331			4	Sq. planar, with tetrahedral
	2.210					distortion
$\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{acac})\right]^{\prime}$			$\begin{aligned} & 1.76(2) \\ & 1.75(2) \end{aligned}$	$\begin{aligned} & 2.05(1) \\ & 2.06(1) \end{aligned}$	4	Sq. planar

principal distortion, however, is an in-plane bend of $\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$ to $165.9(1)^{\circ}$. This presumably results from the steric inability of this ligand to take an unstrained 180° ' bite'. This is interesting in view of the previously reported failure to form analogous Rh^{I} complexes of the ligand $\mathrm{PhP}\left\{\cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{PPh}_{2}\right\}_{2}$. Nappier et al. suggested ${ }^{7}$ that the formation of two connected fivemembered chelate rings about a planar Rh^{\top} ion creates too much strain, and estimated that the trans- $\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ angle could be no greater than 166°. Our results confirm the estimation of this angle, but show that this amount of strain does not prevent mononuclear complex formation. The $\mathrm{Rh}^{-\mathrm{P}(1)}$ and $\mathrm{Rh}^{-\mathrm{P}}(2)$ bond distances [mean $2.300(2)$] are shorter than those observed in comparable triphenylphosphine complexes, but only slightly smaller than in cationic diphenylphosphinoethane (dppe) complexes (Table 6). ${ }^{7-12}$ This difference could be due either to increased basicity at phosphorus because of the alkyl side-chain substituent, to the metal oxidation state, or a consequence of the steric requirements of the ligand. However, the mean $\mathrm{Rh}-\mathrm{P}$ bond length in (5) is normal $[2.338(2) \AA]$, and it therefore follows that the shortened bond length in (4) must be a consequence of the steric requirements of the ligand.

The ligand. The ligand functions as a terdentate donor in contrast to the bidentate complex found in $\left[\mathrm{NiLCl}_{2}\right] .{ }^{\mathbf{1}}$ The bond angles and distances in both the phenyl rings and $\cdot\left[\mathrm{CH}_{2}\right]^{\cdot}$ moieties of the chain are normal. There is a slight distortion from pure tetrahedral geometry for $\mathrm{O}(2)$, the angle between $\mathrm{Rh}-\mathrm{O}(2)$ and the plane $\mathrm{C}(2)-$ $\mathrm{O}(2)-\mathrm{C}(3)$ being 39 and not 54.7° expected for pure tetrahedral geometry. There is a very significant distortion from tetrahedral geometry for $\mathrm{P}(1)$ and $\mathrm{P}(2)$. The $\mathrm{Rh}-\mathrm{P}-\mathrm{Ph}$ angles are increased whilst the $\mathrm{Rh}-\mathrm{P}-$ alkyl angles decrease, resulting in a proportional reduction of the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ interbond angles. Similar, although less
${ }^{7}$ T. E. Nappier, jun., D. W. Meek, R. M. Kirchner, and J. A. Ibers, J. Amer. Chem. Soc., 1973, 95, 4194.
${ }_{8}$ M. C. Hall, B. T. Kilbourn, and K. A. Taylor, J. Chem. Soc. (A), 1970, 2539.
torsion angles for the complex being given in Table 7, with perspective views of the separated rings in Figure 3.

Table 7
Torsion angles (ε) *
(a) Compound (4)

| (a) Compound (4) | | | |
| :---: | ---: | :---: | ---: | ---: |
| $\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(3)$ | 15 | $\mathrm{Rh}(1)-\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{C}(2)$ | -37 |
| $\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)$ | -41 | $\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$ | 39 |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Rh}(1)$ | 35 | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{Rh}(1)$ | -37 |
| $\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Rh}(1)-\mathrm{P}(1)$ | -24 | $\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{Rh}(1)-\mathrm{P}(3)$ | 10 |
| $\mathrm{O}(1)-\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(4)$ | 0 | $\mathrm{O}(1)-\mathrm{Rh}(1)-\mathrm{P}(3)-\mathrm{C}(1)$ | 7 |
| (b)Compound (5) | | | |
| $\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | -74 | $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$ | 61 |
| $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$ | 69 | $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{P}(2)$ | -59 |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$ | 38 | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{Rh}(1)$ | 86 |

* Defined as in R. Burcourt, Topics Stereochem., 1974, 8, 159.

In ring $A, C(4)$ is on, and C(3) lies $0.411 \AA$ below, the plane $\mathrm{O}(2), \mathrm{Rh}, \mathrm{P}(1)$, whilst in ring в $\mathrm{C}(2)$ and $\mathrm{C}(1)$ lie 0.259

Figure 3 Deviations from coplanarity in the hydrocarbon chain of (4). Numbers refer to the atomic distances (\AA) from the appropriate $\mathrm{O}, \mathrm{Rh}, \mathrm{P}$ plane
below and $0.225 \AA$ above the plane $\mathrm{O}(2), \mathrm{Rh}, \mathrm{P}(2)$ respectively, corresponding to the two stable conformations of five-membered rings. The torsion barrier about the Rh-P bonds must be low, owing to the eclipsed conformations observed; this is reasonable in view of the

[^2]long bond distances involved (reducing non-bonded interactions between substituents). The ligand apparently adopts a conformation closely related to those observed and discussed ${ }^{8}$ for a variety of transitionmetal dppe complexes.

Structure of (5).-Geometry about the metal. The geometry of the co-ordination polyhedron about rhodium is very close to square planar. The Rh atom lies $0.023 \AA$ above the plane defined by $\mathrm{P}(1), \mathrm{P}(2), \mathrm{O}(5), \mathrm{C}(9)$ and there is little distortion from 180° in the $\mathrm{P}(1)-\mathrm{Rh}^{-}$ $\mathrm{P}(2)$ angle $\left[174.3(1)^{\circ}\right]$. The $\mathrm{Rh}-\mathrm{P}(1)$ and $\mathrm{Rh}-\mathrm{P}(2)$ bond lengths are normal and close to those observed for a variety of triphenylphosphine derivatives (Table 6). Both the $\mathrm{Rh}-\mathrm{O}(5)$ and $\mathrm{Rh}^{-\mathrm{CO}}$ bond distances are within 1σ of the values observed for (4) and accordingly can be taken as representative values of trans ether and carbonyl bonds to square-planar rhodium(I).

The ligand. The ligand functions as a bidentate donor. The fourth co-ordination site at the metal is occupied by a water molecule which is hydrogen bonded to $\mathrm{O}(1)$ and $\mathrm{O}(3)$ of the chelate chain. Assuming a linear hydrogen bond, the separations of $\mathrm{O}(1) \cdots \mathrm{O}(5)$ and $\mathrm{O}(3) \cdots \mathrm{O}(5)[2.69(1)$ and $2.67(1) \AA]$ are of the expected magnitude. ${ }^{13} \quad \mathrm{O}(4)$ is pyramidal whereas $\mathrm{O}(1)$ and $O(3)$ appear, unexpectedly, to be essentially trigonal $s p^{2}$ hybridised $\left[\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(3) 119(1)^{\circ}, \mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(7)\right.$ $\left.113(1)^{\circ}\right]$ with the hydrogen-bonded protons almost coplanar with the respective $\mathrm{C}-\mathrm{O}-\mathrm{C}$ groups (Table 8).

Table 8

Geometry at oxygen in (5) measured by the angle of inclination of $\mathrm{O} \cdots \mathrm{X}$ to the $\mathrm{Y}, \mathrm{O}, \mathrm{Z}$ plane (for tetrahedral geometry 54.7°)

Oxygen	Angle $/{ }^{\circ}$	\mathbf{X}	Y	Z
$\mathrm{O}(1)$	6	$\mathrm{O}(5)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$
$\mathrm{O}(3)$	9	$\mathrm{O}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$
$\mathrm{O}(5)$	64	Rh	$\mathrm{O}(1)$	$\mathrm{O}(3)$

The bond distances and angles in both the phenyl and $\cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot$ moieties of the chelate chain are as expected.* Again, there are distortions from tetrahedral geometry at $P(1)$ and $P(2)$, but these are in the opposite sense in (5) to those in (4) because the ligand chain is here too long rather than too short to span the trans-positions.

The carbon atoms of the ethyl chains linking the phosphorus and oxygen atoms exhibit a gauche conformation and models confirm the absence of any severe non-bonding interactions. Whilst it is possible to construct scale models having $\mathrm{O}(1), \mathrm{O}(2)$, or $\mathrm{O}(3)$ donating directly to rhodium, these show much less favourable chain conformations even with extensive distortion of the metal co-ordination sphere. This explains why water is so firmly bound in this complex: the binding site is geometrically almost perfect for accepting a hydrogen-bonded water donor with the chelate chain in an almost optimum conformation. Models also show a significant improvement in $\mathrm{C}-\mathrm{C}$

* Allowing for the disorder in $-\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(5)-$.
${ }^{13}$ A. Novak, Structure and Bonding, 1973, 18, 177.
torsion angles (Table 7) when $O(1)$ and $O(3)$ are $s p^{2}$ hybridised; this also results in the $-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)-$ $\mathrm{C}(5)-\mathrm{C}(6)$ - chain having two equal energy conformations

Figure 4 Packing of the crystal of (4), viewed down a

Figure 5 Packing of the crystal of (5) viewed down c
with a very low torsion-barrier between them, and may explain the disorder observed in this region.

Molecular packing. The molecular packing
arrangements for (4) and (5) are shown in Figures 4 and 5, and show no unusual features. Crystal packing is governed largely by the phenyl rings. The $\left[\mathrm{PF}_{6}\right]^{-}$ anions occupy holes within this framework, and there are no significant interactions with the cations.

We thank Maybridge Chemical Company for provision of phosphines, and the S.R.C. for a grant for the diffractometer (to N. W. A.), and support under the C.A.S.E. scheme (to J. C. J.).
[5/1406 Received, 17th July, 1975]

[^0]: * See Notice to Authors No. 7, in J.C.S. Dalton, 1975, Index

[^1]: ${ }^{5}$ N. W. Alcock, 'The Analytical Method for Absorption Correction,' in Crystallographic Computing,' ed. F. Ahmed, Munksgaard, Copenhagen, 1970, p. 271.

 - ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962.

[^2]: ${ }^{8}$ J. A. McGinnety, N. C. Payne, and J. A. Ibers, Chem. Comm., 1968, 235; J. Amer.Chem. Soc., 1969, 91, 6301.
 ${ }^{10}$ S. J. La Placa and J. A. Ibers, Acta Cryst., 1965, 18, 511.
 ${ }^{11}$ P. B. Hitchcock, M. McPartlin, and R. Mason, Chem. Comm., 1969, 1367.

 12 N. A. Bailey and E. Coates, Chem. Comm., 1967, 1041.

