Reactions of Tetrasulphur Tetranitride with Halides. Part VI.¹ The Preparation and Structure of Cyclopentathiazenium Pentachloro(phosphoryl chloride)stannate(IV)

By Arthur J. Banister,* James A. Durrant, Ivan Rayment, and Harrison M. M. Shearer, Chemistry Department, University Science Laboratories, Durham DH1 3LE

Tetrasulphur tetranitride, sulphuryl chloride, and tin tetrachloride react in phosphoryl chloride to give $S_4N_4 \cdot POCI_3 \cdot SnCI_4$ and the new cyclopentathiazenium salt $[S_5N_5][SnCI_5(OPCI_3)]$. X-Ray diffraction studies of the latter show that the cation has an azulene-type structure as found in $[S_5N_5][S_3N_3O_4]$. The reactions of $S_3N_2CI_2$, $(SNCI)_3$, S_4N_3CI , S_4N_4 , and $(S_4N_4)_2SnCI_4$ with POCI_3 have also been studied.

CYCLOPENTATHIAZENIUM, $[S_5N_5]^+$, salts have been prepared by three methods: (i) from tetrasulphur tetranitride and a metal chloride (as a mixture or as an adduct) in thionyl chloride; ² (ii) from S_4N_4 , trichlorocyclotrithiazene (SNCl)₃, and a metal chloride in SOCl₂; ¹ and (iii) from the reaction between S(NSiMe₃)₂ and SF(NSO)O₂ in methylene chloride.³ The disadvantage of SOCl₂ is that it participates in side reactions with S_4N_4 . We have therefore investigated the possibility of using phosphoryl chloride as an alternative solvent for the formation of cyclopentathiazenium salts.

We report the synthesis of the adduct $S_4N_4 \cdot POCl_3 \cdot SnCl_4$ and of $[S_5N_5][SnCl_5(OPCl_3)]$ from S_4N_4 , tin tetrachloride, and sulphuryl chloride (1:1:1) in POCl_3. We also

$$\frac{1}{4}S_4N_4 \xrightarrow{SO_4Cl_3} \frac{1}{\chi} (SNCl)_x \xrightarrow{S_4N_4} S_5N_5Cl \xrightarrow{SnCl_4-POCl_3} [S_5N_5][SnCl_5(OPCl_3)] \quad (1)$$

 $\dagger 1 \text{ eV} \approx 1.60 \times 10^{-19} \text{ J}.$

¹ Part V, A. J. Banister and H. G. Clarke, *J.C.S. Dalton*, 1972, 2661.

² A. J. Banister and P. J. Dainty, J.C.S. Dalton, 1972, 2658.
³ H. W. Roesky and O. Petersen, Angew. Chem. Internat. Edn., 1972, 11, 918.

report the action of POCl₃, at temperatures up to 105 °C, on each of the compounds S_4N_4 , $(S_4N_4)_2SnCl_4$, $S_3N_2Cl_2$, S_4N_3Cl , and $(SNCl)_3$. An examination of crystals of $[S_5N_5][SnCl_5(OPCl_3)]$ by X-ray diffraction has shown that the cation has an azulene-type structure (as in $[S_5N_5]-[S_3N_3O_4]$)⁴ rather than the heart-shaped arrangement reported ⁵ for $[S_5N_5][AlCl_4]$. The anion is a new species with an oxygen bridge between the phosphorus and metal atoms as found ⁶ in the isoelectronic adduct SbCl₅(OPCl₃).

EXPERIMENTAL

Infrared spectra (250-4 000 cm⁻¹), of Nujol mulls prepared under nitrogen, were recorded using KBr plates and a Perkin-Elmer 457 prism grating spectrophotometer. Mass spectra were obtained on an A.E.I. MS9 mass spectrometer at 70 eV with an accelerating potential of 8 keV.[†] Samples were directly inserted into the ion source at 40 °C.

⁴ H. W. Roesky, W. Grosse-Böwing, I. Rayment, and H. M. M. Shearer, J.C.S. Chem. Comm., 1975, 735. ⁵ A. C. Hazell and R. G. Hazell, Acta Chem. Scand., 1972, 26,

• A. C. Hazell and R. G. Hazell, Acta Chem. Scana., 1972, 26, 1987.

• I. Lindqvist and C. I. Brandon, Acta Chem. Scand., 1963, 17, 353.

The compound $[S_5N_5][SnCl_5(OPCl_3)]$ crystallised with a monoclinic cell, a = 8.272(1), b = 12.834(2), c = 18.515(3)Å, Z = 4, space group $P2_1/c$. The intensity data were collected on a Hilger and Watts four-circle diffractometer using zirconium-filtered Mo radiation and employing a θ —2 θ scan. Within the range $0 < \theta \leq 25^{\circ}$, 3 440 reflections were recorded and 2 054 of these were considered to be observed having net counts $\geq 2.5 \sigma$. The structure was solved by the heavy-atom method and refined by full-matrix least-squares methods to R 0.06 for the 2 054 observed reflections.

Phosphoryl chloride, sulphuryl chloride, and tin tetrachloride were purified by distillation. Tetrasulphur tetranitride was prepared by the method described by Jolly,⁷ and (SNCl)₃ was obtained from it by the action of SO₂Cl₂; ⁸ S₃N₂Cl₂ was prepared from ammonium chloride and disulphur dichloride.⁹ The adduct $(S_4N_4)_2$ SnCl₄ was prepared by adding SnCl₄ to a solution of S₄N₄ in carbon tetrachloride.¹⁰ Reagents and products were manipulated under nitrogen. Methods of analysis have been reported previously.¹

Preparation of Cyclopentathiazenium Pentachloro(phosphoryl chloride)stannate(IV), [S₅N₅][SnCl₅(OPCl₃)].--A mixture of SnCl₄ (0.90 cm³, 1.99 g; 0.0076 mol) and SO₂Cl₂ (0.62 cm³, 1.03 g; 0.0076 mol) in a round-bottomed flask (100 cm^3) was poured via a 15-cm glass connecting tube into a second flask (250 cm³) containing a slurry of S_4N_4 (1.40 g, 0.0076 mol) in POCl₃ (20 cm³). Transparent crystals of (I) formed on the lower part of the connecting tube. The solution, on stirring at room temperature, quickly turned red and purple-brown (S₄N₄)₂SnCl₄, (II), precipitated. A small amount of the adduct was withdrawn and characterised by its i.r. spectrum.¹¹ The upper flask and connecting tube were replaced by a water condenser. Both the solution and the solid became brown as the temperature was raised to the boiling point. During refluxing for 2 h (oil-bath, 105 °C), the solution and precipitate lightened to red. A brown powder, (III), adhered to the upper part of the flask above the liquid level. Yellow crystals of the $[S_5N_5]^+$ salt, (IV), separated out on cooling. The mixture was filtered and, after pumping dry, the yellow platelets were separated by hand in a glove-box from the brown powder, (III), to give the $[S_5N_5]^+$ salt, (IV) (1.5 g, 30% yield based on S_4N_4) (Found: Cl, 41.55; N, 10.4; S, 23.7, Sn, 17.75. Cl₈N₅OPS₅Sn requires Cl, 41.75; N, 10.3; S, 23.6; Sn, 17.45%). Major mass-spectral peaks were found at m/e (relative intensities and assignments are given): 307-301(3) [SnCl(OPCl₃)]⁺; 270-268(2) [Sn-(OPCl₃)]⁺; 266—256(16)[SnCl₄]⁺; 233—217(100) [SnCl₃]⁺; 122--116(6) $[Sn]^+$; 119--117(6) $[POCl_2]^+$; 92(8) $[S_2N_2]^+$; 78(5) $[S_2N]^+$; 64(2) $[S_2]^+([SO_2]^+)$; and 46(15) $[SN]^+$. I.r. spectrum: 1 210vs; 1 112s; 1 050w; 1 020s; 980w(sh); 804m; 731m; 619vs; 542m; and 476w cm⁻¹.

The colourless crystals, (I), taken from the connecting tube had an i.r. spectrum identical to that of $SnCl_4(POCl_3)_2$ prepared by the method of Garner and Sugden.¹² The brown powder, (III), was recrystallised from POCl₃ to give

⁷ W. L. Jolly, 'Synthetic Inorganic Chemistry,' Prentice Hall, London, 1960, p. 166.

⁶ G. G. Alange, A. J. Banister, and Miss B. Bell, *J.C.S. Dalton*, 1972, 2399.

W. L. Jolly and K. D. Maguire, *Inorg. Synth.*, 1967, 9, 103.
D. Neubauer, J. Weiss, and M. Goehring, Z. Naturforsch., 1959, B14, 284.

very small orange-brown crystals (1.1 g) (Found: Cl, 41.25; N, 9.7; S, 21.9; Sn, 18.9. $Cl_7N_4POS_4Sn$ requires Cl, 41.5; N, 9.35; S, 21.45; Sn, 19.85%). I.r. spectrum: 1 285vs; 1 166s; 1 022m; 970w(sh); 800m; 722s; 672w; 585vs; 536s; and 470w cm⁻¹.

The Action of $POCl_3$ on S_4N_4 , $(S_4N_4)_2SnCl_4$, $(SNCl)_3$, and $\rm S_3N_2Cl_2.-A$ mixture of $\rm S_4N_4$ (0.1 g) and POCl_3 (20 cm^3) was heated under reflux (105 °C). Visible reaction (conversion into yellow S₄N₃Cl) occurred as the temperature rose above 80 °C and was complete after boiling for 10 min. A mixture of $(S_4N_4)_2SnCl_4$ (1.3 g) and POCl₃ (20 cm³) was heated under reflux for 1 h. The i.r. spectrum of the filtered solid showed that there had been no significant reaction. Trichlorocyclotrithiazene (SNCl)₃ (1.0 g dissolved in 20 cm³ of POCl₃) was heated at 60 °C for 2 h. No reaction was observed. A sample of the solution was evaporated to dryness and an i.r. spectrum of the residue corresponded to $(SNCl)_3$. The solution was then heated at 80 °C for 2 h; S_4N_3Cl slowly precipitated. The cooled mixture was filtered. On evaporation the filtrate gave a little red-green dichroic oil which was not investigated further.

On adding powdered thiodithiazyl dichloride (4 g) to POCl₃ (40 cm₃) in a round-bottomed flask, the orange-brown $S_3N_2Cl_2$ remained largely undissolved, but on warming to 60 °C reaction occurred giving a green precipitate and a red solution. A sample of the precipitate was withdrawn; its i.r. spectrum corresponded to that of $S_3N_2Cl^{13}$ On further heating and refluxing at 105 °C for 3 h the precipitate became yellow and the solution became orange. The i.r. spectra of the precipitate and evaporated solvent corresponded to $S_4N_3Cl^{14}$ and impure S_4N_3Cl respectively.

RESULTS AND DISCUSSION

The Structure and Bonding in $[S_5N_5][SnCl_5(OPCl_3)]$.— The cation, which consists of a ten-membered ring of alternate sulphur and nitrogen atoms, is a 14- π -electron member of the series of aromatic thiazenes.¹⁵ The bond distances and bond angles are very similar to those in $[S_5N_5][S_3N_3O_4]$.⁴ In both $[S_5N_5][SnCl_5(OPCl_2)]$ and $[S_5N_5][S_3N_3O_4]$ there is less variation in S-N bond distances and in nitrogen bond angles than in $[S_5N_5][AlCl_4]$; the mean values also differ significantly (Table 1).

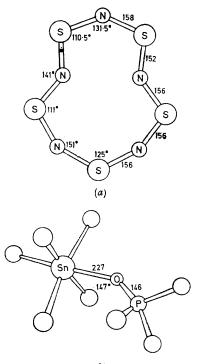
TABLE 1

Some bond distances (pm) and bond angles (°) in $[S_5N_5]^+$ salts

SN bond	[S ₅ N ₅][AlCl ₄] 146.5—159.0	$\substack{[\mathrm{S}_5\mathrm{N}_5][\mathrm{S}_3\mathrm{N}_3\mathrm{O}_4]\\154.3{}158.0}$	$[S_5N_5][SnCl_5(OPCl_3)]$ 149.7—158.7
lengths (av. value) N bond	153.9 129—177	156.0 133—151	$155.8 \\ 132-153$
angles (av. value)	151.9	142.4	142.6

The anion $[SnCl_5(OPCl_3)]^-$ contains a central metal atom with one oxygen and five chlorine atoms coordinated in an approximately octahedral arrangement

¹¹ P. J. Ashley and E. G. Torrible, *Canad. J. Chem.*, 1969, **47**, 2587.


¹² F. B. Garner and S. Sugden, J. Chem. Soc., 1929, 1298.

A. J. Banister, H. G. Clarke, I. Rayment, and H. M. M. Shearer, *Inorg. Nuclear Chem. Letters*, 1974, 10, 647.
R. T. Bailey and E. R. Lippincott, Spectrochim. Acta, 1964,

20, 1327.

¹⁵ A. J. Banister, Nature Phys. Sci., 1972, 237, 92.

as found in the isoelectronic adduct $SbCl_5(OPCl_2)$.⁶ The Sn-O distance [227(1) pm] is close to the mean value [228(3) pm] found in $SnCl_4(POCl_3)_2$.¹⁶ The P-O distance [146(1) pm] is not significantly larger than that [144.8(5)]pm] found in free POCl₃,¹⁷ and is the same, within experimental error, as that in SbCl₅(POCl₃) [147(2) pm] and $SnCl_4(POCl_3)_2$ [145(5) pm]. The Sn-O-P angle [147.3(6)°] also does not differ significantly from the angle at

Structure of the cation (a) and the anion (b) in $[S_5N_5][SnCl_5(OPCl_3)]$ (Bond lengths in pm.)

oxygen in SbCl₅(POCl₃) [145.0(1.6)°] and in SnCl₄(POCl₃)₂ $[148.2(2.7)^{\circ}].$

Reactions.—The adduct $(S_4N_4)_2SnCl_4$ (which is unaffected by boiling POCl₃) and some excess of SnCl₄ were treated with a solution of SO₂Cl₂ in POCl₃. Sulphuryl chloride is known ¹⁸ to react with S_4N_4 to give $(SNCl)_{a}$ and so the course of the reaction may well be somewhat similar to that between S_4N_4 and metal chlorides in SOCl₂ [equation (2)]. The co-ordinated

$$S_4N_4 \xrightarrow{Socl_2} NSCl \xrightarrow{MCl_3} [SN][MCl_4] \xrightarrow{S_4N_4} [S_5N_5][MCl_4]$$
 (2)

 S_4N_4 was probably chlorinated by the SO_2Cl_2 to form an oligomer of SNCl, or perhaps S₄N₄Cl₂ (as yet unknown), which remains co-ordinated to the SnCl₄. Rearrangement then takes place involving solvent POCl_a which enters the anion. The overall reaction is (3). The

$$\frac{2^{1}_{2}S_{4}N_{4} + SO_{2}Cl_{2} + 2SnCl_{4} + 2POCl_{3} \longrightarrow}{2[S_{5}N_{5}][SnCl_{5}(OPCl_{3})]}$$
(3)

product could, no doubt, be prepared by method (ii) described in the introduction $[viz. S_4N_4 + (SNCl)_3 +$ $SnCl_4$ in $POCl_3$; the chosen method, (i), avoids the preparation of (SNCl)₃. There was also the possibility in our method that the co-ordinated S₄N₄ ring would remain intact during chlorination [Nelson and Heal¹⁸ showed that $(SNCl)_4$ is probably an intermediate in the reaction between chlorine and S_4N_4 in carbon disulphide]. This could lead to the formation of the hitherto unknown (10π) cyclotetrathiazenium(2+) ion as $[S_4N_4][SnCl_6]$, but no evidence for its presence was found in the products.

The reaction yielded two other products in addition to yellow platelets of $[S_5N_5][SnCl_5(OPCl_3)]$. Transparent crystals of $SnCl_4(POCl_3)_2$ were formed during the early part of the reaction. Mass and i.r. spectra were identical to those of a sample prepared from POCl₃ and SnCl₄.¹² The brown powder, (III), which from i.r. and mass spectra and analyses was shown to be S_4N_4 ·POCl₃·SnCl₄, is a new adduct which has similarities in its i.r. spectrum to both $(S_4N_4)_2SnCl_4$ and $SnCl_4(POCl_3)_2$. Other possible side reactions are as follows. Trichlorocyclotrithiazene, (SNCl)₃, forms numerous air-sensitive adducts with Lewis acids including a 1:1 adduct with $SnCl_4$.¹⁹ This adduct was either not formed or was consumed during the reaction.

The studies of the action of hot $POCl_3$ on S_4N_4 , (S₄N₄)₂SnCl₄, (SNCl)₃, and S₃N₂Cl₂ showed that POCl₃ has potential as a non-participating solvent for the formation of other sulphur-nitrogen cations. The compounds S₄N₄ and (SNCl)₃ can be used without decomposition providing the temperature is kept below ca.

TABLE 2

Possible 2:1 adducts of Cl^- , $POCl_3$, and S_4N_4 with $SnCl_4$

POCl₃ Cl- S_4N_4 C1-[SnCl₆]²⁻ POCl₃ $\begin{array}{c} \operatorname{POCl}_{3} \cdot [\operatorname{SnCl}_{5}]^{-\mathfrak{a}} \\ \operatorname{S}_{4}\operatorname{N}_{4} \cdot [\operatorname{SnCl}_{5}]^{-\mathfrak{a}} \end{array}$ $\begin{array}{l} {\rm SnCl}_4({\rm POCl}_3)_2 \ ^b \\ {\rm S}_4 {\rm N}_4 \cdot {\rm POCl}_3 \cdot {\rm SnCl}_4 \ ^a \quad ({\rm S}_4 {\rm N}_4)_2 {\rm SnCl}_4 \ ^d \end{array}$ S_4N_4 ^a This work. ^b Ref. 12 and this work. ^c Unknown. ^d Ref. 11 and this work.

60 °C. Table 2 shows all possible 2:1 adducts of Cl⁻, $POCl_3$, and S_4N_4 with $SnCl_4$. It is interesting to note that with the formation of the new species (III) $(S_4N_4 \cdot PO Cl_3 \cdot SnCl_4$) and $[SnCl_5(OPCl_3)]^-$, only one species, $S_4N_4 \cdot [Sn-$ Cl₅]⁻, remains to be synthesised to complete the Table.

We thank the S.R.C. for studentships to (J. A. D. and I. R.), and Mr. R. Coult for analyses.

[5/1780 Received, 16th September, 1975]

```
<sup>18</sup> J. Nelson and H. G. Heal, Inorg. Nuclear Chem. Letters, 1970,

6. 429.
```

¹⁹ H. G. Clarke, Ph.D. Thesis, University of Durham, 1974.

¹⁶ T. Moritani, K. Kuchitsu, and Y. Morino, Inorg. Chem., 1971, 10, 344. ¹⁷ C. I. Brandon, Acta Chem. Scand., 1963, 17, 759.