The Chemistry of Rhenium Alkyls. Part III. The Synthesis and Reactions of Hexamethylrhenium(vi), *cis*-Trimethyldioxorhenium(vi), and the Octa-methylrhenate(vi) Ion †

By Konstantinos Mertis and Geoffrey Wilkinson,* Inorganic Chemistry Laboratories, Imperial College, London SW7 2AY

The green, crystalline, paramagnetic (d^1) hexamethylrhenium, ReMe₆, has been prepared by interaction of tetramethyloxorhenium(VI), ReOMe₄, with trimethylaluminium. It is characterised by mass, i.r., and e.s.r. (reported separately) spectra. It reacts with dioxygen to give ReOMe₄ and with nitric oxide to give *cis*-trimethyldioxorhenium(VII), ReO₂Me₃; the latter is best prepared by the action of NO on ReOMe₄. The mechanism of this reaction is discussed and an intermediate of stoicheiometry ReO(CH₃)₃(CH₃NO) is characterised. N.m.r. spectra of the oxo-species are reported.

Interaction of hexamethylrhenium with methyl-lithium forms the octamethylrhenate(VI) ion, which can be isolated as the tetramethylethylenediamine (tmed) salt Li₂[ReMe₈]·tmed.

An improved synthesis of ReOMe₄ is given.

In previous papers, the synthesis ¹ and electronic and e.s.r. spectra ² of the oxotetra-alkyls of rhenium, ReOR₄ (R = Me and CH₂SiMe₃), have been described. The red tetramethyloxorhenium(VI) has now been converted by action of trimethylaluminium into green hexamethylrhenium(VI). This compound is only the second hexamethyl of a transition metal, the other being hexamethyltungsten(VI).³ It is probably also only the second example of an ReX₆ compound. Although the gaseous hexafluororhenium(VI) is well characterised, there is no positive evidence ⁴ that the hexachloride exists despite

[†] No reprints available. Preliminary note. L. Galyer, K. Mertis, and G. Wilkinson, J. Organometallic Chem., 1975, 85, C37.

¹ K. Mertis, D. H. Williamson, and G. Wilkinson, J.C.S. Dalton, 1975, 607.

² J. F. Gibson, K. Mertis, and G. Wilkinson, *J.C.S. Dalton*, 1975, 1093.

claims of its synthesis. In view of the stability of hexamethylrhenium, there seems good reason to anticipate that the hexa-alkoxides and hexadialkylamides will also be stable.

This paper describes the synthesis of hexamethylrhenium and some of its properties. Also reported is the reaction with nitric oxide of ReMe_6 and ReOMe_4 to give the diamagnetic compound cis- ReO_2Me_3 , the first transition metal alkyl with the metal in the VII oxidation state. The synthesis of the octamethylrhenate(VI) ion is also described. The e.s.r. spectra of ReMe_6 and the $[\text{ReMe}_8]^{2-}$ ion are discussed in Part IV.⁵

^a A. J. Shortland and G. Wilkinson, J.C.S. Dalton, 1973, 372.
⁴ J. Burgess, C. J. W. Fraser, I. Haigh, and R. D. Peacock, J.C.S. Dalton, 1973, 501.
⁵ I. F. Gibson, G. Lack, K. Mertis, and G. Wilkinson, J.C.S.

⁵ J. F. Gibson, G. Lack, K. Mertis, and G. Wilkinson, *J.C.S. Dalton*, following paper.

Hexamethylrhenium(VI) and Its Properties.—The interaction of petroleum solutions of ReOMe_4 (or ReO_2Me_3) with trimethylaluminium in light petroleum gives an intense green solution from which hexamethylrhenium can be readily isolated. The compound can also be obtained, though in low yield, by interaction of trimethylaluminium with a suspension of dirhenium heptaoxide, Re_2O_7 , in light petroleum. Attempts to synthesise mixed alkyls by treating ReOMe_4 with etherates of triethylaluminium and tris(trimethylsilylmethyl)aluminium were unsuccessful. In the first case only decomposition occurred, while in the second, an exchange reaction gave the previously characterised ¹ blue compound $\text{ReO}(\text{CH}_2\text{SiMe}_3)_4$.

Hexamethylrhenium is a green crystalline solid that can be kept indefinitely at -20 °C but which decomposes at about 10 °C to give a black residue and methane. The crystalline solid should be handled with caution since in one case admission of nitrogen to a sample in vacuo caused a violent detonation. The compound is extremely air sensitive (see below) and is also somewhat light sensitive so that it should be protected from extended exposure to light. It is very volatile, though less so than ReOMe₄, and sublimes at -30 °C and 10^{-3} mmHg. The compound is very soluble in n-hexane, from which it can be crystallised, and in CS₂, CCl₄, diethyl ether, etc.; in these solvents there is slow decomposition in light at room temperature to give dark residues and light brown solutions. The solutions in benzene and other aromatic hydrocarbons are more stable, decomposing only after several days.

The mass spectrum (Table 1) gives ions identified by the correct rhenium isotopic distribution and mass

IADLE I

Mass spectra of hexamethylrhenium(VI) (70 eV)

Ion	m e	Ratio
$ReMe_{6}^{+}$	277, 275	9.8
$ReMe_{5}^{+}$	262, 260	79
$ReMe_4^+$	247, 245	100
ReMe ₃ +	232, 230	23
$ReMe_2$ +	217, 215	7.5
$ReMe^+$	202, 200	17.5
Re^+	187, 185	22.5

number. All ions ReMe_n^+ (n = 6 - 0) were observed at both 70 and 16 eV. The i.r. spectrum (Table 2) shows only the expected methyl group vibrations and a band at 500 cm⁻¹ assignable as the Re-C stretching frequency. Attempts to obtain the Raman spectrum failed due to decomposition in the laser beam even at low temperatures.

Hexamethylrhenium is only slowly decomposed by water. It is particularly reactive towards radical species. With controlled amounts of oxygen, the carmine ReOMe₄ is formed. This reaction can be followed at liquid-nitrogen temperature by e.s.r. spectra.⁵ In the reaction of ReOMe₄ with dioxygen the e.s.r. spectra ² were consistent with the formation of a

⁶ E. E. Aynsley, R. D. Peacock, and P. L. Robinson, J. Chem. Soc., 1950, 1622.

rhenium(VII) superoxo-complex, $Me_4Re(O)O_2$, having a single unpaired electron located on an oxygen atom. However, no e.s.r. signal for a similar species Me_6ReOO could be detected at -178 °C which suggests direct attack of oxygen *via* a four-centre transition state. Methyl transfer to an oxygen atom in a way similar to

TABLE 2

I.r. spectra of hexamethylrhenium(VI) and *cis*-trimethyldioxorhenium(VII) (in cm⁻¹)

ReMe		cis-ReO ₂ Me ₃	
a	Assignments	b	- c
2 958)		2 985)	ך 980 2
2 910 }m	C-H str	2 920 } m	2 942 L
2 820		2 890)	2 919 (^m
·			2840)
		ן 390	1 380 _{] m}
1 370m	C-H def	1 360 } m	1 188∫
		1 150]	
	Re=O str	∫ 992 s	∫992 s
		∖951v s	∖951v s
680m, sh	CH ₃ rock	752m	752s
500w, sh	Re–C str	$512 \mathrm{w}$	$512 \mathrm{w}$

^e Nujol and CS₂ solutions. ^b Nujol and as a liquid film between KBr plates. ^e CS₂ and CCl₄ solutions.

that discussed later for methyl transfer to the nitrogen atom of NO could then lead to formation of a Re=O bond, and possibly dimethyl ether.

There is a rapid reaction between ReMe_6 and nitric oxide and small yields of a volatile yellow compound were obtained. This appeared to be identical with that obtained ¹ by interaction of ReOMe_4 but not reported in detail.

cis-Trimethyldioxorhenium(VII) and Its Properties.— This yellow compound is best prepared by the action of nitric oxide on a diethyl ether solution of ReOMe₄ at -78 °C. Although it is an oil at room temperature, it can be obtained as pale yellow needles, m.p. ca. 10 °C, from light petroleum at low temperatures. The compound is volatile, readily distilling *in vacuo*, and it is reasonably stable at room temperature. The only other similar dioxorhenium species is ReO₂F₃.⁶

I.r. and n.m.r. spectra are consistent with the trigonal bipyramidal structure (E) shown in the Scheme. Thus the i.r. (Table 2) has bands due to methyl vibrations together with two strong bands attributable to the *cis*-ReO₂ group at 992 and 951 cm⁻¹. The n.m.r. spectrum in CS₂ or deuteriotoluene has two sharp resonances at τ 7.5 and 7.93, ratio 2:1, so that the higher field line is presumable due to the axial methyl group. There is no significant line broadening in the spectrum on cooling toluene solutions to -78 °C or heating to 85 °C, so that the molecule appears to be rigid. The mass spectrum shows peaks due to the ions ReO₂Me₂⁺, ReO₂Me⁺, and ReO⁺, but the molecular ion was not observed even at 17 eV.

The compound reacts with $AlMe_3$ in light petroleum to give $ReMe_6$, in high yield.

Mechanism of Reaction of Methyl Compounds with Nitric Oxide.—The reactions of ReOMe_4 and ReMe_6 with nitric oxide and dioxygen both give compounds with an

Re=O bond, in contrast to the reaction of WMe₆ where insertion occurs to give, respectively, $Me_4W{ON(Me)NO}_2$ and $W(OMe)_6$.³ This difference can be attributed to the fact that the rhenium methyls are paramagnetic with a single unpaired electron and that the reaction pathway is accordingly different. The cleavage of the N-O bond of nitric oxide under very mild conditions

SCHEME Interaction of NO with ReOMe4

does not normally occur in reactions involving transition-metal compounds, although NO reacts with triphenylphosphine at 140 °C to give Ph₃PO, which is also formed by the action of Ph₃P on nitrosyl complexes such as {Co(NO)₂Cl}₂.⁷ Interaction of $(\eta^5-C_5H_5)$ Mo-(CO)₂NO with Ph₃P in a CO atmosphere under u.v. irradiation also gives Ph₃PO together with $(\eta^5-C_5H_5)$ Mo-(CO)₂(PPh₃)(NCO).⁸

The reaction of NO with a paramagnetic metal methyl compound could be expected to differ from the reaction with a diamagnetic methyl since the latter, of necessity, must initially form a radical species. Thus for hexamethyltungsten it was proposed ³ that there is a methyl transfer to the nitrogen atom of co-ordinated NO * and that the radical species $Me_5WON(Me)$ then reacts rapidly with more NO to generate an N-N bond in the

† Radical nitroxide compounds $L_nMN(R)O^{\circ}$ have been characterised by e.s.r. study at low-temperature and metal centred radicals added to nitroso-compounds, e.g. irradiation of $(CO)_5MnR$ and nitrosodurene gives $(CO)_5MnN(Ar)O^{\circ}$ (see A. Hudson et al., J.C.S. Chem. Comm., 1974, 966). The use of RNO as spin traps may be misleading, since it is quite likely that oxidative addition of RNOalone to species such as $Pt(PPh_3)_3$ can occur giving metallocycles of type C(ef. P. K. Wong, K. S. Y. Lau, and J. K. Stille, J. Amer. Chem. Soc., 1974, 96, 5956). In PhNO₂PdCl₂, nitrosobenzene is bound through the N atom (R. G. Little and R. J. Doedens, Inorg. Chem., 1973, 12, 537).

N-methyl-N-nitrosohydroxylaminato-chelate ring of the compound, Me₅W{ON(Me)NO}. Since the tungsten atom in the latter is but seven-co-ordinate, the reaction with NO proceeds further to give a second chelate ring and the co-ordinatively saturated, eight-co-ordinate species, Me₄W{ON(Me)NO}₂. The same argument applies to the reaction of NO with Me₃TaCl₂⁹ and $(\eta^{5} C_5H_5$ ₂ZrMe₂¹⁰; although the resulting compound in the latter case was not so formulated, it probably has a chelate ring.³ For a paramagnetic alkyl with a single unpaired electron the interaction with nitric oxide presumably occurs initially with spin pairing. Hence further reaction with NO to generate an -N-N- bond and the ligand -ON(Me)NO- is precluded. The reaction sequence shown in the Scheme seems reasonable. We suggest initial co-ordination of nitric oxide and concomitant electron transfer to rhenium to give a diamagnetic, formally rhenium(v) species (A). Whether the NO is bound by oxygen, is at an angle or is sideways, is immaterial, but since there are no filled orbitals on the metal π -bonding is unlikely. Rapid methyl transfer to the nitrogen atom via a four-centre transition state, (B), leads to the formally rhenium(VII) species (C) or the similar bridged dimeric species (D). While RNO species of the type (C) do not appear to be known, † palladium complexes that have di-t-butyl nitroxide bound in a three-membered metallocycle ring (I) have been described.¹¹ A bridged nitroso aryl iron complex (II) has been characterised ¹² and provides a reasonable model

for species (D), although in (D) co-ordination of the nitrogen atom to the metal through its lone pair seems unlikely since this would lead to seven-co-ordination for the rhenium; this possibility cannot, however, be excluded and would appear to facilitate N=N bond formation. Intramolecular collapse of the ring in (C) would generate the nitrene CH_3N ; which would presumably rapidly dimerise to CH_3N = NCH_3 and *cis*-ReO₂Me₃. Similarly in (D) intramolecular collapse with cleavage of N=O bonds could produce azomethane directly by N=N bond formation. Although we cannot be certain whether the intermediate has structure (C).

⁷ W. Hieber and K. Heinicke, Z. anorg. Chem., 1962, **316**, 305; W. Hieber and R. Kramolowsky, Z. anorg. Chem., 1963, **321**, 94.

⁸ A. T. McPhail, J. Chem. Soc. (A), 1971, 205.

⁹ J. D. Wilkins and M. G. B. Drew, *J. Organometallic Chem.*, 1974, **69**, 111.

¹⁰ P. C. Wailes, H. Weigold, and A. P. Bell, *J. Organometallic Chem.*, 1972, **34**, 155.

 W. Beck and K. Schmidtner, Chem. Ber., 1967, 100, 3363;
M. Okunaka, G. Matsubayashi, and T. Tanaka, Bull. Chem. Soc. Japan, 1975, 48, 1826.
M. S. Barrow and O. S. Mills, J. Chem. Soc. (A), 1971, 864.

¹² M. S. Barrow and O. S. Mills, *J. Chem. Soc.* (A), 1971, 864. See also G. P. Khave and R. J. Doedens, *Inorg. Chem.*, 1976, **15**, 86.

^{*} Matrix isolation techniques indicate that below -196 °C no adducts of WMe₆ with NO, CO, H₂, or O₂ are formed (C. W. DeKock, 19th Ann. Rep. on Research, Petroleum Research Fund, Amer. Chem. Soc., 1975, p. 212) so that reaction of NO with WMe₆ possibly proceeds without prior co-ordination of NO. \ddagger Radical nitroxide compounds L_nMN(R)O have been characted

(D), or type II, nevertheless convincing evidence for the general correctness of the Scheme is the isolation of a yellow crystalline compound that is stable at low temperatures, but which begins to decompose above 0 °C and rapidly at 20 °C to give orange-brown residues from which *cis*-ReO₂Me₃ can be sublimed. The mass spectrum of the gas evolved shows a fragmentation pattern in good agreement with that reported for azomethane.¹³ Thus under our experimental conditions, the most abundant fragments were $C_2H_3N_2^+$, $CH_3N_2^+$, $CH_2N_2^+$, $CH_2N_1^+$, N_2^+ , $C_2H_4^+$, and CH_3^+ .

The n.m.r. spectrum of the yellow compound in CS₂ and deuteriotoluene at -35 °C is consistent with either structure (C) or (D). There are three single resonances at τ 5.7, 7.4, and 8.0 in a ratio 1:1:2. The lowest field resonance is assigned to the CH₃ group bound to nitrogen since the CH₃ groups in cis-ReO₂Me₃ are at τ 7.5 and 7.93. Although the methyl groups trans to the N and O atoms of the CH₃NO moiety should be different, they could well have a similar chemical shift and appear as a peak of relative intensity 2, as is observed. When the solution is allowed to warm the intensity of the lines due to the intermediate begin to decrease at ca. 5 °C and have disappeared at 35 °C, while lines of cis-ReO₂Me₃ simultaneously grow. The azomethane formed is not evident in the n.m.r. spectra since as a gas it may be lost from the solution, though a small transient peak at τ 7.85 could be due to this compound.

Dilithium Octamethylrhenate(VI).—Hexamethylrhenium reacts readily with methyl-lithium at -78 °C to give red solutions. From diethyl ether red-orange, and from toluene, bright red crystals can be obtained. These are pyrophoric and decompose rapidly both in the solid state and in solution at room temperature. The solution reacts with both dimethylpiperazine and 1,10-phenanthroline but with tetramethylethylenediamine (tmed) light yellow pyrophoric thermally unstable crystals were obtained and were shown to be Li₂[ReMe₈]•tmed where the lithium ion is presumably solvated. The e.s.r. spectrum discussed separately ⁵ is consistent with square antiprismatic co-ordination of rhenium(VI).

EXPERIMENTAL

Microanalyses were by the Imperial College and Bernhardt, Mülheim, laboratories. Rhenium and lithium analyses were made in this Department by Mr. John Gulton using a plasma arc emission absorption instrument.

I.r. spectra were recorded on Perkin-Elmer 325 and 475 spectrometers and n.m.r. spectra on Perkin-Elmer R12A or R14 spectrometers at 60 or 100 MHz. Mass spectra were obtained using an AEI-MS9 with direct inlet technique.

All syntheses and manipulations were carried out *in vacuo* or under oxygen-free nitrogen or argon. All solvents and reagents were carefully purified, dried, and deoxygenated. In handling ReMe_{6} , the glassware was thoroughly flamed under vacuum.

The rhenium was B.D.H. reagent quality (99.5%), the trimethylaluminium from the Ethyl Corporation, and nitric oxide from Matheson Co. The NO was passed through concentrated sulphuric acid, 50% potassium hydroxide, a

trap at -78 °C, and a P₂O₅ drying tube before collection at liquid-nitrogen temperature; head fractions were discarded. The petroleum used had b.p. 30—40 °C.

Hexamethylrhenium.—(CAUTION This material may detonate and a protective screen should be used in handling pure substance.) To tetramethyloxorhenium (ca. 0.5 g) in petroleum (40 cm³) at 0 °C was added dropwise, slowly with rapid stirring, a petroleum solution of trimethylaluminium (ca. 1M). It is essential that the solution of ReOMe_4 be extremely dry otherwise the reaction gives brown decomposition products. The addition of AlMe_3 was stopped when the red colour changed to deep green. The stirring was maintained for 30 min; the solution was then cooled to -78 °C and the excess of AlMe₃ was destroyed by dropwise injection of water (ca. 10 cm³). The stirred solution was left to warm slowly to room temperature after which it was again cooled to -78 °C. The petroleum layer was decanted from ice and aluminium hydroxide, filtered through a frit at -78 °C, and the solvent slowly removed under vacuum at -45 °C. The residue was then sublimed to a probe at -78 °C at 10⁻³ mmHg to give the green crystalline hexamethylrhenium (yield, ca. 60%), decomp. 10-12 °C.

The compound can be crystallised from hexane or petroleum. It is readily freed from its oxidation products, principally ReOMe₄, by trap-to-trap sublimation (the ReOMe₄ sublimes at ca. -20 °C).

The compound cis-ReO₂Me₃ can be used in place of ReOMe₄.

Trimethyl(nitrosomethyl)oxorhenium(VII) and cis-Trimethyldioxorhenium(VII).—A solution of ReOMe₄ (ca. 0.5 g) in petroleum (ca. 40 cm³) at -78 °C was exposed to nitric oxide. The red colour disappeared and yellow crystals of the intermediate ReOMe₃(MeNO) or [ReOMe₃(MeNO)]₂ were precipitated; these were collected on a frit at -78 °C, washed twice with petroleum (ca. 2 cm³ at -78 °C), and freed from solvent by pumping at -20 °C (10⁻³ mmHg) for several hours. The compound was too unstable to obtain satisfactory microanalyses.

For direct isolation of *cis*-trimethyldioxorhenium the reaction of ReOMe₄ and NO was carried out at -78 °C in ether and the solution left to warm to room temperature with stirring. After *ca*. 1 h, the ether was removed at -40 °C *in vacuo* and the yellow crystalline *compound* sublimed onto a probe at -78 °C, 10^{-3} mmHg (yield *ca*. 60%), m.p. 10—11 °C (Found: C, 13.4; H, 3.4%). C₃H₉O₂Re requires C, 13.7; H, 3.4%). The compound can be crystallised from petroleum solutions on cooling to -78 °C.

Lithium Octamethylrhenate(v1).—A solution of ReMe₆ (ca. 0.25 g) in ether (10 cm³) was cooled to -78 °C and methyl-lithium in ether was slowly added with stirring until the green solution became orange-red. The solution was left to warm to 0 °C and stirring was then continued for 0.5 h, when the ether was removed at -10 °C in vacuo. To the residue was added toluene (15 cm³) and the deep red solution filtered at low temperature and concentrated to ca. 3 cm³ when red crystals were obtained. These were collected at low temperature and solvent pumped off at -10 °C (Found: Re: Li = 1: 2.07 ± 0.1. C₈H₂₄Li₂Re requires Re: Li = 1: 2).

For the tetramethylenediamine salt, the red crystals from toluene were dissolved in ether (10 cm³) filtered at -78 °C and tmed added to the solution at 0 °C when a light yellow

¹³ L. J. Stief and P. Ausloos, *J. Phys. Chem.*, 1961, **65**, 877; *Z.* Prášil and W. Forst, *J. Amer. Chem. Soc.*, 1968, **90**, 3344.

crystalline solid was immediately precipitated. This was collected at -78 °C, washed twice with cold ether (15 cm^3) , and dried at -10 °C *in vacuo* (Found: Re: Li = 1: 1.9 \pm 0.1; Li, 3.3%; Re, 42.8%. Li₂ReMe₈-tmed requires Re: Li = 1: 2; Li, 3.2; Re, 42.68%). The compound is pyrophoric and thermally unstable at room temperature, but it can be quickly weighed out for analyses.

Tetramethyloxorhenium.—The following procedure is an improvement on the original¹ and gives high yields reproducibly.

A diethyl ether solution of MeLi ca. 1M $(0.08 \text{ mol}, 80 \text{ cm}^3)$ was added slowly to a suspension of $\text{ReOCl}_3(\text{PPh}_3)_2$ (8.31 g, 0.01 mol) in diethyl ether (120 cm³) at -78 °C and the mixture was allowed to warm slowly at room temperature. The dark brown solution was stirred for ca. $\frac{1}{2}$ h when the excess of MeLi was destroyed by dropwise addition at -78 °C of water (ca. 10 cm³). After being allowed to warm to room temperature the solution was cooled again to -30 °C and hydrogen peroxide (2.5 g, 30% H₂O₂ diluted in 20 cm³ of H₂O) was added dropwise very slowly with vigorous stirring. The colour of the solution rapidly changed to red and stirring was continued after warming to room temperature for *ca.* $\frac{1}{2}$ h. The solution was then cooled to -78 °C and the ether layer was filtered free from ice, and dried first with anhydrous calcium chloride at room temperature, and then with molecular sieves. The solution was cooled again to -78 °C, filtered, and the solvent was carefully removed at -50 °C. The crystalline ReOMe₄ was then sublimed onto a cold probe at -78 °C, 10^{-3} mmHg; yield 1.26 g, *ca.* 48% based on ReOCl₃(PPh₃)₂. Losses of ReOMe₄ occur mainly on removal of solvent *in vacuo*.

We thank the S.R.C. for support (K. M.) and the Ethyl Corporation for a gift of trimethylaluminium.

[5/1916 Received, 2nd October, 1975]