Unstable Intermediates. Part 165.¹ Radicals in Irradiated Organolead Compounds: an Electron Spin Resonance Study

By Robert J. Booth, Stephen A. Fieldhouse, Haydn C. Starkie, and Martyn C. R. Symons,* Department of Chemistry, The University, Leicester LE1 7RH

Exposure of PbPh₃Cl and PbBrPh₃ to ⁶⁰Co γ-rays at 77 K gives centres having ²⁰⁷Pb and ³⁵Cl or ⁸¹Br hyperfine coupling constants consistent with expectation for the parent radical anions. The electron-loss centres are thought to be the corresponding cations, with the hole largely confined to the halogen atoms. Irradiated PbMeaCI gives a similar anionic centre in methanolic solution, but the pure material gives largely Me[•] and PbMe₂(CH₂)Cl radicals. Irradiated PbMe₄ and PbEt₄, pure or in toluene at 77 K, give centres thought to be PbR₃, radicals having $g_{\perp} \approx 2.1$ and $g_{\parallel} \approx$ 1.9, and abnormally large anisotropic 207 Pb hyperfine coupling constants. In addition, PbMe₄ gives a centre thought to be [PbMe₄]⁻⁺, and both give R⁺ and PbMe₃(CH₂) or PbEt₃(CHMe). Irradiated Pb₂Ph₆ gives only one clearly defined paramagnetic centre, tentatively identified as the parent anion.

EXPOSURE of ionic solids containing lead(II) ions has been shown, by e.s.r. spectroscopy, to give lead(III) centres having very large hyperfine coupling constants to ²⁰⁷Pb, in the 10 000–13 000 G region.²⁻⁷ † Lead-207 has I = $\frac{1}{2}$ and is 21.6% abundant. The high-field component is found at ca. 5 400 G at X-band frequencies and corresponds to the $(F = 1, m_F = -1) \leftarrow (F = 1, m_F = 0)$ transition, where F = S + I. Isoya et al.⁸ showed that Pb^{IV} in lead tetra-acetate also gives a similar lead-(III) centre on exposure to γ -rays.

Formation of lead(III) centres represents one limit of behaviour for Pb. The other is a weak ' charge-transfer ' interaction between radicals and one or more neighbouring lead ions.^{9,10} Thus, for example, [NO₃]²⁻ radicals in irradiated lead(II) nitrate interacted with lead(II) cations by weak electron donation, whilst NO₃ and NO₂ radicals interacted by weakly accepting electrons from nearestneighbour lead(II) cations.¹⁰ Covalent lead radicals, such as PbMe₃, first detected by Bennett and Howard,¹¹ fall between these limits, with ²⁰⁷Pb coupling constants in the 2 000 G region. These radicals were prepared by

 $\dagger 1 \text{ G} = 10^{-4} \text{ T}.$

- ¹ Part 164, S. P. Mishra, M. C. R. Symons, K. O. Christe, R. D. Wilson, and R. I. Wagner, Inorg. Chem., 1975, 14, 1103.
 ² G. Born, A. Hofstätter, and A. Scharmann, Z. Physik., 1970,
- **240**, 163.
- ³ D. Schoemaker and J. L. Kolpus, Solid State Comm., 1970, 8,
- 435.
 ⁴ V. F. Koryagin and B. N. Grechushnikov, *Kristallografiya*, 1970, **15**, 985.
- ⁵ G. Born, A. Hofstätter, and A. Scharmann, Phys. Stat.
- Solidi, 1970, 37, 255.
 ⁶ J. L. Kolopus, C. B. Finch, and M. M. Abraham, *Phys. Rev.*, ⁷ R. J. Booth, H. C. Starkie, and M. C. R. Symons, J. Phys.
- Chem., 1972, 76, 141. ⁸ J-I. Isoya, H. Ishizuka, A. Yamasaki, and S. Fujiwara, Chem. Letters, 1972, 397.

reaction (1) on a rotating cryostat at 77 K¹¹ and are almost certainly correctly identified. The e.s.r. data,

$$PbMe_3Cl + Na \longrightarrow PbMe_3 + NaCl$$
 (1)

discussed below, are, however, somewhat unexpected for this species. In contrast, electron addition to PbPh₃Cl gave a centre containing both lead and chlorine atoms that we have tentatively described as the primary electron adduct, [PbPh₃Cl]⁻.¹²

There have been several recent e.s.r. studies of organotin radicals in irradiated solids.¹³⁻¹⁵ Also, SnMe₃ has been detected in the liquid phase, ¹⁶ as has $Sn[CH(SiMe_3)_2]^{\circ}$ for which ¹¹⁷Sn and ¹¹⁹Sn isotropic hyperfine coupling were measured.¹⁷ Our irradiation studies showed that SnMe₃ radicals are formed from SnMe₄, but evidence was also found for the parent anions, [SnMe₄]⁻, and for the methyl radical adduct SnMe₅.¹⁵ The dimer Sn₂Me₆ gave Me₂SnSnMe₃, but Sn₂Ph₆ gave a centre thought to be the parent anion, $[Sn_2Ph_6]^-$, with the extra electron primarily in the Sn–Sn σ^* orbital.

⁹ H. C. Starkie and M. C. R. Symons, J.C.S. Dalton, 1974, 731.
 ¹⁰ M. C. R. Symons, D. X. West, and J. G. Wilkinson, J.C.S.

- Dalton, 1974, 2247. ¹¹ J. E. Bennett and J. A. Howard, Chem. Phys. Letters, 1972,
- **15**, 322. ¹² O. P. Anderson, S. A. Fieldhouse, H. C. Starkie, and M. C. R. Symons, Mol. Phys., 1973, 26, 1561.
- ¹³ K. Höppner and G. Lassman, Z. Naturforsch., 1968, A23, 1758.
- 14 R. V. Lloyd and M. T. Rogers, J. Amer. Chem. Soc., 1973, 95, 2459.
- ¹⁵ S. A. Fieldhouse, A. R. Lyons, H. C. Starkie, and M. C. R. Symons, J.C.S. Dalton, 1974, 1966.
 ¹⁶ G. B. Watts and K. V. Ingold, J. Amer. Chem. Soc., 1972, 94,
- 491. ¹⁷ P. J. Davidson, A. Hudson, M. F. Lappert, and P. W. Lednor, J.C.S. Chem. Comm., 1973, 829.

In the present work, we describe similar studies of lead compounds exposed to high-energy radiation.

EXPERIMENTAL

Materials .- Triphenyl-lead bromide, triphenyl-lead chloride, and hexaphenyldilead were from Strem Chemicals Inc. The halides were purified by recrystallisation from ethanol, and hexaphenyldilead by recrystallisation from diethyl ether. Other materials were the highest grades available

atom and one chlorine atom. However, the ³⁵Cl hyperfine tensor components derived from the central region [Figure 1(a)] do not agree with those derived from the high-field region. In fact, the well defined features, having the appearance of asymmetric derivative curves rather than parallel and perpendicular features, give a coupling of 23 G which is close to $A_{iso}(^{35}Cl)$ derived from the central lines. This effect is probably a consequence of low molecular symmetry, such that A_{\parallel} ⁽³⁵Cl)

			E.s.	r. paramet	ers for variou	s organolead 1	adicals			
	Radical		²⁰⁷ Pb Hyperfine coupling ^a (MHz)			Other hyperfine coupling • (MHz)				
Substrate				A_{\perp}	Aiso		A_{\perp}	Aiso	g ª &	<i>g</i> ⊥ ª
PbPh.Cl	[PbPh.Cl]-				ca. 5 901 ^b	(³⁵ Cl) 104	36	21	1.96	2.00
	PbPh.Cl]+ •		372	346	355	(³⁵ Cl) 140	(-) 42	19	2.000	2.024
PbBrPh.	[PbBrPh.]-		6 651	6 460	$6\ 524$	(⁸¹ Br) 549	` 319	396	1.95	1.98
3	[PbBrPh.]+0				ca. 347	(⁸¹ Br) 901	ca. 0	300	1.99	ca. 2.1
PbMe.Cl	PbMe_Cli-				ca. 6 046 ^d	、 ,	d		ca.	2.00
Pb.Ph.	[Pb.Ph.]-	(i)	10 186	8 303	8 931				1 936	1.954
20	L2 65	(ii)	10 909	8 989	9 629					
PbMe.	[PbMe]- ·	()	10 062	$6\ 354$	7 590				1 926	$2\ 087$
(+ toluene)	PbMe.		8 518	$5\ 024$	6 189				1 917	2.113
PbEt.	PbEt.		7 359	3 924	5 069				1.904	2.091
PbMe,Cl	PbMe ₃ •		8 671	$5\ 169$	6 336				1.9139	2.1055
(+Na)	-									

TABLE 1

• Estimated using the full Briet-Rabi equation when necessary. • Only one set of features defined, giving $A(^{35}Cl) = 23$ G (see text). • Identification tentative. • Chlorine hyperfine splitting was not resolved on the high-field ²⁰⁷Pb feature and the central features were obscured by those from CH₃• and Me₃(CH₂) radicals. • J. E. Bennett, personal communication.

and were not further purified. The sample of pure trimethyl-lead chloride was kindly donated by Dr. J. E. Bennett.

Irradiations.-Samples in the form of fine powders or small droplets were cooled to 77 K and exposed to $^{60}Co \gamma$ rays in a Vickrad cell at a dose rate of 1.7 Mrad h⁻¹ for up to 2 h. In selected cases, samples were deoxygenated immediately prior to cooling, but this had no affect on the results.

E.S.R. Spectra.-These were recorded on a Varian E3 spectrometer at 77 K. Samples were annealed using a variable-temperature Dewar tube or by allowing them to warm in the empty insert Dewar, with addition of liquid nitrogen whenever significant changes in the e.s.r. spectra were observed.

RESULTS AND DISCUSSION

Interpretation of Spectra.-Results are summarised in Table 1. The spectra fall into two classes. One comprises signals in the free-spin (g 2) region from species containing non-magnetic isotopes and those showing only small hyperfine coupling to ²⁰⁷Pb, and the other comprises signals in the high-field region from centres exhibiting a large hyperfine interaction with ²⁰⁷Pb. (The corresponding low-field features, when detected, were generally less well defined than the high-field ones.)

The best defined spectra were obtained from PbPh₃Cl and PbBrPh₃ (Figures 1 and 2). Spectra from the former showed features from two paramagnetic species, A and B, of which A was lost rapidly on annealing. A quartet of lines in the high-field region was lost simultaneously [Figure 1(b)]. Centre A contains one lead

and $A_{\parallel}(^{207}\text{Pb})$ are non-coincident. Thus, in the central region the highly asymmetric ³⁵Cl components probably dominate the powder pattern, and the values obtained are thought to be the true components. However, for the ²⁰⁷Pb features, the turning points detected in the powder spectra will result from a fortuitous combination of the two asymmetric tensors and neither set of values will correspond to the true components. In the limit that the asymmetry for ²⁰⁷Pb is much greater (in field) than that for ³⁵Cl, the ²⁰⁷Pb data will approach the true values and the ³⁵Cl data will be correct for those directions. In the present case, no well defined parallel features were obtained, suggesting that the turning points are poorly defined. We can conclude only that the directions of the 207Pb and 35Cl hyperfine tensors differ considerably.

Centre B again apparently contains one chlorine and one lead atom but, in this case, the 207Pb hyperfine coupling is small. The main features are poorly defined in Figure 1(b) because of overlap, but are clear after annealing.

Very similar results were obtained from PbBrPh₃. The central features clearly relate to two centres, C and D in Figure 2(a). In this case, centre D was lost on annealing, leaving C together with the high-field quartet in Figure 2(b). Both centres appear to contain one lead and one bromine atom.

Results for PbMe₃Cl were less well defined. For the pure material, the central region was dominated by features from CH_3^{\bullet} and $PbMe_2(\dot{C}_2H_2)Cl$ radicals. No well defined high- or low-field features from radicals containing ²⁰⁷Pb were detected. On slight annealing the

J.C.S. Dalton

 CH_3 quartet was lost, revealing well defined features for $PbMe_2(CH_2)Cl$ radicals, including those from radicals containing ²⁰⁷Pb. These spectra closely resembled those previously assigned to $PbMe_3(CH_2)$ radicals.^{18,19} New high-field features including one with a ' parallel ' shape (E in Figure 3) were apparent in these spectra. Solutions in methanol (or CD_3OD), prepared at low temperature to inhibit solvolysis, gave, after irradiation at 77 K, a high-field, poorly resolved, quartet similar to that shown in Figure 1(*b*) (species F). The central features E were absent.

Spectra obtained from pure $PbMe_4$ and $PbEt_4$ were comparable. Strong features for CH_3^{\bullet} and $CH_3^{\bullet}CH_2^{\bullet}$ overlapped broader features for $PbMe_3(CH_2)$ and $PbEt_3^{\bullet}$ -(CHMe) (Figure 4). The former radicals were lost on slight annealing, leading to an enhancement of the feature for the latter, which showed well defined ²⁰⁷Pb satellite lines. In addition, broad intense perpendicular (lowfield) and parallel (high-field) features were obtained, closely resembling those assigned to PbMe₃ radicals.¹¹ These were accompanied by well defined high- and lowfield features from radicals containing ²⁰⁷Pb (Figure 4). Toluene glasses of these tetra-alkyl-lead compounds gave broadly comparable spectra except that alkyl radicals were not detected at 77 K. However, for PbMe4 only, the features assigned to PbMe3 radicals were much narrower and appeared as two strong lines (J and K) with two weak lines in between these. The spectra were simplified on annealing (Figure 5), centres J and K being retained whilst the two intermediate centres were lost.

Results for Pb_2Ph_6 were not clear cut. As shown in Figure 6(*a*), two intense features L and M appeared in the central region, together with a complex set of features in the high-field region [Figure (6*b*)]. In addition, a weaker absorption (O) having defined perpendicular and parallel components appeared between these, but no features were detected in the region expected for a corresponding $M_{\rm I} = +\frac{1}{2}$ line from ²⁰⁷Pb hyperfine coupling.

Identification.—Centre A obtained from PbPh₃Cl is thought to be the primary anion, [PbPh₃Cl]⁻. This could have one of three limiting structures: (a) that of a substituted benzene anion, "Ph-PbPh₂Cl; (b) a trigonal-bipyramidal structure, (I), comparable with those postulated for phosphoranyl radicals; ^{20,21} and (c) a σ^* structure, (II), of the type envisaged for radicals derived from N-halogenoamides ^{22,23} and [BrCN]⁻,²⁴ for example.

A. R. Lyons, G. W. Neilson, and M. C. R. Symons, *J.C.S. Faraday 11*, 1972, 1063.
 J. H. Mackey and D. E. Wood, *Mol. Phys.*, 1970, **18**, 783.

J. H. Mackey and D. E. Wood, Mol. Phys., 1970, 18, 783.
 T. Gillbro and F. Williams, J. Amer. Chem. Soc., 1974, 96, 5032.

²¹ D. J. Nelson and M. C. R. Symons, *J.C.S. Dalton*, 1975, 1164.
 ²² G. W. Neilson and M. C. R. Symons, *J.C.S. Faraday II*, 1972, 1582.

1972, 1582. ²³ G. W. Neilson and M. C. R. Symons, *Mol. Phys.*, 1974, 27, 1613.

i 1613.
 s ²⁴ S. P. Mishra, G. W. Neilson, and M. C. R. Symons, J.C.S. Faraday 11, 1974, 1280.

FIGURE 1 First-derivative X-band e.s.r. spectra for PbPh₃Cl after exposure to ${}^{60}Co \gamma$ -rays at 77 K: (a) in the free-spin region, showing features assigned to [PbPh₃Cl]⁻ (A) and [PbPh₃Cl]⁺ (B); and (b) showing the high-field ${}^{207}Pb$ features for [PbPh₃Cl]⁻

Possibility (a) is clearly incorrect for species A in view of the high spin densities on lead and chlorine. Structures (b) and (c) are both possible, but the fact that the suggests a structure intermediate between (I) and (II), in which at least two of the principle directions of the ²⁰⁷Pb and ³⁵Cl hyperfine tensors are well separated. If

FIGURE 2 First-derivative X-band e.s.r. spectra for PbBrPh₃ after exposure to 60 Co γ -rays at 77 K: (a) in the free-spin region, showing features assigned to [PbBrPh₃]⁻ (C) and [PbBrPh₃]⁺ (D); and (b) showing the high-field ²⁰⁷Pb feature for [PbBrPh₃]⁻

high-field ²⁰⁷Pb component gives different ³⁵Cl hyperfine coupling data from the central components strongly

we assume that the ³⁵Cl hyperfine tensor components derived from the central features are correct, then, if all the signs are positive, $A_{iso.} = 59$ MHz and 2B = 45 MHz (2B is the parallel component of the dipolar coupling). These give, by the usual approximate procedure of dividing by calculated atomic parameters,²⁵ ca. 1.25% 3s and 16% 3p character on chlorine. The remaining spin ²⁵ P. W. Atkins and M. C. R. Symons, 'The Structure of Inorganic Radicals,' Elsevier, Amsterdam, 1967. density is probably largely on lead. The isotropic coupling of *ca.* 5 900 MHz corresponds to *ca.* 21% 6s character on lead if one uses the isotropic coupling of *ca.* 28 000 MHz found for Pb³⁺ as a rough gauge.²⁶

Centre B, in contrast, has a low or even zero direct spin density on lead. The nearly isotropic 207 Pb hyperfine coupling is comparable with that for PbMe₃(CH₂) radicals (*ca.* 163 G), and we have previously argued that this derives entirely from a spin polarisation of the

FIGURE 3 First-derivative X-band e.s.r. spectrum for PbMe₃Cl after exposure to ⁶⁰Co γ -rays at 77 K, showing features assigned to PbMe₂(CH₂)Cl, together with ²⁰⁷Pb satellite lines, and a high-field feature, E, discussed in the text

carbon-lead σ -bonding electrons.¹⁸ We tentatively propose the radical cation [PbPh₃Cl]⁺ as the species responsible for these features. The difficulty with such cations is that the two $3p_{\pi}$ orbitals on chlorine are formally degenerate and, hence, a large positive g shift is expected for field along the Pb-Cl bond (z). In order to give results comparable with those obtained, we need to postulate a relatively large splitting of these levels. This should give a centre with a large hyperfine coupling along the $3p_x$ orbital with a g_x value of ca. 2.00 and small, probably negative, hyperfine coupling constants along yand z, with $g_z \gg 2.00$ and g_y between g_x and g_z . Our results are satisfactory for A_x and g_x , but g_y and g_z are surprisingly close together (ca. 2.024) for the structure envisaged. We favour [PbPh₃Cl]⁺ because it must be the primary cationic product and because we are unable to formulate reasonable alternatives (see below). In this case, we calculate a $3p_{\pi}$ spin density of *ca*. 47% on

²⁸ R. J. Booth, H. C. Starkie, and M. C. R. Symons, J.C.S. Dalton, 1973, 2233.

chlorine if A_{\perp} is negative. This is low for the structure proposed, but some averaging of the anisotropic coupling is expected at 77 K.

Centre C in irradiated PbBrPh₃ resembles A and is identified as the radical anion $[PbBrPh_3]^-$. The ²⁰⁷Pb hyperfine coupling is again large and, in this case, very poorly defined parallel features on the high- and lowfield features enable us to calculate the parallel and perpendicular components (Table 1). If these are close

TABLE 2									
Hyperfine parameters (MHz) for PbR3° radicals after sub-									
tracting orbital magnetic contributions									

0	U	
Radical	$2B_{\rm corr.}$	$A_{\rm corr}$
PbMe ₃ •	2 169	$6\ 244$
PbMe ₄]-•	$2 \ 341$	7 628
PbEt ₃ •	$2\ 138$	5 101
PbMe ₃ • *	$2\ 283$	6 280
	* From ref. 11.	

to the principal values, we calculate approximate spin densities of ca. 24 and 20% in the 6s and 6p orbitals on lead. These values must be considered as very approximate. The well defined central features give bromine hyperfine components that correspond to ca. 12% 4p character if A_{\perp} is positive. (A negative value for A_{\perp} gives $A_{\rm iso.} = -5$ G which is most improbable for the species envisaged.) This value is comparable with that deduced for chlorine in [PbPh₃Cl]⁻. In this case, since the bromine coupling constants obtained from the ²⁰⁷Pb features do not differ greatly from those deduced from the structure more closely resembles (II) than (I). The relatively large value of the isotropic coupling to bromine also favours this formulation.

The electron loss centre for PbMe₃Cl is clearly PbMe₂-($\dot{C}H_2$)Cl, possibly formed by loss of a proton from the primary cation. Methyl radicals were also detected, however, so the sequence of events could well be as in (2) and (3). The detection of CH₃[•] is evidence for (2),

$$[PbMe_3Cl]^+ \longrightarrow CH_3^{\bullet} + [PbMe_2Cl]^+ \qquad (2)$$

$$CH_3 + PbMe_3Cl \longrightarrow CH_4 + Pb(\dot{C}H_2)Cl$$
 (3)

and the increase in $[PbMe_2(CH_2)Cl]$ on annealing, when CH_3^{*} radicals were lost, is evidence for (3).

We were not able to detect the parent anions, $[PbMe_3-Cl]^-$, in the pure material irradiation, although they were detected in irradiated methanolic solution. This is surprising since we had expected that methanol would facilitate the process (4) by solvating the chloride ion.

$$PbMe_{3}Cl + e^{-} \longrightarrow PbMe_{3} + Cl^{-}$$
(4)

We are unable to explain the apparent absence of an electron-gain centre in the pure material. An extra feature (E in Figure 3) was obtained, but this does not have a low-field counterpart nor does it occur in the regions expected for $[PbMe_3Cl]^-$ or $PbMe_3^{\circ}$. We are unable to offer a reasonable interpretation.

FIGURE 4 First-derivative X-band e.s.r. spectra for PbEt₄ after exposure to ⁶⁰Co γ-rays at 77 K, showing (a) parallel and perpendicular features assigned to PbEt₃[•] (G) together with those assigned to Et[•] (H) and ²⁰⁷PbEt₃(CHMe) (I), and (b) outer features assigned to ²⁰⁷PbEt₃[•] (G)

FIGURE 5 First-derivative X-band e.s.r. spectra for PbMe₄ in toluene after exposure to ⁶⁰Co γ-rays at 77 K and slight annealing, showing (a) features assigned to PbMe₃[•](J) and, possibly, [PbMe₄]^{-•} (K), together with those assigned to PbMe₃(CH₂) and ²⁰⁷Pb-Me₃(CH₂) (I), and (b) features assigned to ²⁰⁷PbMe₃[•] (J) and, possibly, [²⁰⁷PbMe₄]^{-•} (K) (the α features are discussed in the text)

Thus, none of these lead halides gave the PbR_3^{\bullet} radicals obtained by Bennett and Howard ¹¹ on treatment with sodium [equation (1)]. In marked contrast, $PbMe_4$ and $PbEt_4$ gave high yields of these radicals (Figure 4).

metrical pyramidal structure (III), then, whilst the perpendicular g value of ca. 2.1 is reasonable, especially in view of the large spin-orbit coupling constant for lead, the equally large shift to $g_{\parallel} \approx 1.9$ is most difficult

FIGURE 6 First-derivative X-band e.s.r. spectra for Pb_2Ph_6 after exposure to ${}^{60}Co \gamma$ -rays at 77 K, showing (a) central features L and M and the parallel and perpendicular O features, and (b) the very high-field N set of lines discussed in the text

These species have most unusual magnetic properties and, indeed, we were quite unsure about identification before the publication of Bennett and Howard's results.¹¹ Their experiment is so direct that we must accept their identification. If these radicals have the expected symto explain. A small negative shift could be expected because of the large positive value for g_{\perp} , but a value of 1.9 suggests considerable admixture of vacant orbitals. One naturally turns to the empty outer d or f orbitals or to the σ^* Pb-C orbitals. However, in first order, these are not expected to mix with the $5s + 5p_z$ hybrid orbital of the unpaired electron in such a way as to contribute orbital angular momentum. Some distortion from structure (III) seems to be indicated.

Another interpretative problem arises from the ²⁰⁷Pb hyperfine coupling. The computed isotropic coupling is reasonable but the anisotropic coupling is exceptionally large. Using the calculated $2B^0$ value of ca. 350 G (estimated from the wavefunctions of Froese²⁷) an apparent spin density of ca. 218% is estimated. This high value is reminiscent of our earlier results for Pb³⁺ centres,⁷ but we have since shown that the high anisotropies reported were the result of using a simplified version of the Briet-Rabi equation, the revised values being quite reasonable.26 We are satisfied that the present high value does not stem from incorrect calculations.

These derivations of 6ϕ character are, however, incorrect in that contributions from orbital paramagnetism have been neglected. For g values of ca. 2.1 and 1.9 some correction should be made. Using equations (8) given by Knight and Weltner,²⁸ we have converted

$$A_{\parallel} = A_{\rm iso.} + 2A_{\rm dip.} - a(\Delta g_{\parallel}) \tag{5}$$

$$A_{\perp} = A_{\rm iso.} - A_{\rm dip.} + a(\Delta g_{\perp}) \tag{6}$$

$$a = g_{\rm e}g_{\rm n}\beta_{\rm e}\beta_{\rm n}\langle r^{-3}\rangle \tag{7}$$

$$A_{\rm dip.} = g_{\rm e} g_{\rm n} \beta_{\rm e} \beta_{\rm n} \langle (3 \cos^2 \theta - 1) \ 2r^{-3} \rangle \qquad (8)$$

the data given in Table 2 into 'free-spin' values and, hence, obtain 2B values of ca. 2 000 MHz (714 G). This is still far too large. Bennett and Howard ¹¹ suggested that the calculated $2B^0$ value needs to be modified because of relativistic corrections. Mackey and Wood 29 showed that such corrections are needed for A_{iso} values reported for the heavier atoms. However, it is by no means clear that the calculated $2B^0$ values should be similarly corrected. When experimental $2B^0$ values are available, there is good agreement with theory and corrections are not required. The sudden change from normal values for the corresponding tin radicals such as SnMe₃[•] (refs. 11 and 15) is surely significant, and does suggest that the high atomic number for lead is in some way responsible. The fact that the parent anions, such as $[PbBrPh_3]^-$, appear to have normal values for 2B and for g_{\parallel} seems to contradict this, but, as stressed above, this might be because the values derived from the powder spectra are not the principal values. Thus, the low

value for g_{\parallel} and the large 2B value for PbR₃ radicals remain unexplained.

The appearance of multiple lines for PbR₃ radicals in toluene glasses is also difficult to explain. However, after slight annealing, only two strong sets remained [Figure 5(b)]. We suggest that the centre exhibiting the largest coupling to 207 Pb is $[PbR_4]^{-1}$ rather than PbR_3^{\cdot} . The anion $[SnMe_4]^{-1}$ was postulated to explain a set of features obtained from irradiated SnMe₄.^{15,30} In that case, the ¹¹⁹Sn coupling constants were only slightly greater than those for the SnR₃ radicals and the g values were similar. This is, in our view, the best explanation of the results for the species with broader lines (B) shown in Figure 5(b). If this is correct, then the large negative shift for g_{\parallel} and the large anisotropy again need to be explained. It is unfortunate that ¹H hyperfine coupling cannot be detected. By analogy with the isostructural phosphoranyl radicals, an isotropic coupling of ca. 4-5G is expected.³¹ This is about twice the value expected for the proton coupling in PbMe₃ radicals.¹⁶ Our linewidths fix upper limits of ca. 5 G for both radicals. The other weak features (α) may possibly be due to K centres such as (IV).

We had hoped to detect the parent cations and anions in irradiated Pb₂Ph₆. Both these ions are expected to have an unpaired electron in the Pb-Pb bond and, hence,

to show hyperfine coupling to two equivalent ²⁰⁷Pb nuclei. However, the probability of radicals containing two ²⁰⁷Pb nuclei is low and such features would have had intensities close to the noise level, if present.

The most interesting features are the high-field lines shown in Figure 6(b). We interpret these in terms of two very similar lead centres having slightly non-axial parameters. The two groups of features have equal intensities, so one reasonable possibility is that they are due to the parent cations or anions in slightly asymmetric crystal sites such that one lead atom differs slightly from the other. This is supported by the absence of such splitting on the central feature with which these are associated. Since the g values are all less than 2.0023, we suggest that the centre is the parent anion, having the extra electron in the Pb-Pb σ^* orbital. The isotropic ²⁰⁷Pb hyperfine coupling constants (3 277 and 3 533 G) correspond approximately to 6s-orbital populations of ca. 32 and 35%. The anisotropic coupling constants (482 and 492 G) are again greater than the

 ²⁷ C. Froese, J. Chem. Phys., 1966, 45, 1417.
 ²⁸ L. B. Knight and W. Weltner, J. Chem. Phys., 1971, 55, 2061.
 ²⁹ J. H. Mackey and D. E. Wood, J. Chem. Phys., 1970, 52, 4914.

³⁰ S. A. Fieldhouse, H. C. Starkie, and M. C. R. Symons, Chem. Phys. Letters, 1973, 23, 508.
 ^{\$1} P. J. Krusic, W. Mahler, and J. K. Kochi, J. Amer. Chem.

Soc., 1972, 94, 6033.

calculated $2B^0$ value, and can only be used to establish that there is considerable population of the $6p_z$ orbitals.

No other centre was firmly identifiable. The second intense central feature having g = 2.002 does not seem to have any associated satellite lines from ²⁰⁷Pb nuclei. The high-field set (H) could have been the $M_{\rm I}$ (²⁰⁷Pb) = $-\frac{1}{2}$ lines, but there was no sign of the corresponding $+\frac{1}{2}$ features. Thus, we are unable to make further identifications. It is curious that well defined features from the parent radical cation or PbPh₃[•] were not detected. However, the overall yields were low and, since PbPh₃[•] is expected to have an e.s.r. spectrum closely resembling those for the trialkyl derivatives, the spectrum would be spread over a wide field range and, hence, the parallel and perpendicular features would be of low intensity.

Aspects of Mechanism.—One of the most interesting results is that PbR_3 radicals are extensively formed from PbR_4 molecules but not, under our conditions, from PbR_3X (X = halogen) molecules. This is the inverse of expectation. A reasonable reaction for PbR_4 is a ' photolysis' (9), and certainly R' radicals were formed

$$PbR_4 \longrightarrow PbR_3 + R^{\bullet}$$
 (9)

concurrently. This homolysis may, of course, occur by

the two-step mechanism (10) and (11). However,

$$PbR_{4} \longrightarrow [PbR_{4}]^{+\cdot} + e^{-} \qquad (10)$$
$$[PbR_{4}]^{+\cdot} + e^{-} \longrightarrow PbR_{3}^{\cdot} + R^{\cdot} \qquad (11)$$

Gardner and Kochi³² showed that the parent cations readily release alkyl radicals [equation (12)] so the

$$[PbR_4]^+ \longrightarrow R^* + [PbR_3]^+$$
(12)

presence of alkyl radicals in our studies does not confirm processes (9) or (10) and (11).

We conclude that the radiation properties of these organolead compounds are very similar to those of the corresponding tin derivatives.¹⁵ The e.s.r. spectra for the PbR₃ centres, however, differ markedly because of the curious, but characteristic, positive and negative g shifts, and the very large anisotropic coupling to ²⁰⁷Pb.

We thank Dr. J. E. Bennett for communicating his latest results and for a sample of $PbMe_3Cl$, Dr. O. P. Anderson for early work in this field, and the S.R.C. for grants (to S. A. F., R. J. B., and H. C. S.).

[5/2477 Received, 19th December, 1975]

³² H. C. Gardner and J. K. Kochi, J. Amer. Chem. Soc., 1974, 96, 1982.