Crystal Structure of Tetraphenylarsonium cis-Tetracarbonyl(chloromercurio)(dichloromercurio)ferrate

By Peter D. Brotherton, David L. Kepert, Allan H. White,* and Stanley Bruce Wild, Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands 6009, Western Australia

The crystal structure of the title compound has been determined by X-ray diffraction (heavy-atom) methods and refined by least squares to $R 0.059$ for 2917 observed reflections. Crystals are triclinic $P \overline{1}, a=11.848(3), b=$ $13.524(4), c=11.624(3) \AA$, $\alpha=123.87(2), \beta=94.01(2), \gamma=90.91(2)^{\circ}, Z=2$. Within the anion, the two mercury atoms are bonded cis in the co-ordination sphere of the six-co-ordinate iron atom [$\mathrm{Fe}-\mathrm{Hg} 2.560$ (3) and 2.516 (4) $\left.\AA, \mathrm{Hg}-\mathrm{Fe}-\mathrm{Hg} 80.3(1)^{\circ}\right]$. The anion lies close to a centre of symmetry and is linked to its inversion image by one of the chlorine atoms. The reduction in the $\mathrm{Hg}-\mathrm{Fe}-\mathrm{Hg}$ angle from the regular octahedral value is shown to be a consequence of the more extended $\mathrm{Fe}-\mathrm{Hg}$ relative to the $\mathrm{Fe}-\mathrm{CO}$ bonds, rather than to $\mathrm{Hg} \cdots \mathrm{Hg}$ interactions.

When cis- $\left[\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{HgCl})_{2}\right]$ is' treated with amines or halide ions addition reactions occur at the mercury atoms rather than substitution of carbonyl groups. ${ }^{1}$ For example, pyridine readily adds to both of the chloro-mercurio-groups forming cis- $\left[\mathrm{Fe}(\mathrm{CO})_{4}\{\mathrm{HgCl}(\mathrm{py})\}_{2}\right]$, the crystal structure of which has been determined. ${ }^{2}$ Similarly, the reaction between $\left[\mathrm{AsPh}_{4}\right] \mathrm{Cl}$ and $c i s-\left[\mathrm{Fe}(\mathrm{CO})_{4}^{-}\right.$
${ }_{1}$ A. A. Chalmers, J. Lewis, and S. B. Wild, J. Chem. Soc. (A), 1968, 1013.
${ }_{2}$ R. W. Baker and P. Pauling, Chem. Comm., 1970, 573.
$\left(\mathrm{HgCl}_{2}\right]$ in boiling methanol yields pale yellow prisms of $\left[\mathrm{AsPh}_{4}\right]\left[\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{HgCl})\left(\mathrm{HgCl}_{2}\right)\right]$. It was therefore considered of interest to determine the structure of this complex.

EXPERIMENTAL

The crystal used was a prism $0.08 \times 0.10 \times 0.20 \mathrm{~mm}$. Unit-cell calibration was carried out by a least-squares fit of the angular parameters of 15 reflections with $2 \theta c a .30^{\circ}$ centred in the counter aperture of a Syntex $P I$ four-circle
diffractometer. A unique data set in the range $20<100^{\circ}$ was gathered by a conventional 2θ - θ scan, yielding 3075 reflections of which 2917 with $I>2 \sigma(I)$ were considered observed, and used in the structure determination and refinement.

Crystal Data.- $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{AsCl}_{3} \mathrm{FeHg}_{2} \mathrm{O}_{4}, \quad M=1023$, Triclinic, $a=11.848(3), b=13.524(4), c=11.624(3) \AA$,,$\alpha=$ 123.87(2), $\beta=94.01(2), \gamma=90.91(2)^{\circ}, U=1540.1(6) \AA^{3}$, $D_{\mathrm{m}}=2.18(2), Z=2, D_{\mathrm{c}}=2.20 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=946$, nickel-filtered $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $267 \mathrm{~cm}^{-1}$. Space group $P \overline{1}\left(C_{i}^{1}\right.$, no. 2). Neutral atom

Table 1

Atom fractional co-ordinates, with least-squares estimated standard deviations in parentheses (for $\mathrm{Hg} \times 10^{5}$; As, Fe , and $\mathrm{Cl} \times 10^{4} ; \mathrm{O}$ and $\mathrm{C} \times 10^{3}$)

(a) The cation			
As	$8856(2)$	4951 (2)	2399 (2)
Ph ring (1)			
C(1)	982(1)	637(1)	326(2)
$\mathrm{C}(2)$	961 (2)	723(2)	301 (2)
C(3)	$1031(2)$	829(2)	377 (3)
C(4)	$1115(2)$	$853(2)$	482 (3)
C(5)	$1139(2)$	759(2)	503(3)
C(6)	$1074(2)$	649(2)	423(2)
Ph ring (2)			
C(1)	975(1)	361(2)	167(2)
$\mathrm{C}(2)$	947(2)	$267(2)$	180 (2)
$\mathrm{C}(3)$	$1008(2)$	169(2)	120(2)
$\mathrm{C}(4)$	$1099(2)$	159(2)	041 (2)
C(5)	1 126(2)	251(2)	026(2)
C(6)	$1063(2)$	$355(2)$	089(2)
Ph ring (3)			
C(1)	792(1)	505(2)	374(2)
$\mathrm{C}(2)$	818(2)	597(2)	513(2)
$\mathrm{C}(3)$	748(2)	604(2)	609(2)
$\mathrm{C}(4)$	656(2)	513(2)	563(2)
$\mathrm{C}(5)$	$635(2)$	425(2)	426(3)
$\mathrm{C}(6)$	705(2)	$417(2)$	328 (2)
Ph ring (4)			
$\mathrm{C}(1)$	792(2)	484(2)	092(2)
$\mathrm{C}(2)$	703(2)	563(2)	132(2)
C(3)	635(2)	554(2)	023(3)
$\mathrm{C}(4)$	654(2)	471(2)	-120(3)
C(5)	741(2)	395(2)	-149(2)
$\mathrm{C}(6)$	813(2)	399(2)	-049(2)
(b) The anion			
Fe	3 593(2)	0 168(3)	$2844(3)$
C(1)	$222(2)$	062 (2)	319(2)
$\mathrm{O}(1)$	129(2)	087(2)	338(2)
$\mathrm{C}(2)$	372(2)	-060(2)	372(2)
$\mathrm{O}(2)$	379(1)	-111(1)	422(1)
$\mathrm{C}(3)$	317(2)	-123(2)	122(2)
$\mathrm{O}(3)$	287(1)	-208(1)	013 (1)
C(4)	424(2)	$162(2)$	427(2)
$\mathrm{O}(4)$	464(2)	251(1)	513(2)
$\mathrm{Hg}(1)$	$56093(7)$	-04661(8)	$22509(8)$
$\mathrm{Cl}(1)$	$7095(4)$	-1350(4)	2896 (5)
$\mathrm{Hg}(2)$	$39381(7)$	$09702(8)$	13 899(9)
$\mathrm{Cl}(2)$	4 376(4)	$2420(4)$	$0829(4)$
$\mathrm{Cl}(3)$	6 843(4)	$0738(4)$	$1518(4)$

scattering factors were used, those for $\mathrm{Hg}, \mathrm{As}, \mathrm{Fe}$, and Cl being corrected for anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right) .^{3,4}$

The structure was solved by the heavy-atom method and
\dagger For details see Notices to Authors, No. 7, J.C.S. Dalton, Index issue, 1975.
${ }^{3}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{4}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
refined by block-diagonal (9×9) least squares; in the final stages of refinement, a full-matrix procedure was approximated by refining the parameters of the anion and the phenyl rings as single blocks. All the atoms

Table 2

Interatomic distances (\AA) and angles (${ }^{\circ}$), with leastsquares estimated standard deviations in parentheses
(a) Cation geometry
(i) The phenyl rings

	(1)	(2) (3)	(4)
As-C(1)	1.90 (2)	1.90 (2) 1.93(2)	1.91 (2)
As-C(1)-C(2)	120.8(13)	121.0(14) 117.6(15)	116.6(15)
As-C(1)-C(6)	115.8(18)	117.6(19) 118.8(13)	119.4(17)
Mean C-C 1.40 Mean C-C-C 120			
(ii) Arsenic angular geometry			
$\mathrm{C}(11)-\mathrm{As}-\mathrm{C}(21)$	109.7(7)	$\mathrm{C}(21)-\mathrm{As}-\mathrm{C}(3 \mathrm{I})$	$111.0(10)$
$\mathrm{C}(11)-\mathrm{As}-\mathrm{C}(31)$	109.3 (7)	$\mathrm{C}(21)-\mathrm{As}-\mathrm{C}(41)$	109.6(8)
$\mathrm{C}(11)-\mathrm{As}-\mathrm{C}(41)$	108.1(10)	$\mathrm{C}(31)-\mathrm{As}-\mathrm{C}(41)$	109.1(9)
(b) Anion geometry			
$\mathrm{Fe}-\mathrm{C}(1)$	1.73(2)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)$	93.4(9)
$\mathrm{Fe}-\mathrm{C}(2)$	1.81 (3)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(4)$	97.7(12)
$\mathrm{Fe}-\mathrm{C}(3)$	$1.85(1)$	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{Hg}(1)$	83.4 (6)
$\mathrm{Fe}-\mathrm{C}(4)$	1.83(2)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{Hg}(2)$	163.6(6)
$\mathrm{Fe}-\mathrm{Hg}(\mathrm{l})$	2.560(3)	$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$	165.1(13)
$\mathrm{Fe}-\mathrm{Hg}(2)$	2.516(4)	$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{Hg}(\mathrm{I})$	84.3 (6)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$	99.2(12)	$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{Hg}(2)$	82.8(9)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)$	95.0 (9)	$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{Hg}(\mathrm{l})$	87.1(7)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(4)$	93.0 (9)	$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{Hg}(2)$	83.7(11)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{Hg}(1)$	177.3(11)	$\mathrm{Hg}(1)-\mathrm{Fe}-\mathrm{Hg}(2)$	80.3(1)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{Hg}(2)$	97.1(11)		
$\mathrm{C}(1)-\mathrm{O}(1)$	1.16(3)	$\mathrm{Fe}-\mathrm{C}(\mathrm{I})-\mathrm{O}(1)$	177(2)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.13(4)	$\mathrm{Fe}-\mathrm{C}(2)-\mathrm{O}(2)$	177(1)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.11(2)	$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{O}(3)$	176(2)
$\mathrm{C}(4)-\mathrm{O}(4)$	1.11 (2)	$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{O}(4)$	179(3)
$\mathrm{Hg}(1) \cdots \mathrm{Hg}(2)$	3.272 (6)	$\mathrm{Fe}-\mathrm{Hg}(1)-\mathrm{Cl}(1)$	137.9(2)
$\mathrm{Hg}(1)-\mathrm{Cl}(1)$	2.443 (6)	$\mathrm{Fe}-\mathrm{Hg}(2)-\mathrm{Cl}(2)$	159.0(1)
$\mathrm{Hg}(2)-\mathrm{Cl}(2)$	2.446 (6)	$\stackrel{\mathrm{Fe}-\mathrm{Hg}(1)-\mathrm{Cl}(3)}{ }$	116.7(1)
$\mathrm{Hg}(1)-\mathrm{Cl}(3)$	2.676(6)	$\mathrm{Fe}-\mathrm{Hg}(2)-\mathrm{Cl}\left(3^{\mathrm{I}}\right)$	95.1(1)
$\mathrm{Hg}\left(2^{\mathrm{I}}\right)-\mathrm{Cl}(3)$	2.899(4)	$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(3)$	101.0(2)
		$\mathrm{Cl}(2)-\mathrm{Hg}(2)-\mathrm{Cl}\left(3{ }^{\text {I }}\right.$)	88.6(2)
		$\mathrm{Hg}(1)-\mathrm{Cl}(3)-\mathrm{Hg}\left(2^{\mathrm{I}}\right)$	90.8(1)

Roman numeral I denotes atom at $1-x, \bar{y}, \bar{z}$.
were refined anisotropically according to the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2} \ldots+2 U_{23} k^{2} b^{*} c^{*}\right)\right]$. Hydrogen atoms were not located in difference maps and were not included in the refinement. At convergence all parameter shifts were $<2 \sigma, R$ being 0.059 and $R^{\prime}\left[=\left(\Sigma w| | F_{0}\left|-\left|F_{\mathrm{c}} \|^{2}\right|\right.\right.\right.$ $\left.\left.\Sigma w\left|F_{0}\right|^{2}\right)^{\frac{1}{2}}\right]$ being 0.071 with the parameter $n=2$ being found appropriate in a weighting scheme of the form $w=$ $\left[\sigma^{2}\left(F_{0}\right)+10^{-4} n\left(F_{0}\right)^{2}\right]^{-1}$.

Computation was carried out on the local CDC 6200 machine with a local variant of the ' X-Ray ' 72 ' program system. ${ }^{5}$ Structure amplitudes, anisotropic thermal parameters, and details of planes through phenyl rings are deposited as Supplementary Publication No. SUP 21753 ($\mathbf{1 5} \mathrm{pp} ., 1$ microfiche). \dagger Phenyl carbon atoms are labelled $\mathrm{C}(n 1-6), n=1-4$ being the ring number with $\mathrm{C}(n 1)$ attached to the arsenic atom. The metal environments are labelled as shown in Figure 1. Results are given in Tables 1-3.

[^0]Table 3
Least-squares planes through the iron environment in the form $p X+q Y+r Z=s$ where the orthogonal \AA frame (X, Y, Z) is defined by X parallel to a, Z in the $a c$ plane. Atom deviations (\AA) are in square brackets; σ (\AA) is the estimated standard deviation of the defining atoms

$10^{4} \mathrm{P}$	$10^{4} q$	$10^{4} r$	s	σ	χ
Plane (i): Fe, C(1), $\mathrm{C}(3), \mathrm{C}(4), \mathrm{Hg}(1)$					
0626	4085	-9106	-2.459	0.09	99.8
[$\mathrm{Fe}-0.01, \mathrm{C}(1)-0.05, \mathrm{C}(3) 0.10, \mathrm{C}(4) 0.10, \mathrm{Hg}(1)-0.05]$					
Plane (ii): $\mathrm{Fe}, \mathrm{C}(2)-(4), \mathrm{Hg}(2)$					
9603	-2787	-0161	3.928	0.13	191
[$\mathrm{Fe}-0.17, \mathrm{C}(2) 0.14, \mathrm{C}(3)-0.04, \mathrm{C}(4)-0.04, \mathrm{Hg}(2) 0.11]$					
Plane (iii): $\mathrm{Fe}, \mathrm{C}(1), \mathrm{C}(2), \mathrm{Hg}(1), \mathrm{Hg}(2)$					
2829	8733	4180	2606	0.02	7.78
$\begin{aligned} & {[\mathrm{Fe} 0.02, \mathrm{C}(1) 0.01, \mathrm{C}(2)-0.03, \mathrm{Hg}(1) 0.01, \mathrm{Hg}(2)-0.02,} \\ & \left.\quad \mathrm{Cl}(1) 0.24, \mathrm{Cl}(2) 0.80, \mathrm{Cl}(3) 0.86, \mathrm{Cl}\left(2^{\mathrm{I}}\right)-2.72\right] \end{aligned}$					

DISCUSSION

The unit-cell contents (Figure 1) comprise $\left[\mathrm{AsPh}_{4}\right]^{+}$ cations, which adopt their usual configuration based on the AsC_{4} tetrahedron and are unremarkable in their

Figure 1 Unit-cell contents projected down c, showing the atom-labelling system
geometry, and the anionic organometallic species. Within the latter the co-ordination of the iron atom is pseudo-octahedral with the four carbonyl groups and the two mercury atoms mutually cis as is the case in the other derivatives of this type which have been studied. ${ }^{2,6}$ The iron-carbonyl geometries are unremarkable. The iron-mercury distances differ significantly, but are nonetheless comparable to previous observations, and as
${ }^{6}$ H. W. Baird and L. F. Dahl, J. Organometallic Chem., 1967, 7, 503.
${ }^{7}$ D. Grdenić, Arkiv. Kemi, 1950, 2, 14.
${ }^{8}$ P. D. Brotherton and A. H. White, J.C.S. Dalton, 1973, 2698.
in the other cis $-\mathrm{FeHg}_{2}$ derivatives the $\mathrm{Hg}-\mathrm{Fe}-\mathrm{Hg}$ angle is significantly reduced from 90°. Although the structure determination confirms the previous assignment of the anion as $\left[\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{HgCl})\left(\mathrm{HgCl}_{2}\right)\right]^{-}$, the species lies close to an inversion centre and interacts with its ($1-x, \bar{y}, \bar{z}$) image and is more correctly regarded as a dimer. Atoms $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ are primarily associated with $\mathrm{Hg}(1)$ and $\mathrm{Hg}(2)$ respectively, the $\mathrm{Hg}-\mathrm{Cl}$ distances being equal $[2.443(6)$ and $2.446(6) \AA]$ although the $\mathrm{Fe}-\mathrm{Hg}-\mathrm{Cl}$ angles are considerably different $[137.9(2)$ and $\left.159.0(1)^{\circ}\right]$ and there is a long interaction $\mathrm{Cl}(2) \cdots \mathrm{Hg}(1)$ at $1-x, \bar{y}, \bar{z}$ of $3.044(4) \AA$. The two anions are bridged by $\mathrm{Cl}(3)[\mathrm{Cl}(3)-\mathrm{Hg}(1) 2.676(6), \mathrm{Cl}(3)-\mathrm{Hg}(2)$ at $1-x, \bar{y}, \bar{z}$ $2.899(4) \AA$]. The $\mathrm{Hg}-\mathrm{Cl}$ distances involving effectively non-bridging chlorine atoms are longer than those for $\mathrm{HgCl}_{2}\left[2.25,{ }^{7} 2.23(2)\right.$ (crystal), ${ }^{8}$ and $2.34 \AA$ (vapour) $\left.{ }^{9}\right]$, although both mercury geometries are considerably perturbed from linearity.

The stereochemical arrangement of any number of ligands about a metal atom can be calculated by minimizing the total repulsion energy between all donor atoms, or alternatively between all metal-ligand bonds. ${ }^{10}$ The stereochemistry for compounds in which two unidentate ligands are different from the other four is shown in Figure 2. The M-A, M-B, M-C, and M-D bond lengths are defined as unity, and the $M-E$ and $\mathrm{M}-\mathrm{F}$ bond lengths defined as R. Points where M-E and $\mathrm{M}-\mathrm{F}$ intersect the sphere of unit radius are denoted by E^{\prime} and F^{\prime} respectively. The location of A, B, C, D, E^{\prime}, and F^{\prime} are given by the spherical co-ordinates ϕ_{i} and θ_{i}, the axes being defined so that $\phi_{E^{\prime}}=\phi_{F^{\prime}}, \theta_{E^{\prime}}=90$, and $\theta_{\mathrm{F}^{\prime}}=270^{\circ}$. The distance between any two points on the surface of the sphere is given by $d_{i j}=[2-$

Figure 2 General stereochemistry of $\mathrm{MX}_{4} \mathrm{Y}_{2}$
$\left.2 \cos \phi_{i} \cos \phi_{j}-2 \sin \phi_{i} \sin \phi_{j} \cos \left(\theta_{i}-\theta_{j}\right)\right]$. Distances between atoms E and F and other donor atoms are given by expressions of the type $d_{\mathrm{AE}^{2}}=(1-R)^{2}+R d_{\mathrm{AE}^{\prime}}{ }^{2}$ and $d_{\mathrm{EF}}=R d_{\mathrm{E}^{\prime} \mathrm{F}^{\prime}} . \quad$ As usual it is assumed that the repulsion
${ }^{9}$ A. H. Gregg, G. C. Hampson, G. I. Jenkins, P. L. F. Jones, and L. E. Sutton, Trans. Faraday Soc., 1937, 33, 852.
${ }^{10}$ J. C. Dewan and D. L. Kepert, J.C.S. Dalton, 1975, 959 and refs. therein.
energy $u_{i j}$ between any two donor atoms is proportional to some inverse power n of the distance between them. The value of n is not known, but the best agreement with experiment appears to be with values in the range 6-10. The total repulsion energy U is then as in ($\mathbf{1}$)

$$
\begin{equation*}
U=\sum_{i j} u_{i j}=\sum_{i j} a d_{i j}^{-n}=a X \quad(i<j) \tag{I}
\end{equation*}
$$

where a is a proportionality constant and X is the repulsion-energy coefficient calculated from the value of n and the geometry of the co-ordination polyhedron.

Figure 3 Variation of angular co-ordinates $\left({ }^{\circ}\right)$ for cis-MX $\mathbf{M}_{\mathbf{4}} \mathrm{Y}_{\mathbf{2}}$ as a function of bond-length ratio $R . \quad n=1(\cdots), 6(---)$, and $12(-)$

Two minima are found on each potential-energy surface. The first is the conventional cis-octahedral structure with $\phi_{E^{\prime}}=\phi_{F^{\prime}} c a .45, \phi_{\mathrm{A}}=\phi_{\mathrm{D}} c a .90, \phi_{\mathrm{B}}=\phi_{0}$ ca. $135, \theta_{\mathrm{A}}=0, \theta_{\mathrm{B}}=270, \theta_{\mathrm{O}}=90$, and $\theta_{\mathrm{D}}=180^{\circ}$. The variation of $\phi_{\mathrm{A}}, \phi_{\mathrm{B}}$, and $\phi_{\mathrm{E}^{\prime}}$ with the bond-length ratio R is shown in Figure 3. Of particular relevance to the present work is the observation that as R increases above unity, ϕ_{E} initially decreases from 45°, reaching values of $41-42^{\circ}$ for $R 1.2-1.4$. As the $\mathrm{M}-\mathrm{E}$ and $\mathrm{M}-\mathrm{F}$ bond lengths further increase the angular parameters approach the tetrahedral values, $\phi_{\mathbb{A}}=\phi_{\mathbb{E}^{\prime}}=$ 54.7 and $\phi_{\mathrm{B}}=125.3^{\circ}$. The observation that the $\mathrm{Hg}-\mathrm{Fe}-\mathrm{Hg}$ angle $\left(2 \phi_{\mathrm{E}^{\prime}}\right)$ is reduced from the regular octahedral value of 90 to 80.3° is therefore not a consequence of direct $\mathrm{Hg}-\mathrm{Hg}$ bonding but simply a consequence of the more extended $\mathrm{Fe}-\mathrm{Hg}$ bonds compared
with the $\mathrm{Fe}-\mathrm{CO}$ bonds. The angles which the $\mathrm{Fe}-\mathrm{CO}$ bonds make with the two-fold axis, $\phi_{\mathrm{A}} 82.6$ and ϕ_{B} 130.4°, are also in good agreement with these calculations for $R 1.3$.

The second minimum on the potential-energy surfaces corresponds to the conventional trans-octahedral structure, $\phi_{E^{\prime}}=\phi_{F^{\prime}}=90, \phi_{\mathrm{A}}=\phi_{\mathrm{D}}=\left(180-\phi_{\mathrm{B}}\right)=(180-$ $\left.\phi_{\mathrm{O}}\right) c a .45$, and $\theta_{\mathrm{A}}=-\theta_{\mathrm{B}}=\left(180-\theta_{\mathrm{C}}\right)=\left(\theta_{\mathrm{D}}-180\right)^{\circ}$. At high values of $R(n=1, R>1.9 ; n=6, R>1.4$; $n=12, R>1.3), \theta_{\mathrm{A}} \neq 0$ corresponding to a puckering of the ABCD plane, until the tetrahedron is again approached. For purposes of comparison the stability of the planar trans-octahedral structure defined by θ zero was also calculated. The stability of the cis- and trans-octahedral structures relative to the planar transoctahedral structure is shown in Figure 4 for $n=6$. It can be seen that for $R<c a .0 .8$, the planar trans structure is the most stable, for $R c a .0 .8-1.2$ the planar trans and cis structures are of comparable

Figure 4 Energy (arbitrary units) of cis-(a) and trans-octahedral (b) forms of $\mathbf{M X}_{4} \mathrm{Y}_{2}$ relative to the planar octahedral form (c) as a function of the bond-length ratio, R
stability, and for $R>c a .1 .2$ the cis structure is the most stable. Similar relations are obtained for $n=3$ 12. For $n=1$, the planar trans structure remains slightly more stable even for $R>1.2$.
[5/1703 Received, 4th September, 1975]

[^0]: 5 ' X-Ray' program system, Technical Report TR 192, the University of Maryland Computer Science Centre, U.S.A., version of June 1972.

