Vibrational and Nuclear Magnetic Resonance Spectra of some Complexes of Trihalogeno(trihalogenophosphine)platinate(1), and their Methano-**Iysis Reactions**

By Christopher Crocker, Peter L. Goggin,* and Robin J. Goodfellow, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Tetrabutylammonium salts of the anions $[PtX_3(PY_3)]^-$ (X = CI, Br, or I; Y = F or CI) and $[PtBr_3(PBr_3)]^-$ have been isolated and their Raman and infrared spectra studied in detail. Fluorine-19, 31P, and 19F-{195Pt} n.m.r. spectra have been recorded as have ³¹P n.m.r. spectra of $[PtBr_3L]^-$ (L = PBrCl₂ or PBr₂Cl) prepared *in situ*. The anions $[PtX_3{P(OMe)_3}]^-$ (X = Cl, Br, or I) have been obtained by methanolysis of their PCl₃ or PBr₃ equivalents. N.m.r. parameters of these complexes and the methanolysis intermediates $[PtX_3{PY_n(OMe)_{3-n}}]^-$ (n=1 or 2) are reported. Trends in ³¹P co-ordination shifts, ¹⁹⁵Pt-³¹P coupling constants, and ¹⁹⁵Pt chemical shifts are discussed.

DESPITE the very wide interest in trifluorophosphine complexes of transition metals,¹⁻³ the attention given to PF_3 and other trihalogenophosphine complexes of platinum(II) has been sparse. Whilst $[PtX_2(PX_3)_2]$, $[Pt_2X_4(PX_3)_2]$ (X = F,⁴ Cl,⁵ or Br⁶), $[PtCl_2(PF_3)_2]$, and $[Pt_2Cl_4(PF_3)_2]$ ⁷ have been reported, their spectroscopic properties have not been the subject of detailed investigation.

We find that anionic complexes $[PtX_3(PY_3)]^-$ are easily prepared by the reaction of phosphorus trihalides with $[NBu_4]_2[Pt_2X_6]$. We were, however, unable to prepare $[PtCl_3(PBr_3)]^-$ owing to halide exchange which evidently occurs when the halide of PY₃ is of higher atomic number than that on the metal. Accordingly, we only attempted the addition of PI_3 to $[Pt_2I_6]^{2-}$ but then found that no reaction occurred; a similar result was

- ⁴ H. Moissan, Bull. Soc. chim. France, 1891, 5, 454.
 ⁵ P. Schutzenberger, Bull. Soc. chim. France, 1870, 14, 97;
 P. Schutzenberger and M. Fontaine, *ibid.*, 1872, 17, 386; 18, 148; D. M. Adams and P. J. Chandler, J. Chem. Soc. (A), 1969, 588.

obtained with PBr_3 and $[\mathrm{Pt}_2\mathrm{I}_6]^{2-}.$ Although the complexes $[PtI_3L]^-$ (L = PF₃ or PCl₃) were readily formed and isolated, even these tend to lose ligand on long standing in the solid state. All the other complexes appear to be indefinitely stable. The instability of $[PtI_{3}L]^{-}$ complexes relative to their chloride and bromide analogues is quite a common occurrence, e.g. the failure to form [PtI₃(NMe₃)]⁻⁸ and [PtI₃(SMe₂O)]⁻.

Complexes of the type [PtX₃(PY₃)]⁻ should be particularly suitable for the study of the effect of co-ordination on the ligand because they involve only one, relatively simple, neutral ligand and because the presence of ³¹P and ¹⁹⁵Pt nuclei permits detailed study by n.m.r. spectroscopy. In order to widen the range of results for phosphines bearing electronegative substituents, we have studied the methanolysis reactions of most of our products. This procedure is particularly useful in the case of the complexes of PCl₃ and PBr₃ as it affords an

- ⁶ A. Rosenheim and W. Levy, Z. anorg. Chem., 1905, 43, 34.
 ⁷ J. Chatt and A. A. Williams, J. Chem. Soc., 1951, 3061.
 ⁸ P. L. Goggin, R. J. Goodfellow, and F. J. S. Reed, J.C.S. Dalton, 1972, 1298.

¹ Th. Kruck, Angew. Chem. Internat. Edn., 1967, 6, 53.

J. F. Nixon, Adv. Inorg. Chem. Radiochem., 1970, 13, 363. J. F. Nixon, Endeavor, 1973, 32, 19.

easy route to the anions $[PtX_3{P(OMe)_3}]^-$ which we have been unable to prepare by other methods.

RESULTS AND DISCUSSION

Vibrational Spectra.-Infrared and Raman spectra of the complexes [NBu₄][PtX₃(PF₃)] are given in Table 1 and of those containing PCl₃ or PBr₃ in Table 2. The overall symmetry of these complexes is, strictly, no higher than C_s , but we have noted previously ⁹ that the PtX_3 part appears to behave, effectively, as C_{2v} . If there is restricted rotation of the neutral ligand this is most likely to be detected in the PY₃ asymmetric stretch,

The PtX₃ stretching vibrations are readily identified from their relative intensities in i.r. and Raman spectra and from comparisons with other $[MX_3L]^-$ systems.^{9,13} When the Pt-X(trans to P) stretch lies well to low wavenumber of the PtX₂ symmetric stretch, the Raman band observed for solutions appears to be depolarised, whereas when it lies above the PtX₂ vibration it is strongly polarised (and more intense). The intermediate cases, [PtBr₃(PF₃)]⁻ and [PtBr₃(PBr₃)]⁻, are weakly polarised (ca. 0.4 and 0.6 respectively). This is probably a general phenomenon which reflects the true nature of the vibrations. Thus the higher-wavenumber band is

TABLE 1

Vibrational spectra (below 1 000 cm⁻¹) of $[NBu_4][PtX_3(PF_3)]$ (X = Cl, Br, or I)^{*a*}

		$[NBu_4][P$	tCl ₃ (PF ₃)]			[NBu4][PtBr ₃ (PF ₃)]			[NBu4]	[PtI ₈ (PF ₃)]	
Assignment PF3 str	I.r. (mull) 913vvs, bd	I.r. (soln.) ^b 916vs	Raman (solid)	Raman (CH ₂ Cl ₂)	I.r. (mull) 914vvs	I.r. (soln.) ^b 901vs	Raman (solid)	Raman (CH ₂ Cl ₂)	I.r. (mull) 908 (sh)	I.r. (soln.) b 910vs	Raman (solid)	Raman (CH ₂ Cl ₂)
Unassigned	854m	c			851m	c			892vs			
PF ₈ sym def	553vs	550vs	55 4 w	550w, p	552vs	549vs	552w	549vw	545vs	543vs		554w, p
$2\nu(\text{PtP})$	535ms	535ms		535vw, bd, p	536s	533s			527ms	523ms		
PF ₃ asym def	397ms 393 (sh)	397s	C	c i i	393s	893s	с		392 (sh) 389s	390s	С	С
PtX. asym str	347 10	34610			9390	930-			106m	195m	104.000	199000
DtV sym sir	340 (ch)	01045	349110	340.00	21000	217	910.00	917me n	148.00	14711	146.00	147ve n
DtV ota	210-22	919-	910-	212	213WIII	211WIII	21375	1100 m	140W	107	1075	147VS, p
rtA str	31910S	2128	519m	515 w , ap	203WIL	201WIN	20275	210 s , p	109МЩ	107W	10711	167ms, p
PtP str	269w	265w (sh)	267m	266m n	272w	269wm	964w whd	264w hd n	264m	262m		⁹ 67w n
PF. rock	245m	244m	2000	200m, P	250	250m	2020, voa	2010, Du, P	242wm	242ur		243vw dn
11310CA	924mm	996			927 (ab)	997 (ch)			926	92511		- 10 1 m, ap
Skeletal defs	163wm	162w, bd	160s	164m, dp	107w	207 (811)	107s	106m, dp	100w	<i>ca</i> . 100w	ca. 90 (sh)	97 (sh), dp
and lattice					100 (sh)							
	127m	130m, bd			92w	93w, bd			85w, bd		81m	82 m, d p
	ca. 40s				63vw, bd				<i>ca</i> . 40m			
Limit of study	(40)	(70)	(110)	(100)	(40)	(70)	(95)	(80)	(40)	(70)	(60)	(60)

« Cation bands have been omitted. Above 400 cm⁻¹ and at ca. 260 cm⁻¹ values are from CH₂Cl₂; all others are from CDCl₂. Close of the solvent or cation bands.

asymmetric deformation, and rocking modes which might show splitting between components perpendicular and parallel to the PtX_3 plane.

For the complexes with PCl₃ and PBr₃, phosphorushalogen stretching assignments are unambiguously made on the basis of Raman depolarisation ratios but no features were observed in the appropriate region of the Raman spectra of the PF_3 complexes other than those associated with the cation (ca. 910 and 880 cm^{-1} , both polarised in solution). To judge from gaseous PF3,10 $[M(PF_{3})_{4}]$ (M = Ni, Pd, or Pt),¹¹ [Ni(PCl_{3})_{4}],¹² and $[PtX_3(PCl_3)]^-$, it is unlikely that either the symmetric or asymmetric PF_3 stretching modes in $[PtX_3(PF_3)]^$ would be of low i.r. intensity. However, we only observed one strong feature above 600 cm⁻¹ and we consider that both the vibrations contribute to this absorption. In the solid-state spectra of the bromo- and iodo-anions these bands are split into two components which may indicate resolution of the two modes but alternatively could be due to lifting of the degeneracy of the asymmetric stretching mode {as indeed occurs in solid $[PtCl_3(PCl_3)]^-$

related to the symmetric combination of the two modes and the lower to the asymmetric combination which then parallel the A_{1g} and B_{1g} modes of $[MX_4]^{2-}$ respectively.¹⁴

The only other vibrations of these anions which would be expected to occur in the range $200-600 \text{ cm}^{-1}$ are Pt-P stretching, PY₃ symmetric and asymmetric deformations, and, in the case of the complexes of PF_{3} , ligand-rocking modes. We assigned the observed bands on the basis that the first two of these vibrations would be expected to give rise to polarised Raman lines in solution, while the remainder might show splitting due to the incompatibility of the three-fold axis with our C_{2v} approximation. Considering the PF_3 complexes first, we find a polarised band at ca. 550 cm^{-1} . The Raman counterpart of the i.r. band at ca. 270 cm⁻¹ suffers from being almost coincident with a polarised band of the $[NBu_{4}]^{+}$ cation. However, in the case of $[N(C_{5}H_{11})_{4}]^{-}$ [PtI₃(PF₃)] where no such clash occurs, the band at 267 cm⁻¹ was observed and found to be polarised. We have commented previously ¹⁵ on the problem of mixing

¹² H. G. M. Edwards and L. A. Woodward, Spectrochim. Acta, 1970, A26, 1077.

- ¹³ R. J. Goodfellow, P. L. Goggin, and D. A. Duddell, J. Chem. Soc. (A), 1968, 504.
 ¹⁴ P. L. Goggin and J. Mink, J.C.S. Dalton, 1974, 1479.
 ¹⁵ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, J. R. Knight,
 F. J. S. Reed, and B. F. Taylor, J.C.S. Dalton, 1974, 523.

 ⁹ D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton, and J. G. Smith, *J. Chem. Soc.* (A), 1970, 545.
 ¹⁰ M. K. Wilson and S. R. Polo, *J. Chem. Phys.*, 1952, 20, 1716.
 ¹¹ H. G. M. Edwards and L. A. Woodward, Spectrochim. Acta, 1070 A26 207

^{1970,} A26, 897.

		[NBu	Is][PtCls(PCls)]			[NBu,][Pi	tBr ₃ (PCl ₃)]			[NBu,][PtI3(P	Cl _s)]		[NBu,][P	tBr ₃ (PBr ₃)]	
	[.:.]	I.r.	Raman	Raman		I.r.	Raman	Raman	 	I.r.	Raman	[.r.	I.r.	Raman	Raman
	(Iluul)	(CDCl ₃)	(solid)	(CH2C12)	(Inul)	(CDCI ₃)	(solid)	(CH_2Cl_2)	(Iluta)	(CDCI _a)	(CH ₂ Cl ₂)	(Ilum)	(CDCl ₃)	(solid)	(CH_2Cl_2)
PY _s sym str	572vs	571vs	573ms	571m, p	564vs	565vs	563ms	564ms, p	547vs	550vs	550m, p	482vs	486vs	481m	486m. p
PY ₃ asym str	544vs	539vs	538m	543w, bd, d	o 538 (sh)			1	519vs	525vs	526w, dp	424vs	432vs	432m	428w. bd. dp
	524vs		527wm	•	528vs	536vs	532w, bd	534w, bd, df						422wm	
PY _s sym def					332w	332wm	333s	334s, p	325w, bd	325w, bd	327m, p	247s	247s	245w	
PY ₃ asym def	$235 \mathrm{m}$	234m	$233 \mathrm{m}$	234w, dp	252m	253ms	252vw	253vw, dp	230w	230 wm		151w (sh)	158w (sh)	ca. 153 (sh)	
•					238w (sh)	236 (sh)									
PtX ₂ asym str	343vs	343vs			226s	224s				189 ms		221s	224s	218 (sh)	
PtX _s sym str	336 (sh)		338vs	337vs, p	203w	203wm	204vs	204vs, p		142 wm	144s, p	209 wm	211 wm	208vs	210vs, p
PtX str	317s	310vs	316m	310w, dp	221s		222s	220s, p		162w	159s, p	197s	200ms	1965	200m, p
PtP str	181w	182w	180 ms	181m, p			172s	172ms, p				147m	149m	145s	151m, p
PY, rock	176 (sh)		176 (sh)		150vw	149vw	154w, bd	157vw, dp				125vw	125w	124m	123w, dp
	159w	160vw	159wm	160w											•
Skeletal defs	146w	147w	146s	145m, dp	109vw		109s	110s, dp			109w, bd				
and lattice	142vvw (sl	(1													
	125m	125wm	122w, bd	120w, bd	91w, bđ	ca. 92w, bd		ca. 90w, bd,	_	80—96w, bu	d		107w, bd	100s	108wm, bd,
								dþ							dp
			ca. 84bd (st	1) ca. 85bd (sh)) <i>ca.</i> 69w									92s	106wm, p
	47m, bd				<i>ca.</i> 44wm							ca. 90w, bd	ca. 85w, bd	76w, bd	89wm, dp
Other bands									198ms b	200 ms b		172vw, bd			169vw
Limit of study	(40)	(80)	(02)	(80)	(40)	(80)	(06)	(22)	(192)	(02)	(80)	(20)	(20)	(20)	(02)

3	
TABLE	

between metal-ligand stretching vibrations and deformations about the donor atom. In this case we consider that the higher of these two features is predominantly PF_3 symmetric bending and the lower predominantly Pt-P stretching in character. All the complexes of PF₃ showed two bands in the 230-260 cm⁻¹ region which can only arise from the PF_3 rocking modes. In $[PtBr_3(PF_3)]^$ the band at higher wavenumber was considerably raised in frequency with respect to the chloride and iodide, presumably as a result of interaction with another fundamental of the same symmetry. This implies that it is the rocking mode in the PtX₃ plane. The band at 535 cm⁻¹ cannot be satisfactorily accommodated as a fundamental and we assign it to the overtone of the 'Pt-P stretching' vibration at 270 cm⁻¹, its high intensity being the result of Fermi resonance with the PF₃ symmetric deformation.

Identification of the PCl₃ symmetric deformation in $[PtCl_3(PCl_3)]^-$ and Pt-P stretch in $[PtI_3(PCl_3)]^-$ was not possible owing to confusion with, or masking by, platinum -halide stretching vibrations. The PCl₃ asymmetric deformation in these two complexes appeared as a single band at $ca. 230 \text{ cm}^{-1}$, but in the bromide there is evidently strong interaction between the in-plane component of this mode and the PtBr₂ asymmetric stretch. Assignment of PBr₃ vibrations is hampered by there being only one example, $[PtBr_3(PBr_3)]^-$. Thus, although the band at 247 cm⁻¹ is attributed to the PBr₃ symmetric deformation, we are unable to offer a convincing explanation for its lack of prominence in the Raman spectrum. Our assignment of its asymmetric counterpart as 151 cm⁻¹ is tentative and the very weak band at 172 cm^{-1} might alternatively arise from this mode.

In general, two features were observed in the region expected for skeletal deformations: one more intense in the Raman, and the other, usually of lower wavenumber, more intense in the i.r. Without polarised single-crystal studies we cannot conclusively assign these bands but the former might be expected to arise from the B_1 in-plane scissors mode and the latter from an out-of-plane mode by analogy with $[MX_4]^{2-.14}$

The vibrational frequencies of PF_3 , PCl_3 , and PBr_3 all increased on co-ordination. With the exception of PF_3 stretching, the raising of the symmetric modes is greater than that of the asymmetric modes. This behaviour contrasts with the wavenumber changes on oxidation to PX_3O and PX_3S ¹⁶ where the asymmetric vibrations are raised in frequency but the symmetric modes remain similar or are lowered. Comparison with the nickel(0) complexes ^{11,12} is complicated by the presence of four PX_3 groups, but they resemble the platinum(II) complexes more than the oxidised ligands. Without studying the forcefield around the phosphorus atom, however, it is not possible to attempt to relate these changes to particular aspects of the bonding.

The wavenumbers of Pt-X(trans to L) vibrations have

been used to give indications of relative *trans* influences of different ligands. Comparing $[PtX_3(PF_3)]^-$ with $[PtX_3(PMe_3)]^-$,⁹ in which the neutral ligands have similar effective masses, this frequency is higher in the former by 38, 22, and 12 cm⁻¹ for the complexes of Cl, Br, and I respectively. This is a clear indication that PF₃ has a much weaker *trans* influence than PMe₃. The Pt-Cl(*trans* to CO) stretch in $[Pt(CO)Cl_3]^-$ is 9 cm⁻¹ higher ¹³ than in the PF₃ analogue, suggesting that PF₃ has a marginally greater *trans* influence although the lower mass of CO might be a contributory cause.

N.M.R. Spectra.—The ¹⁹F and ³¹P n.m.r. parameters (and ¹⁹⁵Pt chemical shifts where possible by ¹⁹F-{¹⁹⁵Pt} INDOR measurements) are given in Tables 3 and 4

TABLE 3

Phosphorus-31 and ¹⁹⁵Pt n.m.r. parameters of [NBu₄][PtX₃L] (coupling constants in Hz)

Complex	δ(P) "	$^{1}J(\mathbf{PtP})$	δ(Pt) ^b	$\Delta_{\mathbf{P}}$ °
PtCl ₃ (PF ₃)]-	-50.2	+7464	907	46.8
PtBr _a (PF _a)]-	-52.1	+7257	183	44.9
PtI.(PF.))-	60.3	+6959	-1370	36.7
PtCl. (PCl.) - 4	-90.9	+6182		128.1
PtBr. (PCl.)]- d	-90.7	+5869		128.3
PtI. (PCl.)]- d	-92.7	+5371		126.3
$PtBr_{o}(PBr_{o})^{-d}$	-39.4	+5214		188.0
$PtCl_{2}(P(OMe))$]-	-58.3	+6020	1 037	81.9
PtBr _o {P(OMe) _o }]-	-60.1	+5932	371	80.1
$PtI_{0}{P(OMe)_{0}}$	-74.3	+5753	-1060	65.7
PtBr _a (PBrCl _a)] ⁻	-74.3	+5650		149.2
$PtBr_{a}(PBr_{a}C)$	-57.0	+5432		169.7
$PtCl_{PF_{a}}(OMe)$]-	-57.2	+6906	949	53.6
PtCl ₂ (PF(OMe))]-	-61.0	+6404	999	71.5
PtCL (PCL (OMe))]-	-84 0	+6466	1 179	96.8
PtCl (PCl (OMe))	-77.3	+6344	1 108	917
$PtBr \{PC1 (OMe)\}$	- 85.6	+6231	490	95.2
$P_{\rm T} = P_{\rm T} = P_{T$	- 80.5	+6157	438	88.5
$D_{1} (D_{1}) (D_{1}$	09.3	5 807	-1 023	88.5
$D_{1} (D_{1} (OM_{o}))$	- 92.5	- 5 093	-1 049	777
$D_{T} D_{T} D_{T$	51.5	15 004	-1043	129.9
$D_{T} D_{T} D_{T$	- 11.0	16062	482	ىتى. تىشەق 1
$[r r r r 3 (r r r (Ome)^3)]$	01.0	-0000	400	

^a In p.p.m. upfield from H_3PO_4 . ^b In p.p.m. to high frequency of 21.4 MHz when corrected to SiMe₄ (100 MHz). ^c $\Delta_P = \delta(P)(\text{complex}) - \delta(P)(\text{free ligand})$. $\delta(P)$ for PBr₂-(OMe) was -203.2 p.p.m. The chemical shifts used for the other ligands were from: H. S. Gutowsky, D. W. McCall, and C. P. Slichter, J. Chem. Phys., 1953, 21, 279 (PF₃); K. B. Dillon, T. C. Waddington, and D. Younger, Inorg. Nuclear Chem. Letters, 1974,10, 777 (PCl₃, PBrCl₃, PBr₂Cl, and PBr₃); ref. 23 [P(OMe)₃]; H. Binder and R. Fischer, Z. Naturforsch., 1972, B27, 753 [PF₂(OMe) and PF(OMe)₂]; G. Mavel, Ann. Rev. N.M.R. Spectroscopy, 1973, 5B [PCl₂(OMe) and PCl-(OMe)₂]. ^d In CDCl₃.

together with results for some complexes produced by methanolysis. The presence of highly electronegative substituents on phosphorus increases the s-electron density at the nucleus and the s-orbital contribution to the M-P bond,^{1,17} both of which will increase ¹J(PtP). Thus all the values of ¹J(PtP) here are much greater than those for $[PtX_3(PMe_3)]^{-.15}$ The regular increases in ¹J(PtP) in going from $[PtCl_3\{P(OMe)_3\}]^{-}$ to $[PtCl_3(PF_3)]^{-}$ (see Figure) can largely be accounted for by changes in orbital distribution at phosphorus and need not imply large changes in the M-P bond strength. However, for the complexes of PCl₃ and PBr₃, the effect on ¹J(PtP) of

¹⁶ K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1963.

¹⁷ J. G. Verkade, Co-ordination Chem. Rev., 1972, 9, 1.

replacing methoxide by halide is far from linear and the final substitution results in a large decrease. Since the departure from a linear behaviour is greater when the

explanation of the non-formation of [PtI₃(PBr₃)]⁻ or $[PtI_3(PI_3)]^-.$

We have previously observed 18 that 195Pt chemical

Hydroge	n-1 and 19F	n.m.r. parar	neters of [NB	u ₄][PtX ₃ L] (co	oupling cons	tants in Hz)	
Complex	$\tau({ m Me})$	$^{3}f(\mathrm{PH})$	$^{4}J(\text{PtH})$	${}^{4}J(\mathrm{FH})$	δ(F) a	¹ /(PF)	² I(PtF)
PtCl _a (PF _a)]-					40.4	-1 311	±730
$[PtBr_{3}(PF_{3})]^{-}$					37.7	-1313	+715
$[PtI_3(PF_3)]^{-}$					33.1	-1320	+701
[PtCl ₃ {P(OMe) ₃ }]~	6.19	+12.4	ca2				1.01
$[PtBr_{3}{P(OMe)_{3}}]^{-}$	6.19	+12.8	ca2				
$[PtI_3{P(OMe)_3}]^-$	6.26	+12.8	-2.7				
$PtCl_{3}{PF_{2}(OMe)}]^{-}$	5.91	+13.5	-2.8	+0.7	47.4 0	-1222	+702
$PtCl_{3}{PF(OMe)_{2}}]^{-}$	6.04	+13.1	-2.7	+0.5	53.5	-1160	+709
$PtCl_{3}{PCl_{2}(OMe)}]^{-}$	5.99	+17.1	ca2				
PtCl ₃ {PCl(OMe) ₂ }]-	6.07	+14.8	ca2				
$PtBr_{3}\{PCl_{2}(OMe)\}]^{-}$	6.01	+17.2	-2.1				
PtBr ₃ {PCI(OMe) ₂ }] ⁻	6.09	+14.9	-2.1				
$PtI_{3}\{PCI_{2}(OMe)\}]^{-}$	6.05	+17.0	-2.5				
$PtI_{3}\{PCI(OMe)_{2}\}$	6.13	+14.9	-2.8				
$PtBl_{3}\{PBl_{2}(OMe)\}]^{-}$	6.07	+18.1	ca2				
$[PtBl_3[Pbl(OMe)_2]]^-$	0.11	+15.4	ca2				
			0.11.0		_		

" In p.p.m. upfield from CFCl₃. " In CDCl₃.

halide of the PX_3 or the PtX_3 groups is bulkier (see Figure), we conclude that steric repulsion between halides

-), or Br (

on phosphorus and those on platinum is causing a weakening of the Pt-P bond. This may also be the ¹⁸ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor, and I. R. H. Marshall, *J.C.S. Dalton*, 1976, 459.

shifts are remarkably insensitive to the nature of the substituents on a phosphorus donor, even between such widely different phosphines as PMe₃ and PF₃. Thus there is only 126 p.p.m. between [PtCl₃(PMe₃)]⁻ and [PtCl₃(PF₃)]^{-,18} but on going to the iodo-anions the differences increase. It is possible that the lower electronegativity of iodide results in increased electron density on platinum and hence more back donation to PF_3 ; since π bonding should increase the shielding of the platinum nucleus,¹⁹ the effect would be to lower $\delta(Pt)$ as observed. There are regular small decreases in 195Pt chemical shifts in going from [PtCl₃{P(OMe)₃}]⁻ to $[PtCl_3(PF_3)]^-$, whereas replacing methoxide by chloride or bromide results in an increase in $\delta(Pt)$. This might be anticipated from the changes in $^{1}/(PtP)$ since weaker bonds usually result in increases in $\delta(Pt)$.¹⁸ Despite the apparently greater steric interference when the halide on platinum is bromide or iodide, the differences in platinum shift between $[PtX_3{P(OMe)_3}]^-$, $[PtX_3{PCl(OMe)_2}]^-$, and $[PtX_3{PCl_2(OMe)}]^-$ are less when X is Br or I (this might similarly be a consequence of increased π bonding).

An approximately linear relation has been reported between the ³¹P chemical shift of phosphorus ligands and the change in this shift on co-ordination (co-ordination shift) both for fluorophosphines, PF2X,20 and alkyl- or aryl-phosphines.²¹ A plot of the co-ordination shift, $\Delta_{\rm P}$, of the seven complexes of the type $[PtCl_{2}L]^{-}$ in Table 3 against the shift of the free phosphine, δ (free), approximates to a straight line (1) with $\rho = 0.991$. This line

 $\Delta_{\rm P} = (-0.646 \pm 0.039)\delta(\text{free}) - (15.4 \pm 6.1) \quad (1)$

goes close to the points for $[PtCl_{a}L]^{-}$ where L is an alkyl-

TABLE 4

 ¹⁹ R. R. Dean and J. C. Green, J. Chem. Soc. (A), 1968, 3047.
 ²⁰ G. S. Reddy and R. Schmutzler, Inorg. Chem., 1967, 6, 823.
 ²¹ B. E. Mann, C. Masters, B. L. Shaw, R. M. Slade, and R. E. Stainbank, Inorg. Nuclear Chem. Letters, 1971, 7, 881; A. W. Verstuyft, J. H. Nelson, and L. W. Cary, *ibid.*, 1976, 12, 53.

or aryl-phosphine.²² If these seven organic phosphines are included, regression analysis gives (2) with $\rho = 0.996$.

$$\Delta_{\rm P} = (-0.572 \pm 0.014)\delta(\text{free}) - (4.1 \pm 1.6) \quad (2)$$

[The results for the organic phosphines alone, which span a much smaller range of $\delta_{\rm P}$, give ²² a somewhat smaller gradient (-0.312) and a line which falls well below the points for halogenophosphines.] The values for

The complexes of PCl₃ and PBr₃ were prepared by adding a weighed quantity of the halogenophosphine dissolved in dry dichloromethane to an equivalent of [NBu₄]₂[Pt₂X₆] also dissolved in dry dichloromethane. The reactions were almost instantaneous. Dry diethyl ether was added to the point of turbidity. The product crystallised out at -20 °C. Complexes $[PtX_3L]^- [L = P(OMe)_3]$ cannot be prepared by this method because the second substitution of the ligand into $[PtX_3[P(OMe)_3]]^-$ giving rise to $cis-[PtX_2[P(OMe)_3]_2]$

TABLE 5

Characterisation of the complexes

			Analyses (%)				
Complex	Colour	M.p. $(\theta_c/^{\circ}C)$	c	Н	N	x	
$[NBu_{4}][PtCl_{3}(PF_{3})]$	Yellow	131 - 134	30.4 (30.4)	5.75 (5.75)	2.1(2.2)	16.65 (16.85) ^b	
[NBun4][PtBra(PFa)]	Yellow	114	24.9(25.1)	4.8 (4.75)	1.85(1.85)	31.1 (31.3)	
[NBu ⁿ][PtI ₃ (PF ₃)]	Orange	130 - 131	21.25(21.2)	4.1 (4.0)	1.6(1.55)	39.6 (42.0) ^d	
$[N(C_5H_1)_4][PtI_3(PF_3)]$	Orange	73 - 75	25.25(24.95)	4.85 (4.6)	1.5(1.45)	$39.0(39.55)^{d}$	
NBuna [PtCl ₂ (PCl ₂)]	Yellow	82 - 85	28.4(28.2)	5.5(5.35)	1.7(2.05)	$28.8(31.2)^{b}$	
[NBun][PtBra(PCla)]	Orange	8183	23.55(23.6)	4.45(4.45)	1.75(1.7)	29.8 (29.4) °	
[NBun][PtI3(PCl3)]	Brown	77 - 81	20.7 (20.1)	3.9 (3.8)	1.55(1.45)		
[NBun][PtBr _a (PBr _a)]	Deep red	82 - 83	20.3(20.25)	3.95(3.85)	1.35(1.5)	50.55 (50.55) ¢	
[NBun][PtCl_{P(OMe)_}]	Yellow		33.4(34.15)	6.7 (6.8)	2.15(2.1)		
[NBun4][PtBr3{P(OMe)3}]	Yellow-orange		28.75 (28.45)	6.0 (5.65)	1.8(1.75)		

" Calculated values are given in parentheses. " Cl. " Br. " I.

 $[PtBr_{3}L]^{-}$ (Table 3) are close to the line for $[PtCl_{3}L]^{-}$ except for PBr₃, PBr₂Cl, PBrCl₂, and PBr₂(OMe) [we lack a value of $\delta(P)$ for PBr(OMe)₂]. For the latter phosphines, the shift of the free ligand changes very little from that of PCl₃ which behaviour seems more anomalous than that of the co-ordination shift which increases in a manner consistent with the difference between PF₃ and PCl₃.

EXPERIMENTAL

Infrared, Raman, ¹H n.m.r., and ¹⁹F n.m.r. spectra were recorded as previously described.^{8, 9, 23, 24} Phosphorus-31 and 195Pt n.m.r. parameters were obtained from 1H-{31P}, ¹H-{¹⁹⁵Pt}, ¹⁹F-{³¹P}, and ¹⁹F-{¹⁹⁵Pt} INDOR measurements 23,18 as appropriate, using 0.2 mol dm-3 solutions in dichloromethane. For species lacking protons or fluorine, ³¹P n.m.r. spectra were recorded with a JEOL PFT 100 Fourier-transform n.m.r. spectrometer for ca. 0.2 mol dm⁻³ solutions in deuteriochloroform. Where both methods were used, agreement of $\delta(P)$ and ${}^{1}J(PtP)$ was within 0.2 p.p.m. and 4 Hz respectively.

Preparation of Complexes.-The complexes [NBu4]- $[PtX_{3}(PF_{3})]$ were prepared by introduction of a 50% excess of PF_3 , purified by passing through two $-85~\mathrm{^oC}$ traps, into a dry dichloromethane solution of [NBu₄]₂[Pt₂X₆].²⁵ The flask was shaken until all trace of the dark colour of [Pt₂X₆]²⁻ had disappeared, then evacuated to remove excess of PF₃ and solvent. The solid was redissolved in dry dichloromethane and dry diethyl ether was added until a slight turbidity was produced. The product crystallised out at −20 °C.

appears to be favoured over rupture of $[Pt_2X_6]^{2-}$. Anions, $[PtX_{3}L]^{-}$, can be prepared ¹³ by the addition of $[NBu_{4}]X$ to the bridged complex $[Pt_2X_4L_2]$, but attempts to prepare $[\mathrm{Pt}_2\mathrm{Cl}_4[\mathrm{P}(\mathrm{OMe})_3]_2]$ by the usual method 26 gave only decomposition products. Similarly, fusion of [NBu₄]₂[PtCl₄] and [PtCl₂{P(OMe)₃}₂] led solely to decomposition. However, the complexes $[NBu_4][PtX_3{P(OMe)_3}]$ were readily formed on warming the appropriate complex of PCl₃ or PBr₃ with methanol and could be isolated as oils.

The complexes [NBu₄][PtX₃{PY_n(OMe)_{3-n}}] (n = 1 or 2) were prepared in situ on an n.m.r. scale. For Y = Cl or Br, 0.1 mmol of the PCl₃ or PBr₃ precursor was treated with methanol (0.2 mmol) in dry dichloromethane (0.5 cm³). After 5-10 h, lines corresponding to all the three methanolysis products could generally be observed in the ¹H n.m.r. spectrum which were unambiguously assigned by the multiplicities of their 1H-{31P} INDOR resonances. Methanolysis of [NBu₄][PtCl₃(PF₃)] proceeded more slowly and only the monosubstituted product [PtCl₃{PF₂(OMe)}]⁻ was formed, even when a large excess of methanol was used. The complex $[PtCl_3{PF(OMe)_2}]^-$ was formed on refluxing in neat methanol for 24 h; in this case only, a minor byproduct was detected by ¹H n.m.r. Treatment of the bromo- and iodo-analogues in this manner tended to lead to decomposition.

Complexes $[PtBr_3(PBr_{3-n}Cl_n)]^-$ (n = 1 or 2) were prepared in situ from the mixed halide ligand, $PBr_{3-n}Cl_n$, produced by equilibration, and also from mixing [PtBr₃(PCl₃)]⁻ and [PtBr₃(PBr₃)]⁻, the scrambling being very much slower in the complex.

The ³¹P chemical shifts of PBr₂(OMe) and PBr(OMe)₂ have not previously been reported. The compound PBr₂(OMe) was readily obtained in situ from methanolysis of PBr₃, and was extracted with dichloromethane. We

²² B. F. Taylor, Ph.D. Thesis, University of Bristol, 1973.

 ²³ P. L. Goggin, R. J. Goodfellow, J. R. Knight, M. G. Norton, and B. F. Taylor, *J.C.S. Dalton*, 1973, 2220.
 ²⁴ E. W. Abel, M. A. Cooper, R. J. Goodfellow, and A. J. Rest,

Trans. Faraday Soc., 1969, 65, 1697.

²⁵ P. L. Goggin, J.C.S. Dalton, 1974, 1483.

²⁶ R. J. Goodfellow and L. M. Venanzi, J. Chem. Soc., 1965, 7533.

were unable to obtain $PBr(OMe)_2$ by further methanolysis, or by treatment of the $PBr_2(OMe)$ extract with a mixture of methanol and pyridine in the manner described for $PBr_2(OBu)$.²⁷ Neither bromophosphite was present in a mixture of PBr_3 and $P(OMe)_3$ after standing for 2 h. We thank the S.R.C. for a research studentship (to C. C.) and a grant to purchase the Fourier-transform spectrometer.

[6/1223 Received, 24th June, 1976]

²⁷ W. Gerrard and H. Herbst, J. Chem. Soc., 1955, 277.

C Copyright 1976 by The Chemical Society