Crystal Structures of Thiocyanate Polyamine Copper(II) Complexes. Part 7.† (3,6-Diazaoctane-1,8-diamine)isothiocyanatocopper(II) Perchlorate: A Disordered Structure

By Giaime Marongiu * and Mario Cannas, Istituto Chimico dell'Università, Via Ospedale 72, 09100 Cagliari, Italy

The crystal structure of the title complex has been determined by three-dimensional X-ray data. Crystals are orthorhombic, space group $Pca2_1$ with Z = 8 in a unit cell of dimensions a = 23.90(4), b = 8.56(2), and c = 14.71(3) Å. The structure has been solved by Patterson and Fourier methods and refined by least-squares techniques to R 0.106 for 1 489 refined reflections measured photographically. In contrast to the corresponding bis(thiocyanate) derivative, the thiocyanate group in the present complex is bonded *via* the nitrogen atom; the co-ordination polyhedron of the copper(II)ion is intermediate between square pyramidal and trigonal bipyramidal. A qualitative interpretation of the structural disorder is given.

In the crystal structures of $[Cu(en)_2(SCN)_2]^1$ (en = ethylenediamine) and $[Cu(pd)_2(SCN)_2]^2$ (pd = propane-1,3-diamine) the copper atoms have an elongated octahedral co-ordination with the amine nitrogen atoms in the basal plane and the sulphur atoms of the thiocyanate groups in the apical positions at distances of 3.27 and 3.15 Å respectively; a network of N(NCS) · · · N(amine) contacts (ca. 3.0 Å) is present in both structures. Replacement of a thiocyanate ligand by perchlorate in the two complexes leads to different structural arrangements where N · · · N are replaced by O · · · N contacts: $[Cu(en)_2(NCS)][ClO_4]^3$ gives a highly packed structure (D 1.72 g cm⁻³) formed by

chains [Cu-N as in (I) 2.73 Å] and by $[ClO_4]^-$ ions, while $[Cu(pd)_2(NCS)][ClO_4]^4$ gives a loose $(D \ 1.50 \text{ g} \text{ cm}^{-3})$, highly symmetrical, structure where the trigonalbipyramidal $[Cu(pd)_2(NCS)]^+$ cations are arranged around the $[ClO_4]^-$ ions, which lie along the three-fold axes.

In the crystal structure of [Cu(3,6NH-od)(SCN)]-[SCN]⁵ (3,6NH-od = 3,6-diazaoctane-1,8-diamine) the five-co-ordinate $[Cu(3,6NH-od)(SCN)]^+$ cation and [SCN]⁻ anions are connected by a network of N-H ••• N and N-H ••• S hydrogen bonds; the co-ordination polyhedron around copper is square pyramidal with the four nitrogen atoms of the ligand in the basal plane and the sulphur atom of a thiocyanate group in the apical position (Cu-S 2.607 Å). To investigate further the effect of replacement of one thiocyanate group by perchlorate we have undertaken the crystal-structure analysis of [Cu(3,6NH-od)(NCS)][ClO₄].

EXPERIMENTAL

The complex was prepared by Barbucci *et al.*⁶ who kindly provided us with a sample. Crystals suitable for X-ray

† Part 6 is ref. 9.

analysis were obtained by evaporation of a concentrated methanol solution with a few drops of water added. All the crystals examined gave diffraction patterns showing diffuse streaks, parallel to the c^* direction, along the lattice rows for which h is odd, indicating the presence of one-dimensional disorder; the streaks have maxima in positions corresponding to integer l values.

Crystal Data.— $C_7H_{18}ClCuN_5O_4S$, M = 367.3, Orthorhombic, a = 23.90(4), b = 8.56(2), c = 14.71(3) Å, U = $3\ 009\ \text{\AA}^3$, $D_{\mathrm{in}}\ (\mathrm{picnometric}) = 1.60\ \mathrm{g}\ \mathrm{cm}^{-3}\ Z = 8$, $D_{\mathrm{c}} =$ 1.62 g cm⁻³, Cu- K_{α} radiation, μ (Cu- K_{α}) = 50.7 cm⁻¹. From systematic absences of both sharp and diffuse reflections (0kl for l = 2n + 1 and h0l for h = 2n + 1) the possible space groups are Pca2₁ (no. 29) and Pcam (no. 57). Intensities for h0-6l and 0kl, 2kl, 4kl were collected on an integrating Weissenberg camera, and determined photometrically with the aid of a microdensitometer; diffuse reflections were measured on the peak position. A total of 1 276 reflections was measured; after correction for Lorentz and polarization factors, they were placed on the same relative scale by the least-squares procedure of Rae 7 and reduced to a set of 1060 independent reflections. The weakest reflections (429) were visually estimated with the aid of a calibrated scale. Unobserved reflections (1 034) were given an F_0 value equal to $F_0(\min)/2$. The atomic scattering factors were taken from Cromer and Waber 8; that of copper was corrected for the real part of the anomalous dispersion.

Structure Determination and Refinement.-The structure was solved by neglecting the disorder effects; diffuse reflections were therefore considered as sharp, but the measured F_0 values were arbitrarily multiplied by 1.5, which seemed a reasonable factor to allow for the streak contribution to their intensities. Because of peak overlapping, the analysis of the three-dimensional Patterson map was not straightforward. Some of the highest peaks were eventually found consistent with the co-ordinates of three atoms in space group $Pca2_1$; they were introduced as two copper and one chlorine atoms in the structure-factor calculation $(R \ 0.42)$. The following three-dimensional Fourier synthesis showed the two sulphur and a few light atoms, whose contribution lowered R to 0.31. All the remaining non-hydrogen atoms were located with some difficulty in three successive three-dimensional difference-Fourier syntheses, and their positions definitely confirmed the choice of $Pca2_1$ as the space group.

The scale factors of sharp (945) and diffuse reflections (544) together with atomic positional and isotropic thermal parameters were refined by block-diagonal least-squares

methods. The function minimized was $\Sigma w \Delta F^2$, where w was taken as $1/(22.7 + F_o + 0.005F_o^2)$. Refinement was terminated after six cycles. The final R value for 1 489 observed reflections was 0.106. The final atomic parameters with estimated standard deviations are given in Table 1. Observed and calculated structure factors and

TABLE 1

Atomic co-ordinates (\times 10⁴) with standard deviations in parentheses

	x a	y/b	z c
Cu(1)	-158(2)	392(5)	0(0)
$\tilde{C}u(2)$	$2 \overline{316(1)}$	5343(4)	1 779(3)
čiú	2116(3)	-11(8)	-18(5)
Cl(2)	4570(2)	5 019(7)	1.640(4)
súi	970(3)	-985(9)	2628(5)
S(2)	3 490(3)	6 113(10)	-954(5)
$\hat{O}(1)$	$2\ 271(16)$	37(37)	970(26)
$\tilde{O}(12)$	2575(12)	-255(27)	-547(18)
$\tilde{O}(13)$	1.842(14)	1 430(40)	-180(24)
O(14)	1 675(9)	-1116(27)	-173(16)
$\vec{0}(\vec{2}\vec{1})$	4937(10)	4848(27)	2 456(16)
O(22)	4 858(7)	5073(20)	800(11)
O(23)	4 164(8)	3769(24)	1 666(14)
O(24)	4 301(8)	6515(24)	1 763(15)
NÜ	290(12)	59(29)	1225(19)
N(2)	2752(10)	5 441(29)	468(18)
N(11)	-898(9)	1 085(26)	440(15)
N(12)	-524(9)	-1807(27)	105(16)
N(13)	465(10)	-634(29)	-659(16)
N(14)	17(9)	2 456(25)	709(14)
N(21)	1 537(8)	5 994(26)	1 306(14)
N(22)	1 988(9)	3 224(27)	1 881(16)
N(23)	2 985(8)	4 537(25)	$2\ 504(15)$
N(24)	2510(13)	7 401(30)	2 416(21)
C(1)	559(9)	-451(27)	1 798(17)
C(2)	3 040(11)	5 701(33)	-141(19)
C(11)	-1223(15)	-289(38)	688(25)
C(12)	-1139(12)	-1446(36)	-54(22)
C(13)	-311(9)	-2482(26)	975(16)
C(14)	314(13)	-2433(36)	-915(23)
C(15)	581(15)	265(38)	-1592(23)
C(16)	585(17)	1 802(48)	-1313(28)
C(21)	$1 \ 233(13)$	4 459(36)	1 117(21)
C(22)	$1\ 350(13)$	3 344(37)	1 819(24)
C(23)	$2\ 222(16)$	2 657(48)	2 797(28)
C(24)	2873(14)	2 984(43)	$2\ 740(24)$
C(25)	3 088(13)	5 620(38)	$3\ 153(21)$
C(26)	$3\ 060(12)$	7 244(39)	2 737(22)

thermal parameters are listed in Supplementary Publication No. SUP 22347 (14 pp.).*

DISCUSSION

This structure consisting of $[ClO_4]^-$ anions and $[Cu-(3,6NH-od)(NCS)]^+$ cations is a further example of the influence of the unco-ordinated anion on the bonding mode of the thiocyanate group; in fact, the bonding of this group changes from the S-type in [Cu(3,6NH-od)-(SCN)][NCS] to the N-type in the present $[Cu(3,6NH-od)(NCS)][ClO_4]$. This result and those reported in the introduction suggest that the bonding mode of the thiocyanate ion in $CuL(SCN)_2$ and $CuL(CNS)(ClO_4)$ is influenced by packing conditions rather than by electronic effects. In fact the presence of $Cu \cdot \cdot S$ interactions in the bis(thiocyanate) derivatives should not be explained as a soft-soft interaction, as previously suggested.⁹ This is because recent structural investigations of several cadmium complexes containing chelating

amines $([Cd(en)_2(NCS)_2], {}^{10} [Cd(en)_2Cl(NCS)], {}^{10} [Cd(en)_{(NCS)}]_2[C_2O_4], {}^{11} [Cd\{N(CH_2CH_2NH_2)_2H\}(NCS)_2], {}^{12} [Cd-{N[CH_2CH_2CH_2NH_2]_2H}(NCS)_2] {}^{13})$ have shown that thiocyanate is always N-bonded although Cd²⁺ ion follows Cu²⁺ in order of softness. {}^{14} Moreover, Cu-S interactions, which take place at the apical position of an elongated octahedron or of a square pyramid, are always weak whereas Cu · · · N ones are generally close to normal covalent bonds and by far more frequent.

TABLE 2

Bond distances (Å) and angles (°), with calculated standard deviations in parentheses

. . .

(a) Distances			
Cu(1) - N(1)	2.12(3)	Cu(2) = N(2)	2.19(3)
Cu(1) = N(11) Cu(1) = N(12)	1.98(2)	Cu(2) = N(21) Cu(2) = N(22)	2.07(2) 1.09(9)
Cu(1) = N(12) Cu(1) = N(13)	1.98(3)	Cu(2) = N(22)	2.04(2)
Cu(1) - N(13)	2.10(2)	Cu(2) = N(23) Cu(2) = N(24)	2.04(2) 2.05(3)
S(1) - C(1)	1.63(3)	S(2) - C(2)	1.65(3)
N(1) - C(1)	1.15(4)	N(2) - C(2)	1.15(4)
N(11) - C(11)	1.46(4)	N(21) - C(21)	1.53(4)
N(12)-C(12)	1.50(4)	N(22)-C(22)	1.53(4)
N(12) - C(13)	1.49(3)	N(22) - C(23)	1.54(5)
N(13) = C(14) N(12) = C(15)	1.63(4)	N(23) = C(24) N(22) = C(25)	1.40(4)
N(13) = C(15) N(14) = C(16)	1.00(4) 1.71(5)	N(23) - C(25) N(24) - C(26)	1.33(4)
C(11) - C(12)	1.49(5)	C(21) - C(22)	1.43(5)
C(13) - C(14)	1.50(4)	C(23) - C(24)	1.58(5)
C(15) - C(16)	1.38(5)	C(25) - C(26)	1.52(5)
	.,		
Cl(1) - O(11)	1.50(4)	Cl(2) - O(21)	1.49(3)
Cl(1) - O(12)	1.36(3)	Cl(2) - O(22)	1.42(2)
Cl(1) = O(13) Cl(1) = O(14)	1.42(4) 1.42(5)	Cl(2) = O(23) Cl(2) = O(24)	1.45(2)
CI(1) = O(14)	1.40(0)	CI(2) = O(24)	1.44(2)
(b) Angles			
N(1) - Cn(1) - N(11)	102(1)	N(2) - Cu(2) - N(21)	97(1
N(1) - Cu(1) - N(12)	99(1)	N(2) - Cu(2) - N(22)	107(1
N(1)-Cu(1)-N(13)	89(1)	N(2) - Cu(2) - N(23)	96 (1
N(1)-Cu(1)-N(14)	116(1)	N(2) - Cu(2) - N(24)	105(1
N(11)-Cu(1)-N(12)	85(1)	N(21)-Cu(2)-N(22)	85(1)
N(11) - Cu(1) - N(13)	165(1)	N(21)-Cu(2)-N(23)) 167(1
N(11) - Cu(1) - N(14)	95(1)	N(21) - Cu(2) - N(24) N(29) - Cu(2) - N(29)) 97(1
N(12) - Cu(1) - N(13) N(12) - Cu(1) - N(14)		N(22) - Cu(2) - N(23) N(22) - Cu(2) - N(24)	147(1)
N(12) = Cu(1) = N(14) N(13) = Cu(1) = N(14)	89(1)	N(22) = Cu(2) = N(24) N(23) = Cu(2) = N(24)	$\frac{147(1)}{83(1)}$
(10) Ou(1) I(11)	00(1)	1(10) 00(1) 1.(11	.) 00(1
Cu(1) - N(1) - C(1)	164(2)	Cu(2) - N(2) - C(2)	167(2
Cu(1) - N(11) - C(11)	108(2)	Cu(2) - N(21) - C(21)) 105(2
Cu(1) - N(12) - C(12)	103(2)	Cu(2) - N(22) - C(22)	109(2
Cu(1) - N(12) - C(13)	106(2)	Cu(2) - N(22) - C(23)	102(2)
C(12) = N(12) = C(13) C(12) = N(12) = C(14)	117(2)	C(22) = N(22) = C(23) Cu(2) = N(22) = C(24)	110(3
U(1) = N(13) = C(14) U(1) = N(13) = C(15)	111(2) 110(2)	Cu(2) = N(23) = C(24) Cu(2) = N(23) = C(25)	108(2)
C(14) - N(13) - C(15)	107(2)	C(24) = N(23) = C(25)	121(3)
Cu(1) - N(14) - C(16)	98(2)	Cu(2) - N(24) - C(26)	106(2
	()		
S(1) - C(1) - N(1)	174(2)	S(2)-C(2)-N(2)	176(2
N(11) - C(11) - C(12)	106(3)	N(21) - C(21) - C(22)	110(3
N(12) - C(12) - C(11)	108(3)	N(22) - C(22) - C(21) N(22) - C(22) - C(21)	106(3
N(12) = C(13) = C(14) N(12) = C(14) = C(13)	100(2)	N(22) = C(23) = C(24) N(23) = C(24) = C(23)	112(3
N(13) - C(15) - C(16)	103(2) 102(3)	N(23) - C(25) - C(26)	110(3
N(14) - C(16) - C(15)	117(3)	N(24) - C(26) - C(25)	105(3
· / · · · · · · · · · · · · · · · · · ·	/		,
D(11)-Cl(1)-O(12)	111(2)	O(21) - Cl(2) - O(22)	115(1
O(11) - Cl(1) - O(13)	105(2)	O(21) - Cl(2) - O(23)	107(1
O(11) - O(14) = O(14)	111(2)	O(21) = O(2) = O(24) O(22) = O(22)	104(1
D(12) = CI(1) = O(13) D(12) = CI(1) = O(14)	114(2)	O(22) = O(23) O(22) = O(23)	112(1
O(12) = O(1) = O(14) O(13) = O(14) = O(14)	102(2)	O(23) - Cl(2) - O(24)	111(1
	102(2)		(-

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1978, Index issue.

A view of the two cations in the asymmetric unit and the atom labelling are shown in Figure 1, and values of

FIGURE 1 A view of the [Cu(3,6-NH-od)(NCS)]⁺ cations

the bond distances and angles are reported in Table 2. Because of the reticular disorder, which affects an entire

family of reflections (those with h odd), the accuracy of the molecular parameters is rather poor; this affects the values of the bond distances and angles, particularly those involving light atoms.

The geometries of the two co-ordination polyhedra are very close, the main difference being the orientation of the thiocyanate groups, as reflected in the values of the angles involving Cu(1)-N(1) and Cu(2)-N(2) bonds. The polyhedra are intermediate between square pyramidal and trigonal bipyramidal, as also shown by the equations of selected least-squares planes (Table 3).

TABLE 3

Equations of molecular planes, referred to the a, b, and c axes, with deviations (Å) of atoms from the planes given in square brackets

Plane (a): N(1), N(12), N(14) -18.921x + 3.369y + 6.877z = 0.308[Cu(1) 0.12]

Plane (b): N(2), N(22), N(24)

-19.998x + 3.268y - 5.780z = -4.001[Cu(2) 0.09]

Plane (c): N(11), N(12), N(13), N(14)

11.261x + 0.482y + 12.949z = -0.592

 $[N(11) \ 0.21, \ N(12) \ -0.23, \ N(13) \ 0.22, \ N(14) \ -0.20, \ Cu(1) \ 0.43] \\ Plane \ (d): \ N(21), \ N(22), \ N(23), \ N(24)$

 $\begin{array}{r} -11.122 x - 0.341 y + 13.007 z = -0.061 \\ [N(21) -0.16, N(22) 0.18, N(23) -0.18, N(24) 0.16, Cu(2) \\ -0.39] \end{array}$

All the ethylenediamine rings in the ligands of the two asymmetric units have a *gauche* conformation. The

FIGURE 2 Projection of the hypothetical ordered structure along the b axis, showing the boundaries of the A₁ and A₂ layers. Intermolecular contacts (Å) within each layer are as follows: (a) $O(11^1) \cdots N(22^1) 3.12$, (b) $O(11^1) \cdots N(24^{11}) 3.15$, (c) $O(14^1) \cdots N(12^{11}) 3.23$, (f) $O(22^1) \cdots N(14^{1V}) 3.09$, (g) $O(23^1) \cdots N(12^{111}) 3.19$, (h) $O(23^1) \cdots N(23^1) 3.15$, and (i) $O(24^1) \cdots N(11^{1V}) 2.87$, where I = x, y, z, II = x, y - 1, z, $III = \frac{1}{2} + x, -y, z$, and $IV = \frac{1}{2} + x, 1 - y, z$

distances (Å) of carbon atoms from their pertinent N-Cu-N planes are: $C(11) \ 0.36$; $C(12) \ -0.40$; C(13)-0.76; C(14) -0.05; C(15) -0.59; C(16) 0.10; C(21) -0.31; C(22) 0.37; C(23) 0.72; C(24) 0.09; C(25) 0.37; and C(26) -0.39; the configurations are k'kk and kk'k' for the rings attached to Cu(1) and Cu(2) respectively.

The presence in the Weissenberg photographs of streaks along c^* for all reflections with h odd is consistent with a crystal structure formed by layers which are periodic along the a and b directions and are stacked disorderly along c. These layers, called A_1 and A_2 , are c/2 thick and are shown in Figure 2; inside each layer the anions and cations are held together by O · · · N intermolecular contacts in the range 2.86-3.30 Å.

In the hypothetical ordered structure (Figure ,2) layers A_1 and A_2 would stack indefinitely one on top of the other giving rise to an unusually short $S(1) \cdots S(2)$ contact (3.49 Å) and to weak S · · · N contacts (3.50-**3.63** Å); replacement of A_1 or A_2 by its mirror image across (010) (*i.e.* translation of one of the two layers by a/2) leads to S · · · N distances which fall in the same range, to $S(1) \cdots S(2)$ distances of *ca*. 4.8 Å, but to two short $S \cdot \cdot \cdot C$ contacts (2.77, 2.87 Å).

The presence of short contacts in both models is most probably the cause of their instability and, consequently, of the disordered structure. If we call B_1 and B_2 the mirror images of A1 and A2 respectively, the disordered

structure could originate from the following stackings: $A_1A_2A_1A_2\cdots A_1A_2A_1B_2\cdots B_1B_2B_1B_2\cdots B_1A_2 \mathbf{B_1}\mathbf{A_2} \cdot \cdot \cdot \mathbf{A_1}\mathbf{A_2}\mathbf{A_1}\mathbf{A_2}.$

We thank the Italian C.N.R. for support. Computations were performed on an IBM 370/135 at the Centro di Calcolo, University of Cagliari.

[8/144 Received, 27th January, 1978]

¹ B. W. Brown and E. C. Lingafelter, Acta Cryst., 1964, 17,

254. ² G. D. Andreetti, L. Cavalca, and P. Sgarabotto, Gazzetta, 1971, **101**, 483.

³ M. Cannas, G. Carta, and G. Marongiu, J.C.S. Dalton, 1973, 251.
⁴ M. Cannas, G. Carta, and G. Marongiu, J.C.S. Dalton, 1974,

550. ⁵ G. Marongiu, E. C. Lingafelter, and P. Paoletti, Inorg. Chem., 1969, **8**, 2763. ⁶ R. Barbucci, P. Paoletti, and G. Ponticelli, J. Chem. Soc. (A),

1971, 1637.

REFERENCES

¹ A. D. Rae, Acta Cryst., 1965, 19, 683.
 ⁸ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ⁹ M. Cannas, G. Carta, A. Cristini, and G. Marongiu, J.C.S.

Dalton, 1974, 1278.
¹⁰ A. E. Shvelashvili, M. A. Porai-Koshits, A. I. Kvitashvili, B. M. Shchedrin, and L. P. Sarishvili, *Zhur. strukt. Khim.*, 1974, **15**, 315.

¹¹ A. E. Shvelashvili, Soobshch. Akad. Nauk Gruzh. S.S.R., 1974, 76, 97.

¹² M. Cannas, G. Carta, A. Cristini, and G. Marongiu, Inorg. Chem., 1977, 16, 228.

¹³ M. Cannas, A. Cristini, and G. Marongiu, Inorg. Chim. Acta, 1977, 22, 233.

¹⁴ G. Klopman, J. Amer. Chem. Soc., 1968, 90, 223.