Crystal Structures of Thiocyanate Polyamine Copper(iI) Complexes. Part 7.t (3,6-Diazaoctane-1,8-diamine)isothiocyanatocopper(iI) Perchlorate: A Disordered Structure

By Giaime Marongiu * and Mario Cannas, Istituto Chimico dell'Università, Via Ospedale 72, 09100 Cagliari, Italy
The crystal structure of the title complex has been determined by three-dimensional X-ray data. Crystals are orthorhombic, space group $P c a 2_{1}$ with $Z=8$ in a unit cell of dimensions $a=23.90(4), b=8.56(2)$, and $c=14.71$ (3) \AA. The structure has been solved by Patterson and Fourier methods and refined by least-squares techniques to $R 0.106$ for 1489 refined reflections measured photographically. In contrast to the corresponding bis(thiocyanate) derivative, the thiocyanate group in the present complex is bonded via the nitrogen atom; the co-ordination polyhedron of the copper(II) ion is intermediate between square pyramidal and trigonal bipyramidal. A qualitative interpretation of the structural disorder is given.

In the crystal structures of $\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}\right]^{\mathbf{1}}$ (en $=$ ethylenediamine) and $\left[\mathrm{Cu}(\mathrm{pd})_{2}(\mathrm{SCN})_{2}\right]^{2}(\mathrm{pd}=$ propane-1,3-diamine) the copper atoms have an elongated octahedral co-ordination with the amine nitrogen atoms in the basal plane and the sulphur atoms of the thiocyanate groups in the apical positions at distances of 3.27 and $3.15 \AA$ respectively; a network of $\mathrm{N}(\mathrm{NCS}) \cdots \mathrm{N}$ (amine) contacts (ca. $3.0 \AA$) is present in both structures. Replacement of a thiocyanate ligand by perchlorate in the two complexes leads to different structural arrangements where $\mathrm{N} \cdot \mathrm{N}$ are replaced by $\mathrm{O} \cdots \mathrm{N}$ contacts: $\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{NCS})\right]\left[\mathrm{ClO}_{4}\right]^{3}$ gives a highly packed structure ($D 1.72 \mathrm{~g} \mathrm{~cm}^{-3}$) formed by

(I)
chains $\left[\mathrm{Cu}^{-N}\right.$ as in (I) $\left.2.73 \AA\right]$ and by $\left[\mathrm{ClO}_{4}\right]^{-}$ions, while $\left[\mathrm{Cu}(\mathrm{pd})_{2}(\mathrm{NCS})\right]\left[\mathrm{ClO}_{4}\right]^{4}$ gives a loose $(D 1.50 \mathrm{~g}$ cm^{-3}), highly symmetrical, structure where the trigonalbipyramidal $\left[\mathrm{Cu}(\mathrm{pd})_{2}(\mathrm{NCS})\right]^{+}$cations are arranged around the $\left[\mathrm{ClO}_{4}\right]^{-}$ions, which lie along the three-fold axes.

In the crystal structure of $[\mathrm{Cu}(3,6 \mathrm{NH}-\mathrm{od})(\mathrm{SCN})]-$ $[\mathrm{SCN}]^{5}(3,6 \mathrm{NH}$-od $=3,6$-diazaoctane-1,8-diamine) the five-co-ordinate $[\mathrm{Cu}(3,6 \mathrm{NH}-\mathrm{od})(\mathrm{SCN})]^{+}$cation and [SCN] ${ }^{-}$anions are connected by a network of $\mathrm{N}-\mathrm{H} \cdot \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds; the co-ordination polyhedron around copper is square pyramidal with the four nitrogen atoms of the ligand in the basal plane and the sulphur atom of a thocyanate group in the apical position ($\mathrm{Cu}-\mathrm{S} 2.607 \AA$). To investigate further the effect of replacement of one thiocyanate group by perchlorate we have undertaken the crystal-structure analysis of $[\mathrm{Cu}(3,6 \mathrm{NH}-\mathrm{od})(\mathrm{NCS})]\left[\mathrm{ClO}_{4}\right]$.

EXPERIMENTAL

The complex was prepared by Barbucci et al. ${ }^{6}$ who kindly provided us with a sample. Crystals suitable for X-ray
\dagger Part 6 is ref. 9.
analysis were obtained by evaporation of a concentrated methanol solution with a few drops of water added. All the crystals examined gave diffraction patterns showing diffuse streaks, parallel to the c^{*} direction, along the lattice rows for which h is odd, indicating the presence of one-dimensional disorder; the streaks have maxima in positions corresponding to integer l values.

Crystal Data. $-\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClCuN}_{5} \mathrm{O}_{4} \mathrm{~S}, \quad M=367.3$, Orthorhombic, $a=23.90(4), b=8.56(2), c=14.71(3) \AA, U=$ $3009 \AA^{3}, D_{\mathrm{m}}$ (picnometric) $=1.60 \mathrm{~g} \mathrm{~cm}^{-3} Z=8, D_{\mathrm{c}}=$ $1.62 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{Cu}-K_{\alpha}$ radiation, $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=50.7 \mathrm{~cm}^{-1}$. From systematic absences of both sharp and diffuse reflections ($0 k l$ for $l=2 n+1$ and $h 0 l$ for $h=2 n+1$) the possible space groups are Pca2 (no. 29) and Pcam (no. 57). Intensities for $h 0-6 l$ and $0 k l, 2 k l, 4 k l$ were collected on an integrating Weissenberg camera, and determined photometrically with the aid of a microdensitometer; diffuse reflections were measured on the peak position. A total of 1276 reflections was measured; after correction for Lorentz and polarization factors, they were placed on the same relative scale by the least-squares procedure of Rae ${ }^{7}$ and reduced to a set of 1060 independent reflections. The weakest reflections (429) were visually estimated with the aid of a calibrated scale. Unobserved reflections (1034) were given an F_{0} value equal to $F_{0}(\min) /$.2 . The atomic scattering factors were taken from Cromer and Waber ${ }^{8}$; that of copper was corrected for the real part of the anomalous dispersion.

Structure Determination and Refinement.-The structure was solved by neglecting the disorder effects; diffuse reflections were therefore considered as sharp, but the measured F_{o} values were arbitrarily multiplied by 1.5 , which seemed a reasonable factor to allow for the streak contribution to their intensities. Because of peak overlapping, the analysis of the three-dimensional Patterson map was not straightforward. Some of the highest peaks were eventually found consistent with the co-ordinates of three atoms in space group Pca2 ; they were introduced as two copper and one chlorine atoms in the structure-factor calculation ($R \quad 0.42$). The following three-dimensional Fourier synthesis showed the two sulphur and a few light atoms, whose contribution lowered R to 0.31 . All the remaining non-hydrogen atoms were located with some difficulty in three successive three-dimensional differenceFourier syntheses, and their positions definitely confirmed the choice of $P c a 2_{1}$ as the space group.

The scale factors of sharp (945) and diffuse reflections (544) together with atomic positional and isotropic thermal parameters were refined by block-diagonal least-squares
methods. The function minimized was $\Sigma w \Delta F^{2}$, where w was taken as $1 /\left(22.7+F_{0}+0.005 F_{0}{ }^{2}\right)$. Refinement was terminated after six cycles. The final R value for 1489 observed reflections was 0.106 . The final atomic parameters with estimated standard deviations are given in Table 1. Observed and calculated structure factors and

Table 1
Atomic co-ordinates ($\times 10^{4}$) with standard deviations in parentheses

	x / a	y / b	z / c
$\mathrm{Cu}(1)$	-158(2)	392(5)	0(0)
$\mathrm{Cu}(2)$	2316 (1)	5343 (4)	$1779(3)$
$\mathrm{Cl}(1)$	$2116(3)$	-11(8)	-18(5)
$\mathrm{Cl}(2)$	4570 (2)	5019 (7)	1640 (4)
$\mathrm{S}(1)$	970(3)	-985(9)	2 628(5)
S(2)	3490 (3)	$6113(10)$	-954(5)
$\mathrm{O}(11)$	2 271(16)	37(37)	970(26)
$\mathrm{O}(12)$	2575 (12)	-255(27)	-547(18)
$\mathrm{O}(13)$	1842 (14)	$1430(40)$	- $180(24)$
$\mathrm{O}(14)$	$1675(9)$	-1116(27)	-173(16)
$\mathrm{O}(21)$	$4937(10)$	$4848(27)$	2456 (16)
$\mathrm{O}(22)$	$4858(7)$	$5073(20)$	800(11)
$\mathrm{O}(23)$	$4164(8)$	$3769(24)$	1 666(14)
$\mathrm{O}(24)$	4301 (8)	$6515(24)$	1763 (15)
N(1)	290 (12)	59(29)	$1225(19)$
N(2)	$2752(10)$	5441 (29)	468(18)
N(11)	-898(9)	$1085(26)$	440(15)
N(12)	$-524(9)$	- $1807(27)$	--105(16)
N(13)	465(10)	-634(29)	-659(16)
N(14)	17(9)	$2456(25)$	-709(14)
$\mathrm{N}(21)$	$1537(8)$	$5994(26)$	$1306(14)$
$\mathrm{N}(22)$	$1988(9)$	$3224(27)$	1881 (16)
N(23)	$2985(8)$	4 537(25)	$2504(15)$
$\mathrm{N}(24)$	$2510(13)$	$7401(30)$	2416 (21)
C(1)	559 (9)	-451(27)	1 798(17)
$\mathrm{C}(2)$	3040 (11)	$5701(33)$	-141(19)
$\mathrm{C}(11)$	-1223(15)	-289(38)	688(25)
C(12)	-1139(12)	- 1446 (36)	-54(22)
C(13)	-311(9)	- 2 482(26)	-975(16)
$\mathrm{C}(14)$	314(13)	-2433(36)	-915(23)
C (15)	581(15)	265(38)	- $1592(23)$
C (16)	585(17)	$1802(48)$	-1313(28)
$\mathrm{C}(21)$	1233 (13)	$4459(36)$	$1117(21)$
$\mathrm{C}(22)$	1350 (13)	3 344(37)	1819 (24)
$\mathrm{C}(23)$	2 222(16)	$2657(48)$	${ }^{2} 797(28)$
$\mathrm{C}(24)$	$2873(14)$	$2984(43)$	$\stackrel{740(24)}{ }$
$\mathrm{C}(25)$	3 088(13)	5 620(38)	$3153(21)$
$\mathrm{C}(26)$	$3060(12)$	7244 (39)	$2737(22)$

thermal parameters are listed in Supplementary Publication No. SUP 22347 (14 pp.).*

DISCUSSION

This structure consisting of $\left[\mathrm{ClO}_{4}\right]^{-}$anions and $[\mathrm{Cu}-$ $(3,6 \mathrm{NH}-\mathrm{od})(\mathrm{NCS})]^{+}$cations is a further example of the influence of the unco-ordinated anion on the bonding mode of the thiocyanate group; in fact, the bonding of this group changes from the S-type in $[\mathrm{Cu}(3,6 \mathrm{NH}$-od $)$ (SCN) $][\mathrm{NCS}]$ to the N-type in the present $[\mathrm{Cu}(3,6 \mathrm{NH}-$ od) $(\mathrm{NCS})]\left[\mathrm{ClO}_{4}\right]$. This result and those reported in the introduction suggest that the bonding mode of the thiocyanate ion in $\mathrm{CuL}(\mathrm{SCN})_{2}$ and $\mathrm{CuL}(\mathrm{CNS})\left(\mathrm{ClO}_{4}\right)$ is influenced by packing conditions rather than by electronic effects. In fact the presence of $\mathrm{Cu} \cdots \mathrm{S}$ interactions in the bis(thiocyanate) derivatives should not be explained as a soft-soft interaction, as previously suggested. ${ }^{9}$ This is because recent structural investigations of several cadmium complexes containing chelating

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1978, Index issue.
amines $\left(\left[\mathrm{Cd}(\mathrm{en})_{2}(\mathrm{NCS})_{2}\right],{ }^{10}\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Cl}(\mathrm{NCS})\right],{ }^{10}[\mathrm{Cd}(\mathrm{en})-\right.$ $(\mathrm{NCS})]_{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}\right],{ }^{11}\left[\mathrm{Cd}\left\{\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{H}\right\}(\mathrm{NCS})_{2}\right],{ }^{12} \quad[\mathrm{Cd}-$ $\left.\left.\left\{\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]_{2} \mathrm{H}\right\}(\mathrm{NCS})_{2}\right]^{13}\right)$ have shown that thiocyanate is always N-bonded although Cd^{2+} ion follows Cu^{2+} in order of softness. ${ }^{14}$ Moreover, $\mathrm{Cu}-\mathrm{S}$ interactions, which take place at the apical position of an elongated octahedron or of a square pyramid, are always weak whereas $\mathrm{Cu} \cdots \mathrm{N}$ ones are generally close to normal covalent bonds and by far more frequent.

Table 2

Bond distances (\AA) and angles (${ }^{\circ}$), with calculated standard deviations in parentheses

(a) Distances			
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.12(3)$	$\mathrm{Cu}(2)-\mathrm{N}(2)$	$2.19(3)$
$\mathrm{Cu}(1)-\mathrm{N}(11)$	$1.98(2)$	$\mathrm{Cu}(2)-\mathrm{N}(21)$	$2.07(2)$
$\mathrm{Cu}(1)-\mathrm{N}(12)$	$2.08(2)$	$\mathrm{Cu}(2)-\mathrm{N}(22)$	$1.98(2)$
$\mathrm{Cu}(1)-\mathrm{N}(13)$	$1.98(3)$	$\mathrm{Cu}(2)-\mathrm{N}(23)$	$2.04(2)$
$\mathrm{Cu}(1)-\mathrm{N}(14)$	$2.10(2)$	$\mathrm{Cu}(2)-\mathrm{N}(24)$	$2.05(3)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.63(3)$	$\mathrm{S}(2)-\mathrm{C}(2)$	$1.65(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.15(4)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.15(4)$
$\mathrm{N}(11)-\mathrm{C}(11)$	$1.46(4)$	$\mathrm{N}(21)-\mathrm{C}(21)$	$1.53(4)$
$\mathrm{N}(12)-\mathrm{C}(12)$	$1.50(4)$	$\mathrm{N}(22)-\mathrm{C}(22)$	$1.53(4)$
$\mathrm{N}(12)-\mathrm{C}(13)$	$1.49(3)$	$\mathrm{N}(22)-\mathrm{C}(23)$	$1.54(5)$
$\mathrm{N}(13)-\mathrm{C}(14)$	$1.63(4)$	$\mathrm{N}(23)-\mathrm{C}(24)$	$1.40(4)$
$\mathrm{N}(13)-\mathrm{C}(15)$	$1.60(4)$	$\mathrm{N}(23)-\mathrm{C}(25)$	$1.35(4)$
$\mathrm{N}(14)-\mathrm{C}(16)$	$1.71(5)$	$\mathrm{N}(24)-\mathrm{C}(26)$	$1.40(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.49(5)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.43(5)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.50(4)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.58(5)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.38(5)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.52(5)$
$\mathrm{Cl}(1)-\mathrm{O}(11)$	$1.50(4)$	$\mathrm{Cl}(2)-\mathrm{O}(21)$	$1.49(3)$
$\mathrm{Cl}(1)-\mathrm{O}(12)$	$1.36(3)$	$\mathrm{Cl}(2)-\mathrm{O}(22)$	$1.42(2)$
$\mathrm{Cl}(1)-\mathrm{O}(13)$	$1.42(4)$	$\mathrm{Cl}(2)-\mathrm{O}(23)$	$1.45(2)$
$\mathrm{Cl}(1)-\mathrm{O}(14)$	$1.43(5)$	$\mathrm{Cl}(2)-\mathrm{O}(24)$	$1.44(2)$

$(b) \mathrm{Angles}$			
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(11)$	$102(1)$	$\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{N}(21)$	$97(1)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(12)$	$99(1)$	$\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{N}(22)$	$107(1)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(13)$	$89(1)$	$\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{N}(23)$	$96(1)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(14)$	$116(1)$	$\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{N}(24)$	$105(1)$
$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{N}(12)$	$85(1)$	$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{N}(22)$	$85(1)$
$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{N}(13)$	$165(1)$	$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{N}(23)$	$167(1)$
$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{N}(14)$	$95(1)$	$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{N}(24)$	$97(1)$
$\mathrm{N}(12)-\mathrm{Cu}(1)-\mathrm{N}(13)$	$83(1)$	$\mathrm{N}(22)-\mathrm{Cu}(2)-\mathrm{N}(23)$	$88(1)$
$\mathrm{N}(12)-\mathrm{Cu}(1)-\mathrm{N}(14)$	$144(1)$	$\mathrm{N}(22)-\mathrm{Cu}(2)-\mathrm{N}(24)$	$147(1)$
$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{N}(14)$	$89(1)$	$\mathrm{N}(23)-\mathrm{Cu}(2)-\mathrm{N}(24)$	$83(1)$
$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$164(2)$	$\mathrm{Cu}(2)-\mathrm{N}(2)-\mathrm{C}(2)$	$167(2)$
$\mathrm{Cu}(1)-\mathrm{N}(11)-\mathrm{C}(11)$	$108(2)$	$\mathrm{Cu}(2)-\mathrm{N}(21)-\mathrm{C}(21)$	$105(2)$
$\mathrm{Cu}(1)-\mathrm{N}(12)-\mathrm{C}(12)$	$103(2)$	$\mathrm{Cu}(2)-\mathrm{N}(22)-\mathrm{C}(22)$	$109(2)$
$\mathrm{Cu}(1)-\mathrm{N}(12)-\mathrm{C}(13)$	$106(2)$	$\mathrm{Cu}(2)-\mathrm{N}(22)-\mathrm{C}(23)$	$102(2)$
$\mathrm{C}(12)-\mathrm{N}(12)-\mathrm{C}(13)$	$117(2)$	$\mathrm{C}(22)-\mathrm{N}(22)-\mathrm{C}(23)$	$116(3)$
$\mathrm{Cu}(1)-\mathrm{N}(13)-\mathrm{C}(14)$	$111(2)$	$\mathrm{Cu}(2)-\mathrm{N}(23)-\mathrm{C}(24)$	$108(2)$
$\mathrm{Cu}(1)-\mathrm{N}(13)-\mathrm{C}(15)$	$110(2)$	$\mathrm{Cu}(2)-\mathrm{N}(23)-\mathrm{C}(25)$	$106(2)$
$\mathrm{C}(14)-\mathrm{N}(13)-\mathrm{C}(15)$	$107(2)$	$\mathrm{C}(24)-\mathrm{N}(23)-\mathrm{C}(25)$	$121(3)$
$\mathrm{Cu}(1)-\mathrm{N}(14)-\mathrm{C}(16)$	$98(2)$	$\mathrm{Cu}(2)-\mathrm{N}(24)-\mathrm{C}(26)$	$106(2)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$174(2)$	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(2)$	
$\mathrm{N}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	$106(3)$	$\mathrm{N}(21)-\mathrm{C}(21)-\mathrm{C}(22)$	$176(2)$
$\mathrm{N}(12)-\mathrm{C}(12)-\mathrm{C}(11)$	$108(3)$	$\mathrm{N}(22)-\mathrm{C}(22)-\mathrm{C}(21)$	$10(3)$
$\mathrm{N}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$106(2)$	$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$105(3)$
$\mathrm{N}(13)-\mathrm{C}(14)-\mathrm{C}(13)$	$105(2)$	$\mathrm{N}(23)-\mathrm{C}(24)-\mathrm{C}(23)$	$112(3)$
$\mathrm{N}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	$102(3)$	$\mathrm{N}(23)-\mathrm{C}(25)-\mathrm{C}(26)$	$110(3)$
$\mathrm{N}(14)-\mathrm{C}(16)-\mathrm{C}(15)$	$117(3)$	$\mathrm{N}(24)-\mathrm{C}(26)-\mathrm{C}(25)$	$105(3)$
$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(12)$	$111(2)$	()$(21)-\mathrm{Cl}(2)-\mathrm{O}(22)$	$115(1)$
$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(13)$	$105(2)$	$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}(23)$	$107(1)$
$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(14)$	$111(2)$	$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}(24)$	$104(1)$
$\mathrm{O}(12)-\mathrm{Cl}(1)-\mathrm{O}(13)$	$114(2)$	$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(23)$	$112(1)$
$\mathrm{O}(12)-\mathrm{Cl}(1)-\mathrm{O}(14)$	$114(2)$	$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(24)$	$107(1)$
$\mathrm{O}(13)-\mathrm{Cl}(1)-\mathrm{O}(14)$	$102(2)$	$\mathrm{O}(23)-\mathrm{Cl}(2)-\mathrm{O}(24)$	$111(1)$

A view of the two cations in the asymmetric unit and the atom labelling are shown in Figure 1, and values of

Figure 1 A view of the $[\mathrm{Cu}(3,6-\mathrm{NH}-\mathrm{od})(\mathrm{NCS})]+$ cations
family of reflections (those with h odd), the accuracy of the molecular parameters is rather poor; this affects the values of the bond distances and angles, particularly those involving light atoms.

The geometries of the two co-ordination polyhedra are very close, the main difference being the orientation of the thiocyanate groups, as reflected in the values of the angles involving $\mathrm{Cu}(1)-\mathrm{N}(1)$ and $\mathrm{Cu}(2)-\mathrm{N}(2)$ bonds. The polyhedra are intermediate between square pyramidal and trigonal bipyramidal, as also shown by the equations of selected least-squares planes (Table 3).

Table 3

Equations of molecular planes, referred to the a, b, and c axes, with deviations (\AA) of atoms from the planes given in square brackets
Plane (a): $\mathrm{N}(1), \mathrm{N}(12), \mathrm{N}(14)$

$$
-18.921 x+3.369 y+6.877 z=0.308
$$

$[\mathrm{Cu}(1) 0.12]$
Plane (b): N(2), N(22), N(24)

$$
-19.998 x+3.268 y-5.780 z=-4.001
$$

$[\mathrm{Cu}(2) 0.09]$
Plane (c): $\mathrm{N}(11), \mathrm{N}(12), \mathrm{N}(13), \mathrm{N}(14)$

$$
11.261 x+0.482 y+12.949 z=-0.592
$$

$[\mathrm{N}(11) 0.21, \mathrm{~N}(12)-0.23, \mathrm{~N}(13) 0.22, \mathrm{~N}(14)-0.20, \mathrm{Cu}(1) 0.43]$
Plane (d): $\mathrm{N}(21), \mathrm{N}(22), \mathrm{N}(23), \mathrm{N}(24)$

$$
-11.122 x-0.341 y+13.007 z=-0.061
$$

$-[\mathrm{N}(21)-0.16, \mathrm{~N}(22) 0.18, \mathrm{~N}(23)-0.18, \mathrm{~N}(24) 0.16, \mathrm{Cu}(2)$ $-0.39]$

All the ethylenediamine rings in the ligands of the two asymmetric units have a gauche conformation. The
the bond distances and angles are reported in Table 2. Because of the reticular disorder, which affects an entire

Figure 2 Projection of the hypothetical ordered structure along the b axis, showing the boundaries of the A_{1} and A_{2} layers. Intermolecular contacts (\AA) within each layer are as follows: (a) $\mathrm{O}\left(11^{11}\right) \cdots \mathrm{N}(221) 3.12,(b) \mathrm{O}\left(11^{1}\right) \cdots \mathrm{N}\left(24^{1 \mathrm{II}}\right) 3.15,(c) \mathrm{O}(141) \cdots$ $\mathrm{N}\left(21^{\mathrm{II}}\right) 3.31,(d) \mathrm{O}\left(14^{\mathrm{I}}\right) \cdots \mathrm{N}\left(13^{\mathrm{I}}\right) 3.00,(e) \mathrm{O}\left(22^{\mathrm{I}}\right) \cdots \mathrm{N}\left(12^{\mathrm{III}}\right) 3.23,(f) \mathrm{O}\left(22^{\mathrm{I}}\right) \cdots \mathrm{N}\left(14^{\mathrm{IV}}\right) 3.09,(g) \mathrm{O}\left(23^{\mathrm{I}}\right) \cdots \mathrm{N}\left(12^{\mathrm{III}}\right) 3.19$, (h) $\mathrm{O}\left(23^{1}\right) \cdots \mathrm{N}\left(23^{\mathrm{I}}\right) 3.15$, and $(i) \mathrm{O}\left(24^{\mathrm{I}}\right) \cdots \mathrm{N}\left(11^{\mathrm{IV}}\right) 2.87$, where $\mathrm{I}=x, y, z, \mathrm{II}=x, y-1, z$, III $=\frac{1}{2}+x$, $-y, z$, and $\mathrm{IV}=$ $\frac{1}{2}+x, 1-y, z$
distances (\AA) of carbon atoms from their pertinent N -$\mathrm{Cu}-\mathrm{N}$ planes are: $\mathrm{C}(11) 0.36 ; \mathrm{C}(12)-0.40 ; \mathrm{C}(13)$ $-0.76 ; \mathrm{C}(14)-0.05 ; \mathrm{C}(15)-0.59 ; \mathrm{C}(16) 0.10 ; \mathrm{C}(21)$ -0.31; $\mathrm{C}(22) 0.37$; $\mathrm{C}(23) 0.72$; $\mathrm{C}(24) 0.09 ; \mathrm{C}(25)$ 0.37 ; and $\mathrm{C}(26)-0.39$; the configurations are $k^{\prime} k k$ and $k k^{\prime} k^{\prime}$ for the rings attached to $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ respectively.

The presence in the Weissenberg photographs of streaks along c^{*} for all reflections with h odd is consistent with a crystal structure formed by layers which are periodic along the a and b directions and are stacked disorderly along c. These layers, called A_{1} and A_{2}. are $c / 2$ thick and are shown in Figure 2; inside each layer the anions and cations are held together by $\mathrm{O} \cdot \mathrm{N}$ intermolecular contacts in the range $2.86-3.30 \AA$.

In the hypothetical ordered structure (Figure ,2) layers A_{1} and A_{2} would stack indefinitely one on top of the other giving rise to an unusually short $\mathrm{S}(1) \cdots \mathrm{S}(2)$ contact ($3.49 \AA$) and to weak $\mathrm{S} \cdot \cdots \mathrm{N}$ contacts (3.50 $3.63 \AA$); replacement of A_{1} or A_{2} by its mirror image across (010) (i.e. translation of one of the two layers by $a / 2)$ leads to $\mathrm{S} \cdots \mathrm{N}$ distances which fall in the same range, to $\mathrm{S}(1) \cdots \mathrm{S}(2)$ distances of ca. $4.8 \AA$, but to two short S • . C contacts ($2.77,2.87 \AA$).

The presence of short contacts in both models is most probably the cause of their instability and, consequently, of the disordered structure. If we call B_{1} and B_{2} the mirror images of A_{1} and A_{2} respectively, the disordered
structure could originate from the following stackings:
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2} \cdots \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~B}_{2} \cdots \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \cdots \mathrm{~B}_{1} \mathrm{~A}_{2}$ $\mathrm{B}_{1} \mathrm{~A}_{2} \cdots \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{2}$.

We thank the Italian C.N.R. for support. Computations were performed on an IBM 370/135 at the Centro di Calcolo, University of Cagliari.
[8/144 Received, 27th January, 1978]

REFERENCES

${ }^{1}$ B. W. Brown and E. C. Lingafelter, Acta Cryst., 1964, 17, 254.
${ }^{2}$ G. D. Andreetti, L. Cavalca, and P. Sgarabotto, Gazzetta, 1971, 101, 483.
${ }^{3}$ M. Cannas, G. Carta, and G. Marongiu, J.C.S. Dalton, 1973, 251.
${ }^{4}$ M. Cannas, G. Carta, and G. Marongiu, J.C.S. Dalton, 1974, 550.
${ }^{5}$ G. Marongiu, E. C. Lingafelter, and P. Paoletti, Inorg. Chem., 1969, 8, 2763.
${ }^{6}$ R. Barbucci, P. Paoletti, and G. Ponticelli, J. Chem. Soc. (A), 1971, 1637.

7 A. D. Rae, Acta Cryst., 1965, 19, 683.
${ }^{8}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{9}$ M. Cannas, G. Carta, A. Cristini, and G. Marongiu, J.C.S. Dalton, 1974, 1278.
${ }^{10}$ A. E. Shvelashvili, M. A. Porai-Koshits, A. I. Kvitashvili, B. M. Shchedrin, and L. P. Sarishvili, Zhur. strukt. Khim., 1974, 15, 315 .
${ }_{11}$ A. E. Shvelashvili, Soobshch. Akad. Nauk Gruzh. S.S.R., 1974, 76, 97.
${ }^{12}$ M. Cannas, G. Carta, A. Cristini, and G. Marongiu, Inorg. Chem., 1977, 16, 228.
${ }_{13}$ M. Cannas, A. Cristini, and G. Marongiu, Inorg. Chim. Acta, 1977, 22, 233.
${ }^{14}$ G. Klopman, J. Amer. Chem. Soc., 1968, 90. 223.

