Stereochemistry, and Crystal and Molecular Structure, of meso- and rac-1,2-Bis(phenylsulphinyl)ethane, cis-[meso-1,2-Bis(phenylsulphinyl)ethane]dichloroplatinum(II), and cis-[rac-1,2-Bis(phenylsulphinyl)ethane]dichloroplatinum(II)

Abstract

By Lucio Cattalini * and Gianni Michelon, Facoltà di Chimica Industriale, Istituto di Chimica Generale ed Inorganica, Università di Venezia, Italy Giampaolo Marangoni, Laboratorio di Chimica e Tecnologia dei Radioelementi, C.N.R. Area della Ricerca, Corso Stati Uniti, Padova, Italy Giancarlo Pelizzi, Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro per la Strutturistica Diffrattometrica del C.N.R., 43100 Parma, Italy

Diastereoisomeric meso and rac forms of 1,2-bis (phenylsulphinyl) ethane (1) and (2) respectively, have been separated and treated with $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ to obtain the title complexes (3) and (4) respectively. The crystal structures of (1) and of the enantiomeric (S, S) form of (2), indicated as (2a), as well as of (3) and (4), have been solved by X-ray analysis from three-dimensional counter data and refined by block-diagonal least squares to $R 0.028$ and 0.051 for the ligands, and by full-matrix least squares to $R 0.030$ and 0.056 for the complexes, respectively. The co-ordination around platinum, which involves two chlorides and two sulphur atoms of the organic ligand, is quite close to square planar for (4) and only slightly tetrahedrally distorted for (3). The lengths of the $\mathrm{Pt}-\mathrm{Cl}$ bonds are in fairly good agreement with those found in square-planar platinum(11) complexes, whereas the $\mathrm{Pt}-\mathrm{S}$ bonds are slightly shorter. The different conformations assumed by the ligand when unco-ordinated or co-ordinated to the metal are compared and discussed. The structural data are related to i.r. and ${ }^{1} \mathrm{H}$ n.m.r. measurements.

The synthesis, properties, and reactivity of organic sulphoxides, and the resolution of the optical isomers of asymmetric sulphoxides, have been widely studied. ${ }^{1-6}$ In particular, the asymmetric oxidation of unsymmetrical sulphides ${ }^{7}$ and the reaction of an optically active sulphinate ester with an organomagnesium halide ${ }^{8,9}$ have been reported as methods of obtaining sulphoxides of high optical purity. In some cases, the chemical assignments have been confirmed by X-ray structure determinations. ${ }^{10-12}$

The related class of organic disulphoxides have been scarcely studied. A synthesis of bis(phenylsulphinyl)methane was first reported by Hinsberg ${ }^{13}$ by the oxidation of the parent disulphide. In this and subsequent cases ${ }^{2,14}$ no mention was made of the possible stereoisomers, i.e meso and (\pm) rac, which were separated later and characterized by n.m.r. spectroscopy. ${ }^{\mathbf{1 5 , 1 6}}$ Very recently, the preparation of β-disulphoxides in optically and diastereomerically pure states has been achieved by a ready one-step synthesis, starting from arenesulphinic esters and α-sulphinylcarbanions derived from the corresponding methyl-substituted sulphoxides. ${ }^{17}$ The configurational assignments were made by a combination of n.m.r. and polarimetric measurements. ${ }^{18}$ Some γ disulphoxides were first prepared by Bell and Bennett, ${ }^{19}$ who succeeded also in the separation of different forms of bis(methylsulphinyl)- and bis(phenylsulphinyl)ethane. The previously arbitrarily named α and β compounds have been recently re-examined and their structures assigned by n.m.r. measurements. ${ }^{15,20,21}$ Furthermore, the X-ray crystal and molecular structure of meso-bis(methylsulphinyl)ethane has now been solved. ${ }^{22}$ Unlike dialkyl sulphoxides, which are known to form complexes with a large number of metal ions, ${ }^{23-30}$ the co-ordination compounds of disulphoxides have been much less studied. ${ }^{31,32}$ The separation and resolution
of stereoisomers has not been attempted, nor have X-ray structural determinations been carried out.

We report a study of the synthesis, physicochemical characterization, and crystal structure of the diastereoisomeric (R, S)- and (S, S)-1,2-bis(phenylsulphinyl)ethane, (1) and (2a) respectively, and of cis-[meso-1,2-bis(phenylsulphinyl)ethane]dichloroplatinum(II) (3) and cis-[rac-1,2-bis(phenylsulphinyl)ethane]dichloroplatinum(II) (4). A kinetic study of the replacement of chloride by other ions in both these complexes is in progress.

EXPERIMENTAL

Materials.-Reagent-grade thiophenol, ethylene dibromide, and dipotassium tetrachloroplatinate(II) were used without further purification. Commercial ethanol, chloroform, acetone, and dimethylformamide were purified before use as reported in the literature.
Instruments.-Infrared spectra ($300-4000 \mathrm{~cm}^{-1}$) were recorded on a Perkin-Elmer 621 spectrophotometer as Nujol mulls between KBr plates or as KBr pellets. Calibration of the frequency reading was made with polystyrene films. Hydrogen-1 n.m.r. measurements were carried out with Varian T-60 or NV-14 instruments for solutions in deuteriochloroform, carbon tetrachloride, and deuterionitromethane using SiMe_{4} as internal standard.
Crystal and intensity data were determined by means of a single-crystal Siemens AED diffractometer. Atomic scattering factors were taken from Cromer and Mann for non-hydrogen atoms ${ }^{33}$ and from Stewart et al. ${ }^{34}$ for hydrogen atoms. All the calculations were carried out on the Cyber 76 computer of the Centro di Calcolo Elettronico Interuniversitario del l'Italia Nord Orientale.

Preparation of the Ligands.-According to the method of Cerniani and Modena ${ }^{3}$ for the oxidation of diaryl sulphides to the corresponding sulphoxides, hydrogen peroxide (7.8 cm^{3} of a 32% aqueous solution) was added dropwise and with stirring to a solution of 1,2 -bis(phenylthio) ethane in a mixture of acetone ($100 \mathrm{~cm}^{3}$) and $\mathrm{HClO}_{4}\left(7 \mathrm{~cm}^{3}, 70 \%\right)$ cooled
on an ice-bath, so that the temperature did not rise above $25{ }^{\circ} \mathrm{C}$. The solution was stirred for another 2 h before being neutralized with solid $\mathrm{Na}\left[\mathrm{HCO}_{3}\right]$. After filtration of the solid formed, the solution was concentrated and extracted, after addition of a saturated aqueous solution of NaCl , with several portions of CHCl_{3}. The organic phase was dried over $\mathrm{Na}_{2}\left[\mathrm{SO}_{4}\right]$ and the white solid obtained on removing the solvent was washed several times with water, ethanol, and diethyl ether and then dried in vacuo. The crude product (8 g) thus obtained was separated by fractional crystallization from CHCl_{3}-light petroleum into the
and only slight differences are present in the solid-state spectra, the high-melting species (1) showing relatively more complexity. On the other hand the ${ }^{1} \mathrm{H}$ n.m.r. spectra are very different. Compound (1) shows only a single resonance at $\delta 2.88$ p.p.m. for the methylene protons, while (2) displays a complex multiplet, symmetric with respect to the baricentre and centred at about the same frequency. These features, which indicate magnetic non-equivalence of the methylene protons, have been previously interpreted ${ }^{21}$ by considering that the

TAble 1
Analytical and physicochemical data

	Analysis (\%) ${ }^{\text {a }}$				$\begin{gathered} \mathrm{M} \cdot \mathrm{p} \cdot \\ \left(\theta_{\mathrm{c}} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} { }^{1} \mathrm{H} \text { N.m.r. } \\ (\delta / \text { p.p.m. }) \mathrm{CH}_{2} \end{gathered}$	I.r. $\left(\mathrm{cm}^{-1}\right)$	
Compound	C	H	S	Cl			$\stackrel{\text { (SO) }}{ }$	$\nu(\mathrm{Pt}-\mathrm{Cl})$
(1)	60.2	4.95	22.9		166-167	2.88	1033	
	(60.4)	(50.5)	(23.05)					
(2)	60.1	5.05	23.0		122-123	$2.25-3.53$	1.037	
	(60.4)	(5.05)	(23.05)					
(3)	30.8	2.65	11.9	12.95	228-232	$(3.3-4.1)^{\text {b }}$	1158	327-317
	(30.9)	(2.55)	(11.8)	(13.05)	(decomp.)			
(4)	$\begin{array}{r} 30.75 \\ (30.9) \end{array}$	$\begin{gathered} 2.60 \\ (2.55) \end{gathered}$	$\begin{aligned} & 11.75 \\ & (11.8) \end{aligned}$	$\begin{aligned} & 12.9 \\ & (13.05) \end{aligned}$	239-242 (decomp.)	$(3.3-4.1)^{6}$	1153	334-324

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ Approximate range.
Table 2
X-Ray data

Compound	(1) monoclinic
Crystal system	$P 2_{1} / n$
Space group	$8.946(9)$
a / \AA	$9.406(9)$
b / \AA	$8.347(8)$
c / \AA	$\mathbf{1 0 5 . 3 (1)}$
$\beta / /^{\circ}$	677.5
U / \AA^{3}	2
Z	1.36
$D_{\mathrm{v}} / \mathrm{g} \mathrm{cm}$	
Radiation	Mo- K_{α}
Number of unique reflections	1329
Number of observed 'reflections	788
Solution techniques	heavy atom
Refinement	block-diagonal
	least squares
Absolute configuration	
Hydrogen atoms	located and
R	refined
R	0.028

two diastereoisomers (R, S)-1,2-bis(phenylsulphinyl)ethane (meso form) (1) and (\pm)-1,2-bis(phenylsulphinyl)ethane (vac form) (2) respectively, which were recrystallized from ethanol.

Preparation of the Platinum(11) Complexes.-To an aqueous solution ($50 \mathrm{~cm}^{3}$) of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ (1.35 mmol) at ca. $70^{\circ} \mathrm{C}$ was slowly added an equimolar solution of the ligand, (1) or (2) respectively, in methanol $\left(30 \mathrm{~cm}^{3}\right)$ with vigorous stirring. The whitish complexes soon precipitated, cis-[meso-1,2bis(phenylsulphinyl)ethane]dichloroplatinum(II) (3) and cis-[rac-1,2-bis(phenylsulphinyl)ethane]dichloroplatinum(II)
(4) respectively, and were carefully washed with water, methanol, and diethyl ether and dried in vacuo. Crystals suitable for X-ray structure determinations were grown from dimethylformamide-methanol solutions.

Analytical data for both the ligands and complexes are in Table 1.

DISCUSSION

The solution i.r. spectra of the diastereoisomeric forms of the uncomplexed ligands (1) and (2) are very similar

(2a)	(3)	(4)
$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	Pbca
16.463(7)	11.923(7)	11.50(1)
14.536(9)	19.040(8)	$22.12(2)$
5.625(3)	$7.322(5)$	12.76(2)
1346.1	1662.3	3245.9
4	4	8
1.37	2.17	2.22
$\mathrm{Cu}-\mathrm{K}_{\alpha}$	Mo- K_{α}	Mo- K_{α}
1499	2484	4313
1426	2132	2068
direct methods	heavy atom	heavy atom
block-diagonal	full-matrix	full-matrix
least squares determined	least squares determined	least squares
located and	located and	in calculated
refined	refined	positions
0.051	0.030	0.056

presence of two asymmetric centres of opposite chirality causes a mutual compensation of the magnetic nonequivalence, whereas the presence in the same molecule of two centres of equal chirality enhances the non-equivallence. It was then concluded that (1) is the meso compound and (2) the rac form. These conclusions have been confirmed by the present X-ray structure investigation. It is to be noted that the single crystal of (2) casually chosen for the structure determination was found to be the (S, S) stereoisomer, which will be indicated as (2a).

Both (1) and (2) readily react with $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ to give the corresponding neutral platinum(II) complexes, in which the disulphoxide molecule acts as a bidentate chelating ligand. Investigations of a wide variety of sulphoxide complexes strongly suggest that the i.r. shift of the $\mathrm{S}-\mathrm{O}$ bond on co-ordination reflects the nature of the donor atom, i.e. S or $\mathrm{O}{ }^{35}$ This has been directly confirmed by a number of X-ray determinations ${ }^{36-39}$ and
there is no exception to the generalization that an increase in $v(\mathrm{SO})$ is diagnostic for S-co-ordination, and a decrease for O-co-ordination. Furthermore, it has been pointed out that in palladium and platinum sulphoxide complexes the sulphur atom is the donor in the absence of special steric requirements. ${ }^{40}$ In the present ligand the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ segment between the two sulphoxide donor sites is less sterically restricting than are, for example, adjacent methyl groups on two dimethyl sulphoxide ligands in $c i s-\left[\mathrm{Pt}(\mathrm{dmso})_{2} \mathrm{Cl}_{2}\right]$, for which the cis sulphurbonded structure has been demonstrated. ${ }^{41}$ In the present complexes the i.r. spectra in the solid state, compared with those of the free ligands, show an increase of more than $100 \mathrm{~cm}^{-1}$ in $\nu(\mathrm{SO})$ and also a double band in the $\mathrm{Pt}-\mathrm{Cl}$ region. These features, together with the absence of strong absorptions in the $v(\mathrm{SO})$ (O-bonded)

Table 3
Atomic co-ordinates with estimated standard deviations in parentheses
(a) Ligand (1) ($\times 10^{4}$ for S, O, and C; $\times 10^{\mathbf{3}}$ for H)

	$\quad x / a$	y / b	z / c
	$1211(1)$	$2057(1)$	$35(1)$
S	$2467(2)$	$1692(2)$	$1538(2)$
O	$1850(2)$	$1510(2)$	$-1740(3)$
$\mathrm{C}(1)$	$3295(3)$	$918(3)$	$-1504(3)$
$\mathrm{C}(2)$	$3819(3)$	$582(3)$	$-2877(3)$
$\mathrm{C}(3)$	$2909(3)$	$836(3)$	$-4448(3)$
$\mathrm{C}(4)$	$1470(3)$	$1430(3)$	$-4673(3)$
$\mathrm{C}(5)$	$921(3)$	$1779(3)$	$-3320(3)$
$\mathrm{C}(6)$	$-309(3)$	$749(2)$	$-109(3)$
$\mathrm{C}(7)$	$396(3)$	$80(3)$	$-39(3)$
$\mathrm{H}(1)$	$486(3)$	$17(3)$	$-267(3)$
$\mathrm{H}(2)$	$319(3)$	$56(3)$	$-546(3)$
$\mathrm{H}(3)$	$81(3)$	$163(3)$	$-578(3)$
$\mathrm{H}(4)$	$-17(3)$	$220(3)$	$-342(3)$
$\mathrm{H}(5)$	$-78(2)$	$102(2)$	$71(3)$
$\mathrm{H}(6)$	$-110(3)$	$89(2)$	$-122(3)$
$\mathrm{H}(7)$			

(b) Ligand (2a) $\left(\times 10^{4}\right.$ for S, O, and C ; $\times 10^{3}$ for H$)$

S(1)	4 650(1)	4016 (1)	$3132(4)$
$\mathrm{O}(1)$	$4433(3)$	3 897(4)	5 684(10)
C(1)	4056 (4)	$4955(4)$	2 035(12)
$\mathrm{C}(2)$	3 389(4)	5 229(4)	3 316(14)
C(3)	2945 (4)	5 974(5)	2 475(16)
C(4)	3 174(4)	6 435(5)	399(16)
C(5)	3 863(4)	$6127(5)$	-838(14)
$\mathrm{C}(6)$	4 285(4)	5390 (4)	-44(13)
C(7)	$4134(4)$	$3088(4)$	$1563(12)$
H(1)	320(4)	486(5)	450(14)
$\mathrm{H}(2)$ *	245	620	338
H(3)	285(5)	703(5)	-25(17)
H(4)	408(5)	665(6)	-23(16)
H(5)	473(4)	515(4)	-102(13)
H(6)	420(3)	314(4)	4(11)
H(7)	350(4)	309(4)	163(12)
$\mathrm{S}(2)$	$4115(1)$	$1209(1)$	738(3)
$\mathrm{O}(2)$	$4225(3)$	1461 (4)	$-1817(10)$
C(8)	4473 (4)	2 201(4)	$2439(13)$
C(9)	$3043(3)$	$1308(4)$	$1368(11)$
C(10)	2 556(4)	$1702(4)$	-344(13)
C(11)	1710 (4)	$1725(5)$	66(14)
C(12)	$1388(4)$	1348 (5)	$2144(15)$
C(13)	$1899(4)$	952(5)	$3841(13)$
C(14)	2750 (4)	928(4)	3468 (12)
H(8)	513(4)	224(4)	247(12)
$\mathrm{H}(9)$	425(3)	210(4)	380(11)
H(10)	280(4)	203(5)	-185(14)
H(11)	133(4)	$208(5)$	-128(14)
H(12)	82(4)	127(5)	258(14)
H(13)	167(5)	40(6)	510 (17)
H(14)	318(4)	60(5)	480(15)

Table 3 (Continued)
(c) Complex (3) ($\times 10^{4}$ for $\mathrm{Pt}, \mathrm{Cl}, \mathrm{S}, \mathrm{O}$, and C ; $\times 10^{3}$ for H)

	x / a	y / b	z / c
Pt	480(1)	57(1)	1726 (1)
$\mathrm{Cl}(1)$	-508(3)	649(1)	-525(4)
$\mathrm{Cl}(2)$	585(2)	-959(1)	4(4)
S(1)	585(2)	$1048(1)$	3 307(4)
$\mathrm{S}(2)$	$1238(2)$	-509(1)	$4052(4)$
$\mathrm{O}(1)$	1 206(7)	1643 (4)	$2522(13)$
$\mathrm{O}(2)$	2432 (6)	-680(5)	3 993(12)
C(1)	-750(8)	$1348(5)$	$3975(15)$
C(2)	$-1618(10)$	883(6)	4 293(19)
C(3)	-2654(10)	$1122(7)$	4891 (24)
C(4)	$-2802(10)$	$1827(7)$	5 211(22)
C(5)	-1965(11)	2291 (7)	4930 (25)
C(6)	-913(10)	2071 (6)	4247 (20)
C(7)	$1269(9)$	814(5)	5431 (14)
C(8)	992(8)	59(6)	$5977(13)$
$\mathrm{C}(9)$	487(10)	- $1265(5)$	$4701(13)$
$\mathrm{C}(10)$	-711(11)	- 1265 (6)	4 667(18)
$\mathrm{C}(11)$	-1260(11)	- 1858 (7)	$5199(19)$
C(12)	-705(14)	-2431(6)	$5804(19)$
$\mathrm{C}(13)$	494 (16)	$-2431(6)$	5 863(19)
$\mathrm{C}(14)$	$1067(11)$	$-1846(5)$	$5345(18)$
H(1)	$-143(10)$	35(6)	382(17)
$\mathrm{H}(2)$	-322(12)	80(7)	537(20)
$\mathrm{H}(3)$	-355(11)	205(7)	$569(19)$
H(4)	-212(10)	291(6)	524(18)
H(5)	$-25(10)$	248(5)	355(17)
$\mathrm{H}(6)$	216(11)	88(7)	527(20)
H(7)	125(10)	120(6)	653(18)
H(8)	17(9)	$-4(6)$	658(15)
$\mathrm{H}(9)$	154(9)	-8(6)	706(16)
$\mathrm{H}(10)$	-114(12)	-89(7)	376(20)
H(11)	-216(12)	$-185(7)$	$542(21)$
H(12)	-114(9)	-287(6)	630(16)
H(13)	84(11)	-294(7)	635(20)
H(14)	199(11)	-177(7)	576(19)

(d) Complex (4) $\left(\times 10^{4}\right.$ for Pt, Cl, and $\mathrm{S} ; \times 10^{3}$ for O and C$)$ P

Pt	$1924(1)$	$3423(0)$	$382(1)$
$\mathrm{Cl}(1)$	$3143(4)$	$4244(2)$	$426(4)$
$\mathrm{Cl}(2)$	$2436(5)$	$3220(2)$	$-1329(4)$
$\mathrm{S}(1)$	$1419(4)$	$3626(2)$	$2001(3)$
$\mathrm{S}(2)$	$716(3)$	$2639(2)$	$372(4)$
$\mathrm{O}(1)$	$231(1)$	$361(1)$	$281(1)$
$\mathrm{O}(2)$	$-8(1)$	$258(1)$	$-45(1)$
$\mathrm{C}(1)$	$69(1)$	$432(1)$	$206(1)$
$\mathrm{C}(2)$	$108(1)$	$475(1)$	$276(1)$
$\mathrm{C}(3)$	$53(2)$	$531(1)$	$281(2)$
$\mathrm{C}(4)$	$-34(2)$	$545(1)$	$214(2)$
$\mathrm{C}(5)$	$-68(2)$	$502(1)$	$139(2)$
$\mathrm{C}(6)$	$-17(2)$	$447(1)$	$134(2)$
$\mathrm{C}(7)$	$44(3)$	$303(1)$	$236(2)$
$\mathrm{C}(8)$	$-18(2)$	$279(1)$	$148(2)$
$\mathrm{C}(9)$	$144(1)$	$197(1)$	$56(1)$
$\mathrm{C}(10)$	$82(2)$	$142(1)$	$32(1)$
$\mathrm{C}(11)$	$137(2)$	$88(1)$	$40(2)$
$\mathrm{C}(12)$	$254(2)$	$85(1)$	$77(1)$
$\mathrm{C}(13)$	$312(2)$	$137(1)$	$101(2)$
$\mathrm{C}(14)$	$258(2)$	$196(1)$	$92(2)$
Calctaled position.			

* Calculated position.
region ($880-940 \mathrm{~cm}^{-1}$), clearly indicate cis sulphurbonded structures for both platinum complexes.
Hydrogen-1 n.m.r. spectra of the complexes, both in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ and CDCl_{3}, are not well resolved because of the low solubility and the high complexity of the multiplets due to the magnetically non-equivalent methylene protons. However, complex multiplets are observed centred at $\delta c a .8 .2$ and $7.8(\alpha$ and $\beta+\gamma$ aromatic protons) and at ca. 3.7 p.p.m. (methylene protons). Physicochemical data for the four compounds are summarized in Table 1 while some relevant X-ray data are in Table 2. Information on the intensity data and

Table 4
Bond distances (\AA) and angles (${ }^{\circ}$)
(a) Ligand (1)
$\mathrm{S}-\mathrm{O}$
$\mathrm{S}-\mathrm{C}(1)$
$\mathrm{S}-\mathrm{C}(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{O}-\mathrm{S}-\mathrm{C}(1)$
$\mathrm{O}-\mathrm{S}-\mathrm{C}(7)$
$\mathrm{C}(1)-\mathrm{C}-\mathrm{C}(7)$
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$
(b) Ligand (2a)

$\mathrm{S}(1)-\mathrm{O}(1)$	$1.489(6)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.789(6)$
$\mathrm{S}(1)-\mathrm{C}(7)$	$1.822(6)$
$\mathrm{S}(2)-\mathrm{O}(2)$	$1.494(6)$
$\mathrm{S}(2)-\mathrm{C}(9)$	$1.806(5)$
$\mathrm{S}(2)-\mathrm{C}(8)$	$1.828(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.489(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.372(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.390(10)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.398(12)$

$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(7)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(7)$
$\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$
$1069(3)$
$106.9(3)$
$98.2(3)$
$107.8(5)$
$118.5(5)$
$119.5(4)$
$122.0(6)$
117.9(7)
$121.1(7)$
$118.6(7)$
$120.3(7)$
$120.1(6)$
(c) Complex (3)

$\mathrm{Pt}-\mathrm{Cl}(1)$	2.318(3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.39(2)
$\mathrm{Pt}-\mathrm{Cl}(2)$	2.313(2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.37(2)
Pt -S(1)	2.217(2)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.35(2)
Pt -S(2)	2.209(3)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.41(2)
$\mathrm{S}(1)-\mathrm{O}(1)$	1.470(8)	$\mathrm{C}(6)-\mathrm{C}(1)$	1.40(2)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.76(1)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.43(2)
$\mathrm{S}(1)-\mathrm{C}(7)$	1.81(1)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.36(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.53(1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.35(2)
$\mathrm{S}(2)-\mathrm{O}(2)$	1.461(8)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.43(2)
$\mathrm{S}(2)-\mathrm{C}(9)$	1.76(1)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.36(2)
$\mathrm{S}(2)-\mathrm{C}(8)$	1.80(1)	$\mathrm{C}(14)-\mathrm{C}(9)$	1.39(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.38(2)		
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	92.67(9)	$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(9)$	108.8(5)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(1)$	89.20(9)	$\mathrm{C}(8)-\mathrm{S}(2)-\mathrm{C}(9)$	101.4(5)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(2)$	173.36(11)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.1(8)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(1)$	173.47(9)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	118.9 (8)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(2)$	89.43(9)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120(1)
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$	89.40(9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121(1)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{O}(1)$	118.7(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119(1)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(1)$	111.7(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121(1)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(7)$	105.3(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121(1)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	108.3(5)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118(1)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	107.4(5)	$\mathrm{S}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	120.3(8)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	104.4(5)	$\mathrm{S}(2)-\mathrm{C}(9)-\mathrm{C}(14)$	119.4 (9)
$\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	111.0(7)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	120(1)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{S}(2)$	109.0(7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	118(1)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{O}(2)$	119.0(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	122(1)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(8)$	104.1(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120(1)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(9)$	113.5(4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120(1)
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(8)$	108.4(5)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	120(1)

Table 4 (Continued)

(d) Complex (4)			
$\mathrm{Pt}-\mathrm{Cl}(1)$	$2.295(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.39(3)$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2.305(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.35(3)$
$\mathrm{Pt}-\mathrm{S}(1)$	$2.192(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.40(5)$
$\mathrm{Pt}-\mathrm{S}(2)$	$2.188(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.35(3)$
$\mathrm{S}(1)-\mathrm{O}(1)$	$1.46(1)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.39(1)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.75(1)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.44(2)$
$\mathrm{S}(1)-\mathrm{C}(7)$	$1.79(2)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.36(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.43(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.43(3)$
$\mathrm{S}(2)-\mathrm{O}(2)$	$1.40(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.36(3)$
$\mathrm{S}(2)-\mathrm{C}(9)$	$1.75(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.45(2)$
$\mathrm{S}(2)-\mathrm{C}(8)$	$1.77(2)$	$\mathrm{C}(14)-\mathrm{C}(9)$	$1.39(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.38(2)$		

$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$91.2(2)$	$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(9)$	$108(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(1)$	$88.7(2)$	$\mathrm{C}(8)-\mathrm{S}(2)-\mathrm{C}(9)$	$108(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(2)$	$178.0(2)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$118(1)$
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(1)$	$179.2(2)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$121(1)$
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(2)$	$90.4(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$121(1)$
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$	$89.7(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120(2)$
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(1)$	$118.5(7)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121(2)$
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(1)$	$110.3(5)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119(2)$
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(7)$	$104.9(7)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121(2)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	$109(1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$119(2)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	$104(1)$	$\mathrm{S}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$118(1)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	$109(1)$	$\mathrm{S}(2)-\mathrm{C}(9)-\mathrm{C}(14)$	$120(1)$
$\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$113(2)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$122(1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{S}(2)$	$113(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120(2)$
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{O}(2)$	$121.0(7)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120(2)$
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(8)$	$103.8(8)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120(2)$
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(9)$	$111.7(5)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$122(2)$
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(8)$	$104(1)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$116(2)$
$* \mathrm{I}=\bar{x}, \bar{y}, \bar{z}$.			

* $\mathrm{I}=\bar{x}, \bar{y}, \bar{z}$.
structure determination and refinement have already been reported in preliminary communications. ${ }^{42}$ Table

3 lists the final positional parameters for the four compounds. A list of observed and calculated structure
factors and thermal parameters is available as Supplementary Publication No. SUP 22201 (43 pp.).*

The molecules of the ligands and the complexes are represented in the Figure in an orientation suitable for comparison. The hydrogen atoms are omitted for clarity. Selected bond distances and angles are in Table 4. The main differences between the two uncomplexed isomers concern the conformation of the molecule, which is acentric in the (S, S) derivative (2a) and centrosymmetric in the (R, S) form (1). In (1) the asymmetric unit consists of half of the molecule since the centre of gravity of the central $\mathrm{C}-\mathrm{C}$ bond lies on a centre of symmetry. A similar situation has recently been found in meso-1,2-bis(methylsulphinyl)ethane, ${ }^{22}$ and the bond distances and angles agree with those found for the present compound. Unlike most organic sulphoxides which, as indicated by Svinning et al., ${ }^{22}$ deteriorate when exposed to X-rays, in the present case no significant change was found in the intensity of a reflection
features: (i) square-planar co-ordination around platinum, which involves two chlorides and two sulphur atoms belonging to the organic ligand; \{a similar environment has been found for platinum in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{CF}_{3} \mathrm{SCHMe}-\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2} \mathrm{SCF}_{3}\right)\right]{ }^{45}\right\}$ (ii) an envelope conformation of the fivemembered chelate ring, in which $\mathrm{C}(8)$ is $c a .0 .6 \AA$ from the plane formed by $\mathrm{Pt}^{-} \mathrm{S}(1)-\mathrm{C}(7)-\mathrm{S}(2)$; (iii) the presence of two rather short (2.8-3.0 \AA) intramolecular $\mathrm{Pt} \cdot \cdots \mathrm{H}$ contacts involving the hydrogen atoms of the phenyl rings. \{Similar contacts have been recently found in $(+)$-trans- $\left[\mathrm{PtCl}\left\{\mathrm{SiMe}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{Ph}\right\}\left(\mathrm{PMe}_{\mathbf{2}} \mathrm{Ph}\right)_{2}\right]$ ($\mathrm{Pt} \cdots \mathrm{H} 2.72$ and $2.78 \AA$). $\left.{ }^{46}\right\} \quad$ The bond lengths at platinum are not significantly different in the two complexes even though the values observed in (3) are slightly longer than the corresponding ones found in (4). Moreover, while the $\mathrm{Pt}-\mathrm{Cl}$ bonds fall in the range usually found for square-planar platinum(II) complexes, ${ }^{47-50}$ the $\mathrm{Pt}-\mathrm{S}$ bonds are slightly shorter ${ }^{\mathbf{4 1 , 5 0 - 5 2}}$ than in platinum(II) complexes containing unidentate sulphoxides.

Table 5
Comparison of the structural parameters (bond lengths in \AA, angles in ${ }^{\circ}$) of 1,2-bis(phenylsulphinyl)ethane as found in the four compounds

		(2a)		(3)		(4)	
	(1)						
$\mathrm{S}-\mathrm{O}$	1.487(2)	1.489(6)	$1.494(6)$	1.470(8)	1.461(8)	1.46(1)	1.40(2)
$\mathrm{S}-\mathrm{C}\left(s p^{3}\right)$	$1.814(4)$	$1.822(6)$	1.828(7)	1.81(1)	1.80(1)	1.79 (2)	1.77(2)
$\mathrm{S}-\mathrm{C}\left(s p^{2}\right)$	$1.798(3)$	1.789 (6)	1.806(5)	1.76(1)	1.76(1)	1.75(1)	1.75(2)
$\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$	$1.507(3)$	1.489(9)		1.53(1)		1.43 (4)	
$\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$	1.378(4)	1.39(1)		1.39(2)		1.39(3)	
$\mathrm{O}-\mathrm{S}-\mathrm{C}\left(s p^{3}\right)$	106.6(1)	105.6(3)	105.7(3)	107.4(5)	108.4(5)	104(1)	104(1)
$0-\mathrm{S}-\mathrm{C}\left(s p^{2}\right)$	107.2(1)	106.9(3)	106.7(3)	108.3(5)	108.8(5)	109(1)	108(1)
$\mathrm{C}\left(s p^{2}\right)-\mathrm{S}-\mathrm{C}\left(s p^{3}\right)$	98.5(1)	98.2(3)	98.6(3)	104.4(5)	101.4(5)	109(1)	108(1)
$\mathrm{S}-\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$	112.4(2)	107.8(5)	112.9(5)	$111.0(7)$	109.0(7)	113(2)	113(2)
$\mathrm{S}-\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$	119.4(2)	118.5(5)		119.9(8)		119.(1)	
$\underset{\mathrm{C}\left(s p^{2}\right)}{\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)}$	120.0(2)	120.0(6)		120(1)		120(2)	

This may be a structural consequence of the stability of the chelate ring.

From an inspection of the Figure, it is easy to see that the different conformation assumed by the organic ligand in co-ordinating to metal involves the exchange of an oxygen atom with a phenyl group. This seems to be the only factor responsible for the small differences observed in the two compounds regarding the bond angles at platinum and the planarity of the ligand atoms. In fact, unlike complex (3), where the two trans angles deviate significantly from linearity (173.5 and 173.4°) and the co-ordination is tetrahedrally distorted square planar, in complex (4) the trans angles are very close to 180° (178.0 and 179.2°) and the co-ordination around the metal is nearly regular square planar. All the intermolecular contacts less than $3.60 \AA$ have been calculated and none is significantly shorter than the sum of van der Waals radii.
[7/1287 Received, 15th July, 1977]

REFERENCES

${ }^{1}$ N. J. Leonard and C. R. Johnson, J. Org. Chem., 1962, 27, 282.
${ }_{2}^{2}$ G. Leandri, A. Mangini, and R. Passerini, J. Chem. Soc., 1957, 1386.
${ }^{3}$ A. Cerniani and G. Modena, Gazzetta., 1959, 89, 843.

4 A. Cerniani, G. Modena, and P. E. Todesco, Gazzetta, 1960, 90, 3.
${ }_{5}$ C. G. Overberger and R. N. Cummins, J. Amer. Chem. Soc. 1953, 75, 4250, 4783.
${ }^{6}$ V. Calò, F. Ciminale, G. Lopez, and P. E. Todesco, Internat. J. Sulphur Chem., 1971, A1, 130.
${ }_{7}$ K. Mislow, M. M. Green, and M. Raban, J. Amer. Chem. Soc., 1965, 87, 2761.
${ }^{8}$ K. K. Andersen, Tetrahedron Letters, 1962, 93.
${ }^{2}$ M. Axelrod, P. Bickart, J. Jacobus, M. M. Green, and K. Mislow, J. Amer. Chem. Soc., 1968, 90, 4835.

10 U. De La Camp and H. Hope, Acta Cryst., 1970 B26, 846.
${ }^{11}$ D. Tranqui and H. Fillion, Acta Cryst., 1972, B28, 3306.
12 B. Dahlen, Acta Cryst., 1974. B30, 642.
13 O. Hinsberg, J. prakt. Chem., 1912, 85, 344.
${ }^{14}$ R. L. Shriner, H. C. Strech, and W. J. Jorison, J. Amer. Chem. Soc., 1930, 52, 2060.
${ }^{1 s}$ A. L. Jr. Ternay, Quart. Reports Sulphur Chem., 1968, 3, 145.
${ }^{16}$ J. L. Greene, J. Stevlin, and P. B. Shevlin, Chem. Comm., 1971, 1092.
${ }_{17}$ N. Kunieda, J. Nokami, and M. Kinoshita, Chem. Letters, 1973, 871.
${ }^{18}$ N. Kunieda, J. Nokami, and M. Kinoshita, Bull. Chem. Soc. Japan, 1976, 49, 256.
${ }_{19}$ E. V. Bell and G. M. Bennett, J. Chem. Soc., 1927, 1798.
${ }_{20}^{20}$ R. Louw and H. Nieuwenhuyse, Chem. Comm., 1968, 1561.
${ }^{21}$ F. Taddei, Boll. sci. Fac. Chim. ind. Bologna, 1968, 26, 107; 1969, 2', 231.
${ }_{22}$ T. Svinning, F. Mo, and T. Bruun, Acta Cryst., 1976, B32, 759.
${ }^{23}$ F. A. Cotton and R. Francis, J. Amer. Chem. Soc., 1960, 82, 2986.
${ }^{24}$ D. W. Meek, D. K. Straub, and R. S. Drago, J. Amer. Chem. Soc., 1960, 82, 6013.
${ }^{25}$ F. A. Cotton, R. Francis, and W. D. Horrocks, jun., J. Phys. Chem., 1960, 64, 1534.
${ }_{26}$ J. Selbin, W. E. Bull, and L. H. Holmes, jun., J. Inorg. Nuclear Chem., 1961, 16, 219.
${ }^{27}$ F. A. Cotton and R. Francis, J. Inorg. Nuclear Chem., 1961, 17, 62.
${ }_{28}$ R. S. Drago and D. Meek, J. Phys. Chem., 1961, 65, 1446.
${ }^{29}$ S. Thomas and W. L. Reynolds, Inorg. Chem., 1969, 8, 153.
${ }^{30}$ W. L. Reynolds, Progr. Inorg. Chem., 1970, $12,1$.
${ }^{31}$ G. D. Kent, Diss. Abs., 1971, B31, 5239.
${ }^{32}$ S. K. Madan, C. M. Hull, and L. J. Herman, Inorg. Chem., 1968, 7, 491.
${ }_{33}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{34}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }^{35}$ J. Gopalakrisnam and C. C. Patel, J. Sci. Ind. Res., India, 1968, 27, 475.
${ }_{38}$ M. J. Bennett, F. A. Cotton, and D. L. Weaver, Acta Cryst., 1967, 23, 581.
${ }^{37}$ M. J. Bennett, F. A. Cotton, D. L. Weaver, R. J. Williams, and W. H. Watson, Acta Cryst., 1967, 23, 788.
${ }^{38}$ D. A. Langs, C. R. Hare, and R. G. Little, Chem. Comm., 1967, 1080.
${ }^{39}$ M. McPartlin and R. Mason, Chem. Comm., 1967, 545.
${ }^{40}$ J. H. Price, A. N. Williamson, R. F. Schramm, and B. Wayland, Inorg. Chem., 1972, 11, 1280.
${ }^{41}$ R. Melanson and F. D. Rochon, Canad. J. Chem., 1975, 53, 2371.
${ }^{42}$ G. Pelizzi, G. Michelon, and M. Bonivento, Cryst. Struct. Comm., 1976, 5, 617; G. Pelizzi, L. Coghi, G. Michelon, and M. Bonivento, ibid., p. 621 ; G. Pelizzi, G. Michelon, G. Annibale, and L. Cattalini, ibid., pp. 625, 629.
${ }^{43}$ H. A. Bent, J. Inorg. Nuclear Chem., 1961, 19, 43.
${ }^{44}$ R. D. G. Jones and L. F. Power, Acta Cryst., 1976, B32, 1801.
${ }^{45}$ R. J. Cross, L. Manojlivic-Muir, K. W. Muir, D. S. Rycroft, D. W. A. Sharp, T. Solomun, and H. T. Miguel, J.C.S. Chem. Comm., 1976, 291.
${ }^{46}$ P. B. Hitchcock, Acta Cryst., 1976, B32, 2014.
47 R. S. Osborn and D. Rogers, J.C.S. Dalton, 1974, 1002.
${ }^{48}$ J. Iball, M. McDougall, and S. Scrimgeour, Acta Cryst., 1975, B31, 1672.
${ }^{49}$ G. H. W. Milburn and M. R. Truter, J. Chem. Soc. (A), 1966, 1609.
${ }^{50}$ H. C. Freeman and M. L. Golomb, Chem. Comm., 1970, 1523.
${ }^{51}$ C. J. Lock, R. A. Speranzini, and J. Powell, Canad. J. Chem., 1976, 54, 53.
${ }_{52}$ R. G. Ball and N. C. Payne, Inorg. Chem., 1976, 15, 2494.

