Organolead Chemistry. Part 5. ${ }^{1}$ Reactions of Bis(η-cyclopentadienyl)lead(II) with Metal Halides and with Unsaturated Compounds

By A. Kenneth Holliday, Paul H. Makin, and Richard J. Puddephatt, ${ }^{*} \uparrow$ Donnan Laboratories, The University of Liverpool, Liverpool L69 3BX
Bis (η-cyclopentadienyl) lead(॥) acts as a Lewis base and forms a thermally stable, polymeric. complex with BF_{3}. However, with weaker Lewis acids ($\mathrm{BMe}_{3}, \mathrm{BPh}_{3}$, or $\mathrm{Al}_{2} \mathrm{Me}_{6}$) no adducts are formed and with many metal halides $\left(\mathrm{BCl}_{3}, \mathrm{Al}_{2} \mathrm{Cl}_{6}, \mathrm{TiCl}_{3}, \mathrm{VCl}_{3} \mathrm{O}\right.$, or $\left.\left[\mathrm{TaMe}_{3} \mathrm{Cl}_{2}\right]\right)$ cyclopentadienyl-for-halide exchange reactions occur. The new compounds [$\left.\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$ and a compound tentatively formulated as [$\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{H}$] have been prepared in this way. The compound $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ also gives adducts $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot 0.5$ tene, $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot$ tcne, and $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot$ tenq with tetracyanoethylene (tcne) and with 7.7.8.8-tetracyanoquinodimethane (tenq). The structures of these compounds are discussed, and the presence of tcne ${ }^{2-}$ or tcnq ${ }^{2-}$ is deduced.

$\operatorname{Bis}(\eta$-Cyclopentadienyl)lead(ii) in the gas phase has a bent sandwich structure from which the presence of a stereochemically active lone pair of electrons on the lead atom is deduced. ${ }^{2}$ It has been suggested that cleavage of cyclopentadienyl groups from $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ by electrophiles occurs by initial interaction of the electrophile with this lone pair of electrons, thus giving an intermediate lead(Iv) derivative which then undergoes reductive elimination [e.g. equation (1)]. ${ }^{1}$

$$
\left.\begin{array}{rl}
\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}+\mathrm{MeI} \longrightarrow \underset{5}{ } & {\left[\mathrm{PbMe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{I}\right] \longrightarrow \longrightarrow} \tag{1}
\end{array} \mathrm{Pb(} \mathrm{\eta-C}_{5} \mathrm{H}_{5}\right) \mathrm{I}+\mathrm{MeC}_{5} \mathrm{H}_{5}
$$

It can also be predicted that $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ will have more general properties as a Lewis base as a result of the presence of the lone pair of electrons on lead. In this paper the results of a study of the donor power of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, by investigating its reactions with Lewis acids and with unsaturated reagents, are presented. A preliminary account of some of this work has been published. ${ }^{\mathbf{3}}$

RESULTS AND DISCUSSION

$\operatorname{Bis}(\eta$-cyclopentadienyl)lead(II), (1), on reaction with the diethyl ether-boron trifluoride (1/1) complex gave a pale yellow compound which analysed as $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2^{-}}$ $\left(\mathrm{BF}_{3}\right)$ (2). This compound is air-sensitive, does not melt or visibly decompose on heating to $360^{\circ} \mathrm{C}$, and is insoluble in most common organic solvents. In contrast, the analogous $\mathrm{Sn}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{BF}_{3}\right)$ melts at $58-60{ }^{\circ} \mathrm{C}$ and is soluble in many organic solvents. ${ }^{4}$ The great difference in physical properties between the lead and tin derivatives strongly suggests that the lead derivative is polymeric. The i.r. spectrum of (2) contained only one band in the $3000 \mathrm{~cm}^{-1}$ region due to the $\mathrm{C}-\mathrm{H}$ stretching mode of the $\mathrm{C}_{5} \mathrm{H}_{5}$ groups and only one overtone band at $6000 \mathrm{~cm}^{-1}$. This shows that the cyclopentadienyl groups are still bound as $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ groups in (2). $\mathbf{5 , 6}$ In contrast, the indium(I) derivative $\operatorname{In}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ apparently transforms into the $\sigma-\mathrm{C}_{5} \mathrm{H}_{5}$ bonding mode on forming the compound In$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{BF}_{3}\right) .{ }^{7} \quad$ The i.r. spectrum of (2) also gave bands at $1072 \mathrm{~m}, 1048 \mathrm{~m}$, and 1029 m due to $\nu_{\text {asym }}(\mathrm{BF})$, at $782 \mathrm{vs}, 759 \mathrm{~s}$, and 740 m due to $v_{\text {sym }}(\mathrm{BF})$, and at 521 m cm^{-1} due to $\delta\left(\mathrm{BF}_{\mathbf{3}}\right)$. These bands are more complex than in other $\mathrm{M}-\mathrm{BF}_{3}$ compounds and suggest asymmetry in
\dagger Present address: Department of Chemistry. University of Western Ontario, London, Ontario, Canada.
the BF_{3} groups. ${ }^{4,7}$ The compound was just sufficiently soluble in $\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulphoxide to give a ${ }^{1} \mathrm{H}$ n.m.r. spectrum; this had a singlet at $\delta 6.00$ p.p.m. with no observable coupling to ${ }^{207} \mathrm{~Pb}$. The physical and spectroscopic properties of (2) suggest a polymeric structure (A).

(A)

In this structure each lead(II) atom can be considered to donate its lone pair of electrons to BF_{3} and to receive a lone pair from a fluorine atom of the BF_{3} into its vacant $6 p$ orbital. Thus the stereochemistry about lead is expected to be approximately tetrahedral. It can be seen that such a structure is equivalent to a formulation $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~F}\left(\mathrm{BF}_{2}\right)$ involving oxidative addition of a $\mathrm{B}-\mathrm{F}$ bond to $\mathrm{Pb}^{1 \mathrm{I}}$, with bridging by donation of a lone pair from the $\mathrm{Pb}-\mathrm{F}$ fluoride to the BF_{2} group of a neighbouring molecule.
Compound (1) failed to give adducts with triphenylborane, trimethylborane, or trimethylaluminium and is thus a weaker Lewis base than the related n-cyclopentadienylindium(I) which forms a compound with $\mathrm{BMe}_{3}{ }^{7}$ With most other metal halides, (1) did not give isolable compounds but instead cyclopentadienylhalide exchange reactions took place. For example TiCl_{4} gave $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}_{3}\right]$ or $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]$ together with $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}$. ${ }^{1}$ Similarly, $\mathrm{VCl}_{3} \mathrm{O}$ with (1) gave $\left[\mathrm{V}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}(\mathrm{O})\right]$, although in very low yield. A more interesting reaction occurred between (1) and [TaMe_{3} Cl_{2}]. Using a deficiency of (1), a single volatile product was formed according to equation (2).

$$
\begin{align*}
& \left.\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}+\left[\mathrm{TaMe}_{3} \mathrm{Cl}_{2}\right] \longrightarrow \longrightarrow \mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]
\end{align*}
$$

The air-sensitive product $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right)$ could be obtained in pure form by sublimation. Subsequent to our preliminary report, ${ }^{3}$ this compound has also been shown to be formed by reaction of $\left[\mathrm{TaMe}_{3} \mathrm{Cl}_{2}\right]$ with cyclopentadienylthallium(I). ${ }^{8}$ It was characterised by elemental analysis and by the ${ }^{\mathbf{1}} \mathrm{H}$ n.m.r. spectrum in
$\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, which contained singlets at $\delta 5.60$ and 1.12 p.p.m. with relative intensity $5: 9$ due to the $\mathrm{C}_{5} \mathrm{H}_{5}$ and $\mathrm{Ta}\left(\mathrm{CH}_{3}\right)$ protons respectively. Reaction of excess of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ with $\left[\mathrm{TaMe}_{3} \mathrm{Cl}_{2}\right]$ did not give the expected $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right],{ }^{8}$ but instead a mixture of $\left[\mathrm{TaMe}_{3}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$ with a second, more volatile, and extremely airsensitive tantalum compound was obtained. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the product mixture in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene contained, as well as peaks due to $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$, two singlets at $\delta 5.39$ and 0.84 p.p.m. with relative intensity $5: 9$ indicating the presence of a second species $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{X}\right]$. Over a period of 1 week, the peaks due to this compound decayed, a precipitate was formed, and a peak due to methane appeared at $\delta 0.17$ p.p.m. The methane was subsequently shown by mass spectrometry to contain no deuterium. The peaks due to $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$ did not change during this period. Taking into account the known presence of $\left[\mathrm{TaMe}_{3}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$, the elemental analysis of the mixture indicated that the second component had an empirical formula approximating to $\mathrm{TaMe}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$. Since the compound is diamagnetic it cannot be $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$; a dimer $\left[\left\{\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]$ would be expected to be less volatile, and the most reasonable formulation is the hydride derivative $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{H}\right]$. Transition-metal hydrides have been prepared previously in an analogous way and such a compound would be expected to give methane on decomposition by reductive coupling of methyl and hydride groups. However, we have been unable to identify the TaH group by ${ }^{1} \mathrm{H}$ n.m.r. or i.r. spectroscopy and the formulation must be considered tentative.

Tetracyanoethylene (tcne) with $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ gave a bright red adduct which analysed as $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot 0.5$ tcne. Using a large excess of tone it was also possible to obtain a dark green compound $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ tcne. Both compounds were diamagnetic and only sparingly soluble in common organic solvents. With other organometallic compounds, tone is known to give charge-transfer

Infrared spectra $\left(\mathrm{cm}^{-1}\right)$ of some derivatives of tetracyanoethylene (tcne) and 7,7,8,8-tetracyanoquinodimethane (tcnq)

$$
\text { Compound }^{a} \quad 2262,2215^{\nu(\mathrm{CN})}
$$

tene
$\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot$ tcne
2 255, 2216
Na^{+}tene ${ }^{-}$.
2 209, 2183
$2 \mathrm{Na}^{+}$tcne ${ }^{2-}$
2160,2095
$\left[\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+ \text {tcne- }}$.
$\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot 0.5$ tcne
$\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ 2.tcne

2 182, 2 168, 2082
2 178, 2098
tenq-
tcnq ${ }^{2-}$
2 198, 2 175, 2 162, 2098
2 198, 193
2 151, 2102
$\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ tenq $\quad 2184,1170(\mathrm{sh}), 2130,2093$
${ }^{a}$ As Nujol mulls unless otherwise stated. ${ }^{b}$ Solution in tetrahydrofuran.
complexes such as $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$-tcne, ${ }^{\mathbf{9}, 10}$ salts or complexes of the radical anion tene ${ }^{-}$or of the dianion tcne ${ }^{2-, 11-14}$ or products of insertion into metal-carbon bonds. ${ }^{15}$ The i.r. spectra in the CN stretching region have been useful in distinguishing between these formulations, and
some representative data are given in the Table. The data suggest the presence of tcne ${ }^{2-}$ in the compounds. Thus the compound $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ •tcne can be represented formally as $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{2+}$ tcne ${ }^{2-}$ although undoubtedly the tcne ${ }^{2-}$ is co-ordinated to lead, probably in a bridging mode so that the compound is polymeric. The i.r. spectrum contained only one band at $6000 \mathrm{~cm}^{-1}$ due to the $\mathrm{C}-\mathrm{H}$ stretching overtone, and together with the observation of a singlet at $\delta 6.00$ p.p.m. in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum in $\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulphoxide solution this suggests that the cyclopentadienyl groups are still in the η^{5} bonding form. This is perhaps surprising since other cyclopentadienyl-lead(Iv) compounds contain σ bonded $\mathrm{C}_{5} \mathrm{H}_{5}$ groups. ${ }^{5}$ It is difficult to formulate a reasonable structure for the compound $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$. 0.5 tcne. The spectroscopic data are very similar to those for $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$-tcne, indicating the presence of tene ${ }^{2-}$, but the compound cannot contain $\left[\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+\cdot}$ and it is possible that it should be formulated as $\mathrm{Pb}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}^{2+} \cdot{ }^{2+}{ }^{2} \mathrm{ta}^{2-} \cdot \mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

With 7,7,8,8-tetracyanoquinodimethane (tcnq), $\mathrm{Pb}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ gave only a pale green, diamagnetic, $1: 1$ adduct $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.tcnq. The CN stretching frequencies are lower than in tenq- ${ }^{-}$and suggest the presence of tenq ${ }^{2-\cdot} \cdot{ }^{16-18}$ The compound is therefore formulated as $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{2+}$ tcnq ${ }^{2-}$, although its low solubility indicates tenq ${ }^{2-}$ bridges between lead centres giving a polymeric structure. The presence of $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ groups was again deduced from the presence of a single $\mathrm{C}-\mathrm{H}$ stretching vibration at $3000 \mathrm{~cm}^{-1}$ and a single overtone at 6000 cm^{-1} in the i.r. spectrum. ${ }^{5}$ The presence of bridging tcne and tenq in some $\operatorname{tin}(\mathrm{IV})$ derivatives of tcne ${ }^{-\cdot}$ and tcnq- ${ }^{-}$has been deduced. ${ }^{13}$

Conclusions.-It is of interest to compare the properties of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ with those of $\mathrm{Sn}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and of $\operatorname{In}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$. It is clear that $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ is a weaker Lewis base than is $\operatorname{In}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ but is similar to $\mathrm{Sn}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2},{ }^{4,7,19}$ However, it is clear that cyclopentadienyl groups are cleaved from lead more readily than from tin. Thus $\mathrm{Sn}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}$ forms a simple complex with aluminium(III) chloride, ${ }^{19}$ but $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ with this reagent undergoes cleavage of a cyclopentadienyl group to give $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}$. A similar trend may be noted with $\operatorname{In}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{Tl}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, where the thallium derivative undergoes cyclopentadienyl-for-halide exchange more readily. ${ }^{7}$

Another recognisable difference between cyclopentadienyl derivatives of $\mathrm{Sn}^{I I}$ and $\mathrm{Pb}^{I I}$ is the tendency to give polymeric complexes. Thus $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2},{ }^{20} \mathrm{~Pb}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl},{ }^{1} \mathrm{~Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{BF}_{3}\right)$, and $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ tcne are probably all polymeric in the solid state whereas analogous derivatives of Sn^{11} are probably monomeric., 10,21 This tendency to form polymers appears to arise because lead prefers a higher co-ordination number than tin and this is achieved by ligands bridging between lead centres to give polymeric structures. Such bridging may well facilitate cyclopentadienyl-for-halide exchange reactions, which occur more readily with $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ than for $\mathrm{Sn}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

EXPERIMENTAL

The preparation of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and general experimental methods have been described previously. ${ }^{1}$ All the experiments with $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ were conducted in an atmosphere of dry nitrogen or in vacuo,

Reaction of Bis(η-cyclopentadienyl)lead(1I).-With bovon trifluoride. To a solution of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2.0 \mathrm{~g}, 6.0 \mathrm{mmol})$ in dry benzene $\left(15 \mathrm{~cm}^{3}\right)$ was added $\mathrm{OEt}_{2} \cdot \mathrm{BF}_{3}(0.84 \mathrm{~g}, 6.0$ mmol). After 1 h at room temperature, the pale yellow precipitate of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{BF}_{3}\right)$ was filtered off, washed with dry benzene, and dried in vacuo, yield 75%. The compound did not melt or visibly decompose on heating to $360{ }^{\circ} \mathrm{C}$ (Found: $C, 29.4 ; \mathrm{H}, 3.3 ; \mathrm{F}, 13.8$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10}{ }^{-}$ $\mathrm{BF}_{3} \mathrm{~Pb}: \mathrm{C}, 29.8 ; \mathrm{H}, 3.0 ; \mathrm{F}, 14.0 \%$).

With triphenylborane, trimethylborane, or trimethylaluminium. To a solution of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2.0 \mathrm{~g}, 6.0 \mathrm{mmol})$ in benzene ($15 \mathrm{~cm}^{3}$) was added a solution of BPh_{3} (6.0 mmol) in benzene $\left(20 \mathrm{~cm}^{3}\right)$. After 2 d the volume of the solution was reduced to $10 \mathrm{~cm}^{3}$ in vacuo, and the yellow precipitate was filtered off and identified as unchanged $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$. Similarly, evaporation of solutions of $\mathrm{Pb}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ with BMe_{3} or $\mathrm{Al}_{2} \mathrm{Me}_{6}$ in benzene gave only unchanged $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ as residue.

With titanium(IV) chloride. The compound $\mathrm{TiCl}_{4}(1.13 \mathrm{~g}$, 6 mmol) was added dropwise to a solution of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(6$ mmol) in benzene ($15 \mathrm{~cm}^{3}$). A dark green precipitate formed immediately but this rapidly became orange on stirring the mixture. The precipitate was filtered off and was then fractionally sublimed to give first $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}_{3}\right.$] (m.p. $180-190{ }^{\circ} \mathrm{C}, 48 \%$) and then $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]$ (m.p. $290{ }^{\circ} \mathrm{C}, 23 \%$), identified by comparison (m.p., n.m.r. spectrum) with authentic samples. The residue was identified as impure $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}$ by comparison with an authentic sample (i.r. and mass spectra, m.p.). ${ }^{1}$

In a similar reaction of $\mathrm{TiCl}_{4}(3 \mathrm{mmol})$ with $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ $(6 \mathrm{mmol}),\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]$ was obtained in 50% yield with no $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}_{3}\right]$.

With dichlorotrimethyltantalum(v). A solution of [TaMe ${ }_{3}$ $\left.\mathrm{Cl}_{2}\right](6 \mathrm{mmol})^{22}$ in pentane $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(3 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$. After 1 h , the solvent was evaporated and the residue was sublimed giving orange-yellow crystals of [$\left.\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$, which were very sensitive to air, sublimed $65-70^{\circ} \mathrm{C}\left(10^{-3}\right.$ Torr $)$ * (Found: C, 29.0; H, 4.3; $\mathrm{Cl}, 10.6 ; \mathrm{Ta}, 54.6$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClTa}: \mathrm{C}, 29.4 ; \mathrm{H}, 4.3$; $\mathrm{Cl}, 10.9$; Ta, 55.6%).

In other experiments using an equimolar amount or excess of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ the product also contained a more volatile and extremely air-sensitive yellow compound. A complete separation from $\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]$ was not possible and a typical sample gave the following analysis $\left\{\right.$ Found: $\mathrm{C}, 29.6 ; \mathrm{H}, 4.2$; $\mathrm{Cl}, 3.4$. Calc. for a $\left[\mathrm{TaMe}_{3}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}\right]-\left[\mathrm{TaMe}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{H}\right]$ mixture $(1: 2): \mathrm{C}, 30.1 ; \mathrm{H}$, $4.6 ; \mathrm{Cl}, 3.9 \%\}$. An attempt to reduce the mixture with $\mathrm{Na}\left[\mathrm{BH}_{4}\right]$ led to general decomposition.

With trichloro-oxovanadium(v). The compound $\mathrm{VCl}_{3} \mathrm{O}$ $(1.0 \mathrm{~g}, 6 \mathrm{mmol})$ was condensed into a solution of $\mathrm{Pb}(\eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2 \mathrm{~g}, 6 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$ cooled in liquid nitrogen. A deep blue-black precipitate formed on warming to room temperature. The solvents were evaporated and the residue was heated under high vacuum when blue crystals of $\left[\mathrm{V}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}(\mathrm{O})\right]$ sublimed in low yield (2%) at $170-190{ }^{\circ} \mathrm{C}$. Attempts to improve the yield by varying the stoicheiometry and work-up procedure were unsuccess-

[^0]ful (Found: $\mathrm{C}, 51.8$; H, 4.5. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClOV}$: C, 51.6; $\mathrm{H}, 4.3 \%$) N.m.r. spectrum in $\mathrm{CDCl}_{3}: \delta\left(\mathrm{C}_{5} H_{5}\right)$ 6.25(s) p.p.m.

With tetracyanoethylene. (a) A solution of tetracyanoethylene $(0.38 \mathrm{~g}, 3 \mathrm{mmol})$ in benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2.0 \mathrm{~g}, 6 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$. A bright red precipitate of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot 0.5$ tcne formed immediately. This was filtered off, washed thoroughly with benzene, and dried in vacuo, yield 60%. It decomposed without melting at $180^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 38.7$; $\mathrm{H}, 2.6$; N, 7.3. Calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~Pb}: \mathrm{C}, 38.9 ; \mathrm{H}, 2.5 ; \mathrm{N}, 7.0 \%$). The same product was formed when the reaction was carried out using a $1: 1 \mathrm{~mol}$ ratio of reagents (Found: C, 37.1; H, 2.5%).
(b) A solution of $\operatorname{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(1.0 \mathrm{~g}, 3 \mathrm{mmol})$ in benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of tene $(1.52 \mathrm{~g}$, 12 mmol) in benzene $\left(25 \mathrm{~cm}^{3}\right)$. The dark green precipitate of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot$ tcne which formed was filtered off, washed thoroughly with benzene, and dried in vacuo, yield 84%. It decomposed without melting at $180^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 40.6$; $\mathrm{H}, 2.3$; $\mathrm{N}, 10.6$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~Pb}$: $\mathrm{C}, 41.3$; $\mathrm{H}, 5.15$; $\mathrm{N}, 12.0 \%$)

With 7,7,8,8-tetracyanoquinodimethane (tcnq). A solution of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2.0 \mathrm{~g}, 6 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$ was added to a solution of tenq ($1.2 \mathrm{~g}, 6 \mathrm{mmol}$) in benzene (10 cm^{3}). The dark green precipitate of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot$ tcnq was filtered off, washed thoroughly with benzene, and dried in vacuo, yield 62%. It decomposed without melting at $205{ }^{\circ} \mathrm{C}$ (Found: C, 48.9; H, 2.8; N, 10.6. Calc. for $\mathrm{C}_{22^{-}}$ $\mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~Pb}: \mathrm{C}, 48.8 ; \mathrm{H}, 2.6 ; \mathrm{N}, 10.35 \%$). The same product was formed using an excess of $\mathrm{Pb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

We thank Dr. J. D. Wilkins for a gift of $\left[\mathrm{TaMe}_{3} \mathrm{Cl}_{2}\right]$, Dr. K. R. Seddon for $\mathrm{VCl}_{3} \mathrm{O}$, and the Associated Octel Company Ltd. for support (to P. H. M.).
[8/331 Received, 24th February, 1978]

REFERENCES

${ }^{1}$ Part 4, A. K. Holliday, P. H. Makin, and R. J. Puddephatt, J.C.S. Dalton, 1976, 435.
${ }^{2}$ A. Almenningen, A. Haaland, and T. Motzfeldt, J. Organometallic Chem., 1967, 7, 97.
${ }_{3}$ A. K. Holliday, P. H. Makin, R. J. Puddephatt, and J. D. Wilkins, J. Organometallic Chem., 1973, 57, C45.
${ }^{4}$ P. G. Harrison and J. J. Zuckerman, J. Amer. Chem. Soc., 1970, 92, 2577.
${ }_{5}$ E. W. Abel, M. O. Dunster, and A. Waters, J. Organometallic Chem., 1973, 49, 287.
${ }^{6}$ A. Davison and P. E. Rakita, J. Organometallic Chem., 1970. 23, 407.
${ }_{7}$ J. G. Contreras and D. G. Tuck, Inorg. Chem., 1973, 12, 2596.
${ }^{8}$ R. R. Schrock, J. Amer. Chem. Soc., 1975, 97, 6577.
${ }^{9}$ A. Adman, M. Rosenblum, S. Sullivan, and T. N. Margulis, J. Amer. Chem. Soc., 1967, 89, 4540.
${ }_{10}$ J. A. Richards and P. G. Harrison, J. Organometallic Chem., 1974, 64, C3.
${ }_{11}$ R. L. Brandon, J. H. Osieki, and A. Ottenberg, J. Amer. Chem. Soc., 1966, 31, 1214.
${ }^{12}$ W. Beck, R. Schlodder, and K. H. Lechler, J. Organometallic Chem., 1973, 54, 303.
${ }^{13}$ A. B. Cornwell, P. G. Harrison, and J. A. Richards, J. Organometallic Chem., 1974, 67, C43; 1977, 140, 273.
${ }_{14}$ P. J. Krusic, H. Stoklosa, L. E. Manzer, and P. Meakin, J. Amer. Chem. Soc., 1975, 97, 667.
${ }^{15}$ H. C. Gardner and J. K. Kochi, J. Amer. Chem. Soc., 1976, 98, 2460.

18 A. R. Siedle, J. Amer. Chem. Soc., 1975, 97, 5931.
${ }^{17}$ S. G. Clarkson, B. C. Lane, and F. Basolo, Inorg. Chem., 1972, 11, 662.

18 D. S. Acker and W. R. Hertler, J. Amer. Chem. Soc., 1962, 84, 3370; L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, ibid., p. 3374.
${ }^{19}$ J. Doe, S. Borkett, and P. G. Harrison, J. Organometallic Chem., 1973, 52, 343.
${ }^{20}$ G. Bombieri and C. Panattoni, Acta Cryst., 1966, 20, 595;
C. Panattoni, G. Bombieri, and U. Croatto, ibid., 21, p. 823.
${ }^{21}$ K. D. Bos, E. J. Bulten, J. G. Noltes, and A. L. Spek, J. Organometallic Chem., 1975, 99, 71.
${ }_{22}$ G. W. A. Fowles, D. A. Rice, and J. D. Wilkins, J.C.S Dalton, 1973, 961.

[^0]: * Throughout this paper: 1 Torr $=(101325 / 760) \mathrm{Pa}$.

