Crystal Structure, Paramagnetic Anisotropy, and Zero-field Splitting in Intermediate-spin Chlorobis(NN-di-isopropyldithiocarbamato)iron(III)Chloroform (1/1)

By Samaresh Mitra, Chemical Physics Group, Tata Institute of Fundamental Research, Colaba, Bombay, India Brian N. Figgis,* Colin L. Raston, Brian W. Skelton, and Allan H. White, Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, W.A. 6009

Abstract

The crysta' structure of the title complex has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least-squares procedures to $R 0.072$ for 4066 observed reflections. Crystals are triclinic, with space group $P \overline{1}$, unit-cell dimensions $a=1350.5(5), b=1070.6(3), c=986.2(3) \mathrm{pm}, \alpha=96.12(2) . \beta=93.13(2)$. $\gamma=108.72(2)^{\circ}$. and $Z=2$. The molecular structure is similar to those observed in other $\left[\mathrm{FeX}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right]$ derivatives, the iron atom lying in a pseudo-square-pyramidal environment with apical Cl [$\mathrm{Fe}-\mathrm{Cl} 228.1$ (3), mean $\mathrm{Fe}-\mathrm{S} 228.7 \mathrm{pm}$. The lattice contains a chloroform solvent molecule with occupancy 0.8_{7}. The magnetic anisotropy has been studied in the range $80-300 \mathrm{~K}$. The rhombic molecular anisotropies have been deduced following the method of Ghose, and found to be similar to those of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]$, their signs establishing a ${ }^{4} A_{2}$ ground state. The zero-field splitting parameters have been deduced from the experimental data. and found to be consistent with previous e.s.r. studies.

The zero-field splitting (z.f.s.) of the ${ }^{\mathbf{4}} A_{2}$ ground state in intermediate-spin $S=\frac{3}{2}$ bis(dithiocarbamato)halogenoiron(III) complexes has been determined by several methods. ${ }^{1-4}$ The measurement of paramagnetic anisotropy ${ }^{4}$ in the range $80-300 \mathrm{~K}$ has been used to accurately determine the sign and magnitude of the z.f.s. parameters in the diethyl derivatives $\left[\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right) \mathrm{X}\right]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I). In the present paper we deduce the z.f.s. parameters of the triclinic isopropyl derivative, $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}^{\mathrm{i}}\right)_{2}\right]$, and compare them with those deduced from single-crystal e.s.r. studies. The paper is divided into three principal sections. First, the detailed crystal and molecular structure necessary for the magnetic work is described. We then discuss the method of Ghose for deducing the principal molecular anisotropies of triclinic crystals and apply it to $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right]$. Finally the molecular anisotropies are used to determine the z.f.s. parameters of the iron(iiI) ion.

The complex was prepared by the usual method ${ }^{5,6}$ and recrystallised from chloroform-toluene ($4: 1$) to yield good single crystals of the chloroform solvate. A prism $0.17 \times 0.15 \times 0.30 \mathrm{~mm}$ was used for crystallographic work, while for the magnetic studies much larger crystals weighing several milligrams were used.

EXPERIMENTAL

Crystal Data.- $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right] \cdot \mathrm{CHCl}_{3}, \mathrm{C}_{15} \mathrm{H}_{29} \mathrm{Cl}_{4} \mathrm{FeN}_{2}-$ $\mathrm{S}_{4}, M=563.3$, Triclinic, space group $P \mathrm{I}\left(C_{i}^{1}\right.$, no. 2$), a=$ $1350.5(5), b=1070.6(3), c=986.2(3) \mathrm{pm}, \alpha=96.12(2)$, $\beta=93.13(2), \quad \gamma=108.72(2)^{\circ}, \quad U=1.337(1) \mathrm{nm}^{3}, \quad D_{\mathrm{m}}=$ 1.36(1), $Z=2, D_{\mathrm{c}}=1.40 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=582$, monochromatic Mo- K_{α} radiation, $\mu=12.4 \mathrm{~cm}^{-1}, \lambda 71.069 \mathrm{pm}$.

Structure Determination.-A Syntex $P \overline{1}$ four-circle diffractometer in the $\theta-2 \theta$ mode, $2 \theta_{\text {max }}=50^{\circ}$, yielded 4743 independent reflections of which 4066 with $I>$ $2 \sigma(I)$ considered ' observed' were used in the refinement after absorption correction with weights $\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.0.0007\left(F_{\mathrm{o}}\right)^{2}\right]^{-1}$. Refinement was carried out basically by 9×9 block-diagonal least squares for the non-hydrogen atoms, but with the parameters of the $\mathrm{FeClS}_{4} \mathrm{C}_{2} \mathrm{~N}_{2}$ molecular core being refined as a single block, and the positional parameters of the ligand tertiary hydrogens being refined
in the block of the parent carbon. Other hydrogen atoms were included with $r(\mathrm{C}-\mathrm{H})$ invariant at 108 pm and U at $1000 \mathrm{pm}^{2}$. The values of the residuals obtained were $R 0.072$ and $R^{\prime} 0.094$. Scattering factors for the neutral atoms were employed, those of the non-hydrogen atoms being corrected for anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right) .^{7-9}$

Calculations were carried out using the ' X-RAY '72' program system ${ }^{10}$ on a CYBER 73 computer. Structure amplitudes and thermal parameters are available as Supplementary Publication No. SUP 22409 (19 pp.). \dagger Thermal motion of the chloroform molecule was extremely high and indicative of pronounced molecular oscillation about the $\mathrm{C}-\mathrm{H}$ axis.

An accurate determination of the density showed a discrepancy between the observed value and that calculated from the above formula.
The chloroform population was estimated as 0.8_{7} rather than 1.0. Accordingly, in the refinement the chloroform population was set at 0.87 . R and R^{\prime} were lowered significantly, and the reported structural parameters are for this model. Labelling within the ligands is shown in Figure 1, hydrogen atoms being numbered according to their parent carbon, suffixed α, β, and γ in the case of the methyl groups.

Magnetic Measurements.-Magnetic anisotropy was measured by Krishnan's angle-flip method. ${ }^{11}$ Since the crystals of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right] \cdot \mathrm{CHCl}_{3}$ belong to the triclinic system, the following method due to Ghose ${ }^{12}$ was used to determine the molecular anisotropies.

The crystal susceptibility ellipsoid referred to an orthogonal co-ordinate system (x, y, z) fixed in the crystal can be written as (1). $\quad \alpha_{i}{ }^{j}, \beta_{i}{ }^{j}$, and $\gamma_{i}{ }^{j}$ are defined as the direction
$\chi_{11} x^{2}+\chi_{22} y^{2}+\chi_{33} z^{2}+2\left(\chi_{12} x y+\chi_{13} x z+\chi_{23} y z\right)=1$ (1)
cosines of the molecular susceptibilities $K_{i}{ }^{j}$, of the j th of n inequivalent molecules in the unit cell with respect to the co-ordinate system $x, y, z(i=1-3, j=1-n)$:

	x	y	2
$K_{6}{ }^{5}$	$\alpha_{1}{ }^{3}$	β_{1}	$\gamma_{1}{ }^{5}$
$K_{2}{ }^{\text {j }}$	$\alpha_{2}{ }^{j}$	β_{2}	$\gamma_{2}{ }^{j}$
$K_{3}{ }^{j}$	$\alpha_{3}{ }^{3}$	$\beta_{3}{ }^{\text {j }}$	$\gamma_{3}{ }^{\text {j }}$

If $\chi_{\text {max. }}$ and $\Delta \chi$ are the ' maximum crystal susceptibility' and crystal anisotropy, respectively, in the $x y$ plane of the
\dagger See Notices to Authors No. 7, J.C.S. Dalton, 1978, Index issue.
crystal and θ the angle which $\chi_{\text {max. }}$ makes with the x axis, then following Ghose ${ }^{12}$ equations (2) and (3) can be

$$
\begin{gather*}
\left(K_{2}-K_{1}\right)\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)+\left(K_{3}-K_{1}\right)\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)= \\
\Delta \chi \cdot \cos 2 \theta \tag{2}\\
\left(K_{2}-K_{1}\right) \alpha_{2} \beta_{2}+\left(K_{3}-K_{1}\right) \alpha_{3} \beta_{3}=(\Delta \chi / 2) \sin 2 \theta \tag{3}
\end{gather*}
$$

deduced for the case of $n=1$ which applies here. Elimination of θ between (2) and (3) gives equation (4). If the
$a b$ planes. We define, therefore, that the z axis is along the b axis of the crystal and y axis lies in the $a b$ plane along, say, a^{\prime}. The x axis thus lies perpendicular to the $a b$ plane. As in the diethyl derivative, ${ }^{4}$ we define as a first choice the orientation of K_{1}, K_{2}, and K_{3} as in Figure 2(a). $\quad K_{1}$ and K_{2} lie in the plane of the four sulphur atoms, while the unique K_{3} lies perpendicular to this plane approximately along the $\mathrm{Fe}-\mathrm{Cl}$ bond. The direction cosines of K_{1} with respect to

Table 1
Atomic fractional cell co-ordinates $\left(\times 10^{3}, \mathrm{H} ; \times 10^{4}\right.$, others)

Atom	x	y	z	x	y	z
Fe	2498.1 (7)	2 717(1)	2 565(1)			
Cl	$2585(2)$	$1002(2)$	$3701(2)$			
Ligand (a)				Ligand (b)		
S(1)	1 183(1)	$1738(2)$	$0843(2)$	3 774(1)	4 543(2)	3 707(2)
S(2)	3351 (1)	2 707(2)	0 630(2)	$1592(1)$	$3844(2)$	3 806(2)
N	1957 (4)	$1564(5)$	- 1609 (5)	$2954(4)$	6 128(5)	5 254(6)
C(1)	$2144(5)$	1939 (6)	-0 286(6)	2 787(5)	5 025(6)	4 407(6)
$\mathrm{C}(2)$	$0857(6)$	0873 (8)	- 2 229(7)	$4059(5)$	7010 (8)	$5712(9)$
$\mathrm{C}(3)$	0 756(7)	-0447(9)	-3079(9)	4 262(7)	7 248(9)	7 222(9)
C(4)	0 470(7)	1 777(10)	-3070(10)	4 292(7)	8 278(9)	$5074(11)$
C(5)	$2801(6)$	$1847(9)$	-2 582(7)	2101 (6)	6 622(8)	5 758(9)
C(6)	3 540(8)	$1100(11)$	$-2387(10)$	$1445(6)$	5 728(9)	6 669(9)
C(7)	3330 (7)	3 326(10)	-2566(8)	1470 (7)	$6917(10)$	4577 (10)
Chloroform						
C	2 658(12)	-1 670(16)	$1003(14)$			
$\mathrm{Cl}(1)$	$2712(9)$	-3 402(9)	$1068(9)$			
$\mathrm{Cl}(2)$	3813 (7)	-0 933(11)	0 708(9)			
$\mathrm{Cl}(3)$	1663 (6)	- $1889(9)$	0 145(8)			
H	247(-)	-126(-)	196(-)			
$\mathrm{H}(2)$	046(5)	056(7)	-137(8)	450(6)	660(8)	545(8)
$\mathrm{H}(3 \alpha)$	112(-)	-028(-)	-400(-)	391(-)	641 (-)	775 (-)
$\mathrm{H}(3 \beta)$	003(-)	-103(-)	-353(-)	394(-)	766 (-)	789(-)
$\mathrm{H}(3 \gamma)$	109(-)	-109(-)	-252(-)	486(-)	757(-)	753 (-)
$\mathrm{H}(4 \alpha)$	045(-)	231 (-)	-259(-)	391 (-)	847(-)	455 (-)
$\mathrm{H}(4 \beta)$	086(-)	187(-)	-411(-)	502(-)	892(-)	$542(-)$
$\mathrm{H}(4 \gamma)$	-034(-)	128(-)	-385(-)	387(-)	878(-)	$567(-)$
H(5)	239(5)	139(7)	-366(8)	$252(6)$	738(7)	634(8)
$\mathrm{H}(6 \alpha)$	402(-)	102(-)	-316(-)	105(-)	519(-)	$645($-)
$\mathrm{H}(6 \beta)$	320(-)	-010(-)	-232(-)	087(-)	$611(-)$	722(-)
$\mathrm{H}(6 \gamma)$	394(-)	105(-)	-161(-)	189 (-)	567(-)	764(一)
H(7a)	374(-)	$338($ (-)	-314(-)	$205($ ()	730 (-)	400(-)
$\mathrm{H}(7 \beta)$	288(-)	392(-)	-244(-)	118(-)	632(-)	399 (-)
$\mathrm{H}(7 \boldsymbol{\gamma})$	385(-)	409(-)	-157(-)	117 (-)	758(-)	464(-)

measurement is made in the $x z$ plane of the crystal with ΔX^{\prime} the anisotropy and θ^{\prime} the angle between the maximum susceptibility in the $x z$ plane and x axis, the result is (5).

$$
\begin{align*}
& {\left[\left(K_{2}-K_{1}\right)\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)+\right.} \\
& \left.\quad\left(K_{3}-K_{1}\right)\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)\right]^{2}+4\left[\left(K_{2}-K_{1}\right) \alpha_{2} \beta_{2}+\right. \\
& \left.\left(K_{3}-K_{1}\right) \alpha_{3} \beta_{3}\right]^{2}=(\Delta \chi)^{2} \tag{4}\\
& {\left[\left(K_{2}-K_{1}\right)\left(\alpha_{2}^{2}-\gamma_{2}^{2}\right)+\left(K_{3}-K_{1}\right)\left(\alpha_{3}^{2}-\gamma_{3}^{2}\right)\right]^{2}+} \\
& 4\left[\left(K_{2}-K_{1}\right) \alpha_{2} \gamma_{2}+\left(K_{3}-K_{1}\right) \alpha_{3} \gamma_{3}\right]^{2}=\left(\Delta \chi^{\prime}\right)^{2} \tag{5}
\end{align*}
$$

Thus knowing the molecular structural parameters, the values of the 'rhombic' molecular anisotropies ($K_{2}-$ K_{1}) and ($K_{3}-K_{1}$) can be obtained by solving equations (4) and (5) once the crystal anisotropies in two suitable crystallographic planes are determined. In general, four alternative sets of solutions are obtained. The correct set can easily be found by comparing the experimentally measured values of θ and θ^{\prime} to those calculated from equations (2) and (3) or their equivalent in the $x z$ plane.

In order to use the above method we have to define the co-ordinate axes x, y, z in the crystal in such a way as to make the experimental measurement convenient and accurate. The crystals of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}\right)_{2}\right] \cdot \mathrm{CHCl}_{3}$ grow as elongated prisms (the long axis being the b axis) with well developed
the x, y, z co-ordinate system as calculated from the atomic co-ordinates in Table 1 are given below.

$$
\begin{equation*}
 \tag{6}
\end{equation*}
$$

RESULTS AND DISCUSSION

The crystal lattice is comprised of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}{ }_{2}\right)_{2}\right]$ monomeric species accompanied by chloroform solvent molecules. As indicated above, however, the solvent sites are not fully occupied. As expected, the complex molecules comprise five-co-ordinate iron atoms with the square-pyramidal' stereochemistry found in other $\left[\mathrm{FeX}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right]$ derivatives studied, the halogen atom being at the apex. The $\mathrm{Fe}-\mathrm{Cl}$ and $\mathrm{Fe}-\mathrm{S}$ distances are in good agreement with those previously observed in these derivatives, ${ }^{13}$ as is the $\mathrm{S}_{2} \mathrm{CN}$ geometry in general. In detail, however, the ligand geometries reflect the presence of the pair of Pr^{i} substituents. These adopt the disposition previously observed in $\left[\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right]^{\mathbf{1 4}}$, in which one of the isopropyl tertiary hydrogens is
directed towards the neighbouring sulphur and the other away, so that steric fouling of the methyl groups is

Table 2
Interatomic distances ($\times 100 \mathrm{pm}$) and angles (${ }^{\circ}$) for non-hydrogen atoms

Ligand (value	ues for ligand b fo	hose for ligand a)	
	$\mathrm{Fe}-\mathrm{S}(1)$	2.288(2), 2.284(2)	
	$\mathrm{Fe}-\mathrm{S}(2)$	2.283(2), 2.291(2)	
	$\mathrm{S}(1)-\mathrm{C}(1)$	1.732(7), 1.728(7)	
	$\mathrm{S}(2)-\mathrm{C}(1)$	1.724(6), 1.727(5)	
	$\mathrm{S}(1) \cdots \mathrm{S}(2)$	2.803(3), 2.809(3)	
	$\mathrm{C}(1)-\mathrm{N}$	$1.309(7), 1.319(8)$	
	$\mathrm{N}-\mathrm{C}(2)$	$1.491(8), 1.501(8)$	
	$\mathrm{N}-\mathrm{C}(5)$	$1.508(9), 1.501(11)$	
	$\mathrm{C}(2)-\mathrm{C}(3)$	1.53(1), 1.48(1)	
	$\mathrm{C}(2)-\mathrm{C}(4)$	1.53(1), $1.51(1)$	
	$\mathrm{C}(5)-\mathrm{C}(6)$	1.48(2), 1.49 (1)	
	$\mathrm{C}(5)-\mathrm{C}(7)$	1.51(1), $1.52(1)$	
	$\mathrm{H}(2) \cdots \mathrm{S}(1)$	$2.39(7), 2.53(7)$	
	$\mathrm{S}(1)-\mathrm{Fe}-\mathrm{S}(2)$	75.66(7), 75.74(7)	
	$\mathrm{Fe}-\mathrm{S}(1)-\mathrm{C}(1)$	87.8(2), 87.9(2)	
	$\mathrm{Fe}-\mathrm{S}(2)-\mathrm{C}(1)$	88.1(2), 87.6(2)	
	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$	108.4(3), 108.8(3)	
	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}$	124.4(5), 123.9(4)	
	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}$	127.1(5), 127.3(5)	
	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	119.9(5), 119.7 (6)	
	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	123.3(5), 124.3(5)	
	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(5)$	116.7(5), 115.9(3)	
	$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(3)$	111.3(7), 111.9(6)	
	$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(4)$	110.9(6), 109.7(7)	
	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	111.6(6), 112.9(7)	
	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	112.6(7), $111.9(3)$	
	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(7)$	111.3(7), 111.3(7)	
	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	114.1(7), 114.0(7)	
Metal core			
$\mathrm{Fe}-\mathrm{Cl}$	2.281 (3)	$\mathrm{S}(1 \mathrm{a})-\mathrm{Fe}-\mathrm{S}(2 \mathrm{a})$	151.21(9)
$\mathrm{Cl}-\mathrm{Fe}-\mathrm{S}(\mathrm{la}$)) 104.21(8)	$\mathrm{S}(1 \mathrm{a})-\mathrm{Fe}-\mathrm{S}(2 \mathrm{~b})$	95.83(8)
$\mathrm{Cl}-\mathrm{Fe}-\mathrm{S}(2 \mathrm{a})$) 104.58(8)	$\mathrm{S}(1 \mathrm{~b})-\mathrm{Fe}-\mathrm{S}(2 \mathrm{a})$	94.33(7)
$\mathrm{Cl}-\mathrm{Fe}-\mathrm{S}(1 \mathrm{~b})$	109.47(9)	$\mathrm{S}(1 \mathrm{~b})-\mathrm{Fe}-\mathrm{S}(2 \mathrm{~b})$	142.82(9)
$\mathrm{Cl}-\mathrm{Fe}-\mathrm{S}(2 \mathrm{~b})$) 107.71(8)		
Chloroform			
$\mathrm{C}-\mathrm{Cl}(1)$	1.89(2)	$\mathrm{Cl}(1)-\mathrm{C}-\mathrm{Cl}(2)$	100(1)
$\mathrm{C}-\mathrm{Cl}(2)$	1.56(2)	$\mathrm{Cl}(1)-\mathrm{C}-\mathrm{Cl}(3)$	104(1)
$\mathrm{C}-\mathrm{Cl}(3)$	1.48(2)	$\mathrm{Cl}(2)-\mathrm{C}-\mathrm{Cl}(3)$	129(1)

Interspecies hydrogen bonds (and angles) $<\mathbf{3 0 0} \mathrm{pm}$: *
$\mathrm{H} \cdots \mathrm{Cl} \quad 2.7(-), 148(-) \quad \mathrm{S}(2 \mathrm{~b}) \cdots \mathrm{H}(7 \mathrm{~b} \beta) 2.9(-), 122(-)$ $\mathrm{S}(1 \mathrm{a}) \cdots \mathrm{H}\left(2 \mathrm{a}^{\mathrm{I}}\right) 2.9(1), 137(3)$

* Transformation I is $\bar{x}, \bar{y}, \bar{z}$.

Table 3
Least-squares planes in the form $p X+q Y+r Z=s$, where the right-hand orthogonal direct-space frame (X, Y, Z) is defined with X parallel to a and Z in the ac plane; σ is the estimated standard deviation of the defining atoms. Deviations (pm) of the atoms from the planes are given in square brackets
Plane (i): Defined by $\mathrm{S}_{2} \mathrm{CNC}_{2}$ (values for ligand b follow those for a)

$10^{4} p$	$10^{4} q$	$10^{4} r$	s	σ	χ^{2}
-3914	8878	-2421	99.02	4	193
1523	-4926	8568	92.25	5	316

$[\mathrm{S}(1) 4,6 ; \mathrm{S}(2)-3,-4 ; \mathrm{N}-2,-2$; $\mathrm{C}(1)-1,-1 ; \mathrm{C}(2)$ $-3,-5 ; \mathrm{C}(5) 5,6 ; \mathrm{C}(3)-119,-119 ; \mathrm{C}(4) 131,128$; $\mathrm{C}(6)-118,-115 ; \mathrm{C}(7) 133,137$; $\mathrm{Fe} 1,6 ; \mathrm{Cl}-210$, $-204 ; \mathrm{H}(2)-34,-18 ; \mathrm{H}(5) 1,-1]$
Plane (ii): Through the four sulphur atoms
$\begin{array}{llllll}-2965 & 7561 & -5835 & 7684 & 9 & 535\end{array}$
[S(la) $-8 ; S(1 b)-8 ; S(2 a) 8 ; S(2 b)-8 ; ~ F e-65]$
Angles $\left({ }^{\circ}\right)$ between ligand planes and plane (ii): 21.8, 23.4
minimized. The present structure is more accurate and shows clearly the consequent difference in $\mathrm{S}-\mathrm{C}-\mathrm{N}$ angles

Figure 1 Unit-cell contents projected down c showing 20% thermal ellipsoids for the non-hydrogen atoms; tertiary hydrogen atoms only are shown with an arbitrary radius of 10 pm . The dotted lines show the intermolecular hydrogen bonds between the solvent and the complex molecule
and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles on either side of the ligand. In addition, both ligands are observed to be appreciably twisted about the $\mathrm{C}-\mathrm{N}$ bond, and the methyl groups of

(a)

(b)

Figure 2 The orientation of the principal molecular susceptibilities. The susceptibilities in the two co-ordinate systems are related as $K_{3}{ }^{\prime} \equiv K_{1}, K_{2}{ }^{\prime} \equiv K_{3}$, and $K_{1}{ }^{\prime} \equiv K_{2}$
each substituent are not symmetrically disposed on either side of the $\mathrm{S}_{2} \mathrm{CNC}_{2}$ ligand ' planes '. It is tempting to ascribe the asymmetry of the bonding to the metal (identical in both ligands and reflected in the distorted S_{4} plane and angles about the iron) to also be a consequence of substituent disposition since the sulphur atoms within each ligand differ slightly as a result of the above. However, although the angles differ, all the $\mathrm{Fe}-\mathrm{S}$ distances are similar and it is not clear in these circumstances what the mechanism of such an angularly asymmetric interaction would be. The distortions thus appear more likely to result from lattice forces. As
usual, the latter appear to arise from sulphur-hydrogen interactions, the solvent hydrogen also interacting with the chlorine of the complex molecule. The accuracy of the solvent geometry is rather imprecise, a natural consequence of its high thermal motion.

The magnetic anisotropies in the range $80-300 \mathrm{~K}$ were measured with the $b(z)$ and $a^{\prime}(y)$ axes vertical. The crystals were accurately mounted along these axes using X-ray methods. The results of the crystal anisotropies are given in Table 4. The molecular anisotropies were calculated using equations (4) and (5).

Table 4

Magnetic anisotropies $\left(\mathrm{mm}^{3} \mathrm{~mol}^{-1}\right)$ of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right] \cdot$ CHCl_{3} referred to the co-ordinate system defined in Figure 2(a)

$\Delta \chi_{\mathrm{Fe}}^{\prime}$ T / K $\left(b\right.$ axis vertical) $\left(a^{\prime}\right.$ axis vertical)$K_{1}-K_{2}$				$K_{1}-K_{3}$
300.6	1.77	4.17	2.76	4.23
296.0	1.81	4.25	2.81	4.31
283.4	1.88	4.44	2.94	4.50
258.2	2.19	4.90	3.36	4.98
224.5	2.69	5.77	4.06	5.86
195.2	3.30	6.71	4.90	6.81
170.2	4.00	7.82	5.87	7.94
148.3	4.98	9.24	7.19	9.40
129.1	6.70	10.93	9.31	11.13
112.7	7.59	12.96	10.69	13.19
97.6	9.61	15.65	13.36	15.93
88.5	11.40	18.11	15.73	18.46

According to our definition, $\Delta \chi$ and $\Delta \chi^{\prime}$ in these equations relate to the crystal anisotropies measured with the b and a^{\prime} axes vertical, respectively. Here, n is 1 since the two molecules in the unit cell are crystallographically equivalent. Employing the direction cosines given in equation (6), the molecular anisotropies were obtained by solving (4) and (5). This procedure was repeated at different temperatures, assuming of course that the structural parameters remain unchanged.

As explained earlier, four sets of solutions were obtained and the correct one was decided by comparing the values of θ and θ^{\prime}. To illustrate the situation here, we list below the four sets of solutions (in $\mathrm{mm}^{3} \mathrm{~mol}^{-1}$) for $K_{2}-K_{1}$ and $K_{3}-K_{1}$ as calculated from the crystal data at 300.6 K (Table 4). If these values are now sub-

	I	II	III	IV
$10^{6}\left(K_{2}-K_{1}\right)$	-0.79	0.79	2.78	-2.78
$10^{6}\left(K_{3}-K_{1}\right)$	4.18	-4.18	4.23	-4.23

stituted into equations (2), (3), and their equivalents in the $x z$ plane, the following values (${ }^{\circ}$) of θ and θ^{\prime} are obtained:

	I	II	III	IV
θ Equation (2)	6.7	83.3	80.5	9.5
(3)	7.0	-7.0	-10.6	10.6
θ^{\prime} Equations	61.2	28.8	60.8	29.2
	-29.1	29.1	-29.2	29.2

The internal inconsistency in the values of θ and θ^{\prime} calculated above for sets I-III clearly establishes that these solutions are physically unreal, and that set IV is the correct solution. θ and θ^{\prime} are experimentally found to be 12 and 20° respectively and are thus consistent with the values in set IV, since an accuracy of
better than a few degrees in determining these angles is rarely obtained.

The molecular anisotropies of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right]$ show close similarity to those of the diethyl derivative, $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]$. Both show very large in-plane anisotropy, $K_{1}-K_{2}$, and the same order of the anisotropies, i.e. $\dot{K}_{1}>K_{2}>K_{3}$. The temperature dependence of the anisotropies is also similar.

The ground state of the iron(ini) ion in these complexes is ${ }^{4} A_{2}$ deriving from the configuration $\left(x^{2}-y^{2}\right)^{2}(y z)^{1}-$ $(x z)^{1}\left(z^{2}\right)^{1}$. Alternative ground states $\left({ }^{4} B_{1},{ }^{4} B_{2}\right)$ would give $K_{3}>\left(K_{1}, K_{2}\right)$ and hence can be ruled out. The first excited states appear to be the components of ${ }^{4} E$ and lie ca. $4000 \mathrm{~cm}^{-1}$ above the ground state. SpinHamiltonian formalism can, therefore, be used to describe

Figure 3 Temperature dependence of $\mu_{1}{ }^{2}-\mu_{3}{ }^{2}$ and $\mu_{1}{ }^{2}-\mu_{2}{ }^{2}$ for $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}\right)_{2}\right]$. The experimental data refer to the coordinate system in Figure 2(a). $\quad 1$ B.M. $\approx 9.27 \times 10^{-24} \mathrm{~A} \mathrm{~m}^{2}$
the ground-state properties. The appropriate form of the Hamiltonian is (7) where D and E, as defined earlier, ${ }^{1}$

$$
\begin{array}{r}
\mathscr{H}=D\left[S_{z}^{2}-\frac{1}{3} S(S+1)\right]+E\left(S_{x}^{2}-S_{y}^{2}\right)+ \\
\beta\left(g_{x} H_{x} S_{x}+g_{y} H_{y} S_{y}+g_{z} H_{z} S_{z}\right) \tag{7}
\end{array}
$$

are the axial and rhombic z.f.s. parameters and are connected to the total z.f.s. (Δ) of the ${ }^{4} A_{2}$ state by relation (8). The expressions for the principal magnetic

$$
\begin{equation*}
\Delta=2\left(D^{2}+3 E^{2}\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

moments (μ_{i}) can be readily reduced using van Vleck's equation and are given as ${ }^{4}$ (9). Equation (9) can be

$$
\begin{align*}
& \mu_{i}^{2}= \\
& 3 g\left(\frac{4 A_{i}^{2}}{\delta^{2}}+\frac{1}{4}\right)+\left(\frac{24 B_{i}^{2}}{8 \Delta^{2}}-\frac{2 A_{i}}{\Delta}\right)\left(\frac{1-l^{-\delta}}{1+l^{-\delta}}\right) \tag{9}
\end{align*}
$$

where, $\mu_{i}{ }^{2}=6.36 \times 10^{5} K_{i} T(i=1-3)$

$$
\begin{aligned}
& A_{1}=\frac{1}{2}(3 E-D), B_{1}=-\frac{1}{2}(D+E) \\
& A_{2}=-\frac{1}{2}(3 E+D), B_{2}=\frac{1}{2}(D-E) \\
& A_{\mathbf{3}}=D, B_{3}=E \\
& \quad \delta=\Delta / \boldsymbol{k} T
\end{aligned}
$$

simplified since $\Delta / \boldsymbol{k} T \ll 1$ in the range $80-300 \mathrm{~K}$. The simplified form of the equations can be written as in (10) and (11). Here g_{3} has been taken to be 2.00 , the
value calculated for the ${ }^{4} A_{2}$ ground state mixed with the components of ${ }^{4} E$ excited states.

$$
\begin{align*}
\mu_{1}^{2}-\mu_{3}^{2}= & \frac{15}{4}\left(g_{1}^{2}-4\right)+(3 / k T)[4 D+ \\
\mu_{1}^{2}-\mu_{2}^{2}= & \frac{15}{4}\left(g_{1}^{2}-g_{2}^{2}\right)+\quad \tag{10}\\
& (3 / k T)\left[(D-3 E) g_{1}{ }^{2}-(D+3 E) g_{2}^{2}\right]
\end{align*}
$$

Plots of equations (10) and (11) as $\Delta \mu^{2}$ against $1 / T$ should give straight lines, the gradients and intercepts of which uniquely determine D, E, g_{1}, and g_{2}. The experimental data plotted in Figure 3 lie fairly well on straight lines. The values (Table 5) of the parameters deduced from Figure 3 are in very good agreement with those obtained from a least-squares fit of the experimental data to equation (9). The sign of D and E is the same as observed in $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]$, both being referred to the same co-ordinate system. The total z.f.s. (Δ) of the ground state is also similar to that of the diethyl

Table 5
Spin-Hamiltonian parameters for $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}{ }_{2}\right)_{2}\right]$

	Co-ordinate system	
$\overbrace{\text { Figure 2(a) }}^{2}$	Figure 2(b)	
g_{1}	2.047	2.000
g_{2}	2.022	2.021
g_{3}	2.000	2.047
D / K	0.24	-1.87
E / K	-1.19	0.47
Δ / K	4.14	4.14

derivative, as are the g values. However, the quotient $|E| D \mid>1$ is physically unreal, and suggests that a better choice of molecular axes is desirable to obtain meaningful values of D and $E .{ }^{15}$

One obvious choice for the alternative co-ordinate axes is as shown in Figure 2(b). Under the new coordinate axes, K_{1}, K_{2}, K_{3} of Table 4 now refer to $K_{3}{ }^{\prime}$, $K_{1}{ }^{\prime}, K_{2}{ }^{\prime}$ respectively. The essential feature of the rotation of the co-ordinate system is that now in the new system the axis of quantization $\left(K_{3}{ }^{\prime}\right)$ lies in the plane of the four sulphur atoms, in contrast to the perpendicular orientation in the previous system. Bearing the above change in mind, the data can again be fitted to equation (9) to give the values of the parameters listed in Table 5. Two points deserve mention. First, the sign of D as expected is now negative, with $|E| D \left\lvert\,<\frac{1}{3}\right.$. The negative sign of D agrees with the e.s.r. studies, indicating that this co-ordinate system was probably used in the analysis of the e.s.r. data, although it was not clearly described. The second point refers to the total
z.f.s. (Δ) which is observed to remain constant in the two co-ordination systems. Since Δ is a physically real quality (viz. the energy separation between $M_{s}= \pm \frac{1}{2}$ and $M_{s}= \pm \frac{3}{2}$) it must be independent of the coordinate system chosen to define D and E. This requirement is fulfilled here in $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}{ }_{2}\right)_{2}\right]$ as well as in the complex $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]$ studied recently. ${ }^{16}$

Conclusions.-(i) The molecular structure of [$\mathrm{FeCl}-$ $\left.\left(\mathrm{S}_{2} \mathrm{CNPr}^{\mathrm{i}}\right)_{2}\right]$ is square pyramidal and very similar to those of other $\left[\mathrm{FeX}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right]$ species, and the crystals include a CHCl_{3} solvent molecule with partial occupancy. (ii) The method of Ghose for evaluating the principal components of the molecular magnetic susceptibility of a triclinic crystal appears to be simple and straightforward. Although suggested some time ago it has not been tested previously in detail in experiments. (iii) The paramagnetic anisotropies of $\left[\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}{ }_{2}\right)_{2}\right]$ in the range $80-300 \mathrm{~K}$ are sensitive to even a small z.f.s. ($<5 \mathrm{~K}$) of the ground state and so can be used to determine that quantity. (iv) While the sign and magnitude of D and E depend on the molecular co-ordinate system chosen to define them, results very similar to those obtained from the e.s.r. studies on this complex are given by an obvious set and, of course, lead to about the same value of z.f.s. The z.f.s. in the complex, and for that matter the values of D and E, are similar to those for other $\left[\mathrm{FeX}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right]$ complexes.
[8/863 Received, 9th May, 1978]

REFERENCES

${ }^{1}$ H. H. Wickman and F. R. Merritt, Chem. Phys. Letters, 1967, 1, 117.
${ }^{2}$ 'G. C. Brackett, P. L. Richards, and W. S. Caughy, J. Chem. Phys., 1971, 54, 4383.
${ }_{3}$ H. H. Wickman, J. Chem. Phys., 1972, 56, 976.
${ }^{4}$ P. Ganguli, V. R. Marathe, and S. Mitra, Inorg. Chem., 1975, 14, 970 .
${ }^{5}$ R. L. Martin and A. H. White, Inorg. Chem., 1967, 6, 712.
${ }^{6}$ H. H. Wickman and A. M. Trozzolo, Inorg. Chem., 1968, 7, 63.
${ }^{7}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{8}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
${ }^{9}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
10 'The ' X-Ray System,' version of June 1972, Technical Report TR-192, Computer Science Centre, University of Maryland.
${ }_{11}$ K. S. Krishnan and S. Banerji, Phil. Trans., 1935, A234, 265.
${ }^{12}$ J. K. Ghose, Indian J. Phys., 1966, 40, 457.
${ }^{13}$ See, for example, B. F. Hoskins and A. H. White, J. Chem. Soc. $(A), 1970,1668$.
${ }_{14}$ P. W. G. Newman and A. H. White, J.C.S. Dalton, 1972, 2239.
${ }^{15}$ H. H. Wickman, M. P. Klein, and D. A. Shirley, J. Chem. Phys., 1965, 42, 2113.
${ }_{16}$ G. C. DeFotis, F. Palacio, C. J. O'Connor, S. N. Bhatia, and R. L. Carlin, J. Amer. Chem. Soc., 1977, 89, 8314.

