By Gábor Náray-Szabó,* Chinoin Pharmaceutical and Chemical Works, H-1325 Budapest, Hungary Árpád Kucsman, Institute of Organic Chemistry, Eötvös University, H-1088 Budapest, Hungary

Localized molecular orbitals for the simplest *N*-sulphinosulphimide, H_2SNSO_2H , and of its conjugated acid have been calculated using the semiempirical CNDO/2 method. To understand the special features of the different bonds, a comparison is made with simpler molecules such as H_2S , Me_2SNH , Me_2SO , and Me_2SO_2 . A three-centre $S^{IV}NS^{VI} \pi$ bond is formed in *N*-sulphinosulphimides which is localized mainly on the nitrogen atom. The $S^{IV}N$ and $S^{VI}N \sigma$ bonds as well as the nitrogen lone pair are considerably delocalized on to the neighbouring sulphur atoms. In all cases, the sulphur *d*-orbital participation in bonding is important. In Me_2SNH , Me_2SO , and Me_2SO_2 , hyperconjugation of the CH bonds with the sulphur *d* orbitals occurs.

THE classical concept of the chemical bond serves as a valuable tool in understanding molecular phenomena. The description of bonds from the theoretical as well as from the experimental point of view forms an important part of structural chemistry. Several theoretical models of the chemical bond exist.¹⁻⁴ In this work we use localized molecular orbitals (l.m.o.). Thus, for example, lone pairs or σ and π bonds are related to l.m.o.s of the appropriate local symmetry, mainly localized on one or two atoms of a molecule. The transferability and additivity of bond properties correspond to those of the given l.m.o. Similarly, just as chemical bonds are used to build up the whole molecule, the l.m.o.s serve to construct the total molecular wavefunction. We feel that the use of the l.m.o. makes possible a didactic discussion of the chemical bond. It has to be said that the transferability and additivity of l.m.o.s is, by no means, quantitative. However, in many cases a qualitative or semiquantitative discussion can also yield valuable information.

The present work deals with N-sulphinosulphimides, $H_2SN(SO_2H)$, and related compounds. We hope to give an adequate description of the special bond types present in this class of molecules.

THEORY

Localized orbitals can be obtained in several ways.^{3,4} We have used the Edmiston–Ruedenberg procedure ⁴ with the CNDO/2 approximation.^{5,6} Standard computer programs were employed for the numerical calculations.^{7,8}

An important quantity, $l_A{}^i$, characterizing the steric extension of the *i*th l.m.o., is the localizability on atom A.⁹ Within the CNDO/2 approximation this is written as in (1).

$$l_{\rm A}{}^i = 100 \sum_a c_{ai}{}^2 \%$$
 (1)

Here c_{ai} denotes the coefficient of the *a*th atomic orbital, centred on atom A, in the *i*th l.m.o. The localizability of different bond types is defined, in %, as in (2a) and (2b):

for a lone-pair l.m.o.
$$L_A{}^{lp} = l_A{}^{lp}$$
 (2a)

for a two-centre σ and π l.m.o. $L_{AB}^{\sigma \text{ or } \pi} = l_A^{\sigma \text{ or } \pi} + l_B^{\sigma \text{ or } \pi}$ (2b)

Other useful quantities are the s and d characters, where $c_{2s,A,i}$ is the coefficient of the 2s orbital in the *i*th l.m.o. on

atom A and the summation in (4) includes all 3d orbital coefficients on atom A.

$$s_{\rm A}{}^i = 100c_{2s,A,i}{}^2/l_{\rm A}{}^i \tag{3}$$

$$d_{\mathrm{A}}{}^{i} = 100\Sigma c_{3d,\mathrm{A},i}{}^{2}/l_{\mathrm{A}}{}^{i} \tag{4}$$

Bond localizabilities, as defined in equation (2a) and (2b), are useful in treating the aromaticity of monocyclic heteroconjugated molecules.¹⁰

In the case of the ethylene molecule, the *ab initio* localization procedure yields two equivalent CC 'banana' bonds in place of the canonical σ and π m.o.s.¹¹ CNDO/2 calculations do not reproduce this result: the π orbital remains unchanged through localization.⁶ It is known that the search for the optimum l.m.o.s may converge to one of the local minima. Symmetry constraints are of assistance in finding these local minima as was illustrated earlier ¹² for the σ - π mixing of C=O. We feel that this feature of the semiempirical method is advantageous because the concept of the σ and π bonds is maintained.

When using the CNINDO⁷ and LOCAL⁸ computer programs together, non-equivalent lone-pair l.m.o.s were obtained on the oxygen atom. To get closer to classical chemical terms we transformed these into equivalent orbitals. Since the CNDO/2 method overestimates dorbital participation in molecular wavefunctions for secondrow atoms,¹³ the numerical results must be manipulated carefully. On the other hand, we feel that the qualitative conclusions, drawn from the semiempirical l.m.o.s, are in this case also close to reality.

SIMPLE MODELS

Comparative studies on the bonding in some simple molecules (H_2S , Me_2SNH , Me_2SO , and Me_2SO_2), related to N-sulphinosulphimides were carried out and the results are summarized in Table 1 and Figure 1. Data for bonds of the same type (*e.g.* for CH bonds in Me_2SO) were averaged. The deviations from the mean values were found to be negligible. For all molecules, experimental geometries ¹⁴ were used in the calculations.

The CS bonds in the methyl-substituted molecules, as well as the corresponding SH bonds in H_2S , are almost perfectly localized. These bonds are slightly polarized towards the carbon atom in Me₂SNH and in Me₂SO, while they are practically 'neutral' in H_2S and in Me₂SO₂ [Figure 1(*a*)]. The observed minor importance of sulphur *d* orbitals is in accordance with the results of Streitwieser and Williams ¹⁵ who have stated that *d* orbitals do not play any role in bonding in MeSH. Similarly, the SN(σ)

TABLE 1

Parameters characterizing the l.m.o.s in H₂S, Me₂SNH, Me₂SO, and Me₂SO₂

			Participation of A and B atoms in AB bond		Delocalization on to
Bond type	Molecule	Localizability	A a	B	sulphur atom °
$SH(\sigma)$	H,S	100.0	S 50.2 (7.4, 9.3)	H 49.8 (100)	1
CS(\sigma)	Me,SNH	99.9	S 45.7 (9.4, 16.0)	C 54.2 (25.7)	
	Me,SO	99.9	S 46.4 (10.2, 15.4)	C 53.5 (25.4)	
	Me ₂ SO ₂	99.4	S 50.7 (36.1, 16.3)	C 48.7 (23.1)	
$SN(\sigma)$	Me ₂ SNH	99.7	S 51.4 (13.6, 10.6)	N 48.3 (22.5)	
SO(o)	Me ₂ SO	99.9	S 46.7 (11.2, 12.7)	O 53.2 (19.7)	
	Me_2SO_2	99.4	S 46.1 (30.8, 15.2)	O 53.3 (21.1)	
S(lp)	H ₂ Š –	100.0	S 100.0 (48.4, 0.0)	x <i>y</i>	
	Me ₂ SNH	99.7	S 99.7 (67.4, 1.4)		
	Me ₂ SO	99.8	S 99.8 (68.9, 1.5)		
CH(o)	Me_2SNH	98.1	C 50.2 (26.0, 0.0)	H 47.9 (100)	S 1.9 (87.2)
	Me ₂ SO	98.0	C 50.5 (26.3, 0.0)	H 47.5 (100)	S 1.9 (82.1)
	Me ₂ SO ₂	98.6	C 51.2 (27.0, 0.0)	H 47.4 (100)	S 1.1 (78.2)
$NH(\sigma)$	$Me_{2}SNH$	95.2	N 51.9 (28.7, 0.0)	H 43.3 (100)	S 4.6 (80.3)
N(lp)	$Me_{2}SNH$	89.8	N 89.8 (54.9, 0.0)		S 9.8 (79.5)
O(lp)	Me_2SO	90.4	O 90.4 (43.4, 0.0)		S 9.3 (82.9)
	Me_2SO_2	89.5	O 89.5 (43.7, 0.0)		S 10.3 (71.9)
$SN(\pi)$	Me ₂ SNH	99.5	S 23.9 (0.6, 79.3)	N 75.6 (0.0)	. ,
$SO(\pi)$	Me ₂ SO	99.6	S 19.3 (0.3, 77.9)	O 80.3 (0.0)	
	Me_2SO_2	99.6	S 20.0 (0.2, 71.8)	O 79.6 (0.0)	

"s and d characters are given in parentheses. "s characters are given in parentheses. "d characters are given in parentheses.

bond in Me₂SNH is polarized towards sulphur and the SO(σ) bonds in Me₂SO or Me₂SO₂ are polarized towards oxygen [Figure 1(b)]. The sulphur lone pair is practically completely localized with negligible *d*-orbital participation [Figure 1(c)].

FIGURE 1 Schematic representation of the l.m.o. in Me₂SNH (X = NH, Y = lone pair), Me₂SO (X = O, Y = lone pair), and Me₂SO₂ (X = Y = O). Basic components of a bond are drawn as full lines; arrows indicate the direction of bond polarization. (a) CS σ ; (b) SX σ ; (c) S lone pair; (d) CH σ ; (e) X lone pair; (f) SX π bond orbital

Owing to delocalization on to the sulphur d orbitals, the localizability of the CH bonds is anomalously low, indicating appreciable hyperconjugation [see final column in Table 1 and Figure 1(d)]. This is in agreement with the results of Knoll *et al.*¹⁶ who discussed H-D exchange in Me₂SO by taking hyperconjugation into account.

The nitrogen and oxygen lone pairs are markedly delocalized on to the sulphur *d* orbitals [Figure 1(e)]. A similar effect, owing to hyperconjugation, can be observed for the NH bond which is polarized towards the nitrogen atom in Me₂SNH. The lone-pair delocalization indicates that resonance structures of type Me₂ $\bar{S}(Y) \equiv X$ (X = NH or O; Y = lone pair or O) cannot be neglected when depicting the total distribution of electrons in sulphimides, sulphoxides, and sulphones.

Sulphur *d* orbitals seem to play a decisive role in SN and SO π bonding as shown schematically in Figure 1(*f*). SN(π) and SO(π) bonds are strongly localized, but considerably polarized towards the nitrogen or oxygen atom. These facts are usually illustrated by the resonance structures Me₂S(Y)=X \iff Me₂ \dot{S} (Y)- \ddot{X} (cf. refs. 17 and 18).

As a result of strong *d*-orbital participation, the localizability of the SN π bond is expected to be practically independent of the CSNH dihedral angle in Me₂SNH. This view gains support from the calculation of the l.m.o. for two different conformations of Me₂SNH. In one of them the CSNH moiety was planar while in the other the CSN and SNH planes were perpendicular to each other. The values in Table 1, showing the localizability of the $SN(\pi)$ bond, were found to vary by only $\pm 0.5\%$. On the other hand, the difference in energy between the two conformations is also relatively small $(4.6 \text{ kcal mol}^{-1})$ * with the planar arrangement being more stable. These findings are in qualitative agreement with ab initio results.¹⁹ Thus, it is suggested that the relative positions of the sulphur d and nitrogen p orbitals in all conformations are almost equally favourable in ensuring maximal overlap (cf. ref. 20).

N-Sulphinosulphimides.—The structure of SS-dimethyl-N-methylsulphonylsulphimide (Me₂SNSO₂Me) has been studied extensively by X-ray ²¹ and extended-Hückel ²⁰ methods. On the basis of further studies, the present work gives an account of the bond localizabilities in such systems. To avoid difficulties in computations, a simplified model having hydrogen atoms instead of methyl groups was investigated where convergence in the localization procedure

* Throughout this paper: 1 cal = 4.184 J.

could be reached. The geometry was taken from X-ray measurements 21,22 and standard SH and NH bond lengths 14 were used.

1979

Characteristic l.m.o. data for H_2SNSO_2H and for its conjugated acid, H_2SNHSO_2H , are collected in Table 2. In analogy with the CS^{IV} bonds in Me₂SO and with the CS^{VI} bond in Me₂SO₂ (see Table 1), the S^{IV}H and S^{VI}H bonds in H_2SNSO_2H are strongly localizable with small *d*-orbital participation. S^{VIO} (σ and π) bonds, and oxygen lone pairs, in sulphimides are similar, almost equivalent, to those in Me₂SO₂, while the strongly localized sulphur(IV) lone pair has its analogue in Me₂SO.

Infrared spectroscopic,²³ X-ray,^{21,24-28} and extended-Hückel ²⁰ studies have indicated that the S^{IV}NS^{VI} moiety is conjugated in N-sulphinosulphimides. This conclusion is supported by our finding that in H₂SNSO₂H there is a three-centre (d-p-d) S^{IV}NS^{VI} π bond, which is strongly concentrated on to the central nitrogen atom. The π electron delocalization and polarization may also be represented by the following resonance structures:

$$H_2S=N-SO_2H \longleftrightarrow H_2S-N-SO_2H \Longleftrightarrow H_2S-N-SO_2H$$

Due to the d orbitals of the neighbouring sulphur(IV) and sulphur(VI) atoms, the nitrogen lone pair cannot be localized [Figure 2(b)] as shown by the limiting structures:

$$H_{2}\ddot{S}=\ddot{N}-SO_{2}H \longleftrightarrow H_{2}\ddot{S}=\dot{N}-SO_{2}H \longleftrightarrow H_{2}\ddot{S}=\dot{N}=\ddot{S}O_{2}H$$

For the same reason, neither the $S^{IV}N(\sigma)$ nor the $S^{VI}N(\sigma)$ bonds can be localized completely [see Figure 2(c) and 2(d) and the final column in Table 2]. This striking result for σ bonds involving sulphur atoms suggests the importance of the following unusual limiting structures:

$$S^{IV}-N-S^{VI} \leftrightarrow S^{IV} N= S^{VI} \leftrightarrow S^{IV}=N S^{VI}$$

It is possible that the important delocalization of the l.m.o. is, to a large extent, due to the overestimation of the

893

d-orbital participation within the CNDO/2 approximation. However, the effect is so large that it should also be present when more sophisticated quantum-chemical methods are used.

There is no dramatic change in bonding characteristics when a proton is added to the H₂SNSO₂H structure (Table

2). The new NH bond in H_2SNHSO_2H , like the nitrogen lone pair in the conjugated base, is delocalized on to the adjacent sulphur *d* orbitals. As to the other bonds, the data in Table 2 show that *N*-protonation results in a somewhat greater localizability of bonds, except for oxygen lone pairs. *N*-protonation gives rise to inductive electron displacement towards sulphur(IV) and sulphur(VI) atoms in the terminal $S^{IV}H(\sigma)$, $S^{VI}H(\sigma)$, $S^{VIO}(\sigma$ and π) bonds and to

Table	2
-------	---

Parameters characterizing the l.m.o. in H₂SNSO₂H (upper row) and in H₂SNHSO₂H (lower row)

		Participation of A and B	Delocalization on to neighbouring	
Bond type	Localizability	A ª	B »	sulphur atom "
$S^{1v}H(\sigma)$	99.8	S ^{IV} 50.4 (11.1, 12.2)	H 49.4 (100)	_
.,	99.9	S ^{IV} 53.6 (12.4, 11.0)	H 46.3 (100)	
$S^{VI}H(\sigma)$	99.7	Sv1 50.3 (36.2, 17.5)	H 49.4 (100)	
	99.7	Sv1 54.1 (39.2, 16.0)	H 45.6 (100)	
$S^{IV}(lp)$	99.9	SIV 99.9 (65.3, 0.8)		
	99.7	S ^{IV} 99.7 (65.3, 0.6)		
$S^{vi}O(\sigma)$	99.4	Sv1 46.5 (31.9, 15.0)	O 52.9 (20.5)	
	99.4	Svi 48.4 (32.4, 14.6)	O 51.0 (21.3)	
$S^{v_1}O(\pi)$	99.7	Svi 20.6 (0.8, 74.2)	O 79.1 (0.0)	
	99.6	S^{v1} 22.1 (0.3, 70.5)	O 77.5 (0.3)	
O(lp)	90.2	O 90.2 (43.5, 0.0)		Svi 9.4 (73.6)
	89.3	O 89.3 (44.0, 0.0)		S ^{VI} 10.2 (70.4)
$S^{IV}N(\sigma)$	96.3	S^{1v} 52.6 (11.5, 8.0)	N 43.7 (15.4)	Svi 3.5 (75.4)
CHINT()	97.8	S^{1V} 43.9 (9.4, 12.3)	N 53.9 (25.7)	$S^{V1} 2.0 (79.8)$
SVIN(σ)	92.3	S^{V1} 38.1 (27.2, 19.1)	N 54.2 (20.6)	S^{1V} 7.2 (87.9)
	95.7	Svi 29.0 (20.9, 25.4)	N 66.7 (40.3)	S^{1V} 4.2 (91.7)
N(lp)	90.5	N 90.5 (65.7, 0.0)		5^{1V} 5.8 (92.6)
		· · · · · ·		(514, 0, 1, 2, 0, 1, 2, 1, 1
NH(σ)	95.9	N 95.9 (39.5, 0.0)		SVI 1 5 (79 0)
$S^{IV}N(\pi)$	87.8	SIV 16.2 (0.0, 79.0)	N 71.6 (0.6)	S^{VI} 11.9 (76.2)
()	90.9	SIV 12.7 (0.1, 82.2)	N 78.2 (0.8)	SVI 8.8 (78.7)

" s and d characters are given in parentheses. b s characters are given in parentheses. d characters are given in parentheses.

a similar effect towards the nitrogen atom in the internal $S^{IV}N(\sigma \text{ and } \pi)$ and $S^{VI}N(\sigma)$ bonds. The lower localizability of the oxygen lone pairs is also due to the electron-withdrawing power of the proton bound to nitrogen. Values of

the net atomic charge for H₂SNHSO₂H, when compared to those for the conjugated base, also point to a ' charge flow ' from all atoms towards the proton, so reducing its unit positive charge to about a quarter of an electron (Table 3).

TABLE 3

Net atomic charges in H₂SNSO₂H and in H₂SNHSO₂H Net charge (in electrons)

Atom	H ₂ SNSO ₂ H	H₂SŃHSO₂H	Difference
SIV	0.319	0.557	0.238
SvI	0.408	0.428	0.020
O^1	-0.250	-0.158	0.092
O2	-0.276	-0.148	0.128
N	-0.214	-0.157	0.057
H(Svi)	-0.002	0.075	0.077
$H^{i}(S^{IV})$	0.003	0.067	0.064
$H^2(S^{IV})$	0.012	0.076	0.064
H(N)		0.261	0.261

We thank Professor I. G. Csizmadia (Toronto) for stimulating discussions and for reading the manuscript.

[8/930 Received, 17th May, 1978]

REFERENCES

¹ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960. ² R. Daudel, 'Quantum Theory of the Chemical Bond,'

- Reidel, Dordrecht, Boston, 1974. ³ J. M. Foster and S. F. Boys, *Rev. Mod. Phys.*, 1960, **32**, 300,
- 303.

4 C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 1963, 35, 457

⁵ J. A. Pople and D. L. Beveridge, 'Approximate Molecular Orbital Theory,' McGraw-Hill, New York, 1970.
⁶ C. Trindle and O. Sinanoğlu, *J. Chem. Phys.*, 1968, 49, 65.
⁷ P. A. Dobosh, Program CNINDO, Quantum Chemistry Decompt European No. 141 Ledison University Recomptor

Program Exchange, No. 141, Indiana University, Bloomington, Indiana.

⁸ B. Tinland, Program LOCAL, Quantum Chemistry Program

 Exchange, No. 191, Indiana University, Bloomington, Indiana.
 S. Diner, J. C. Malrieu, F. Jordan, and P. Claverie, Theor. Chim. Acta, 1970, 18, 86.
 ¹⁰ G. Náray-Szabó and K. Horváth, Croat. Chem. Acta, 1977,

49, 461.

¹¹ U. Kaldor, J. Chem. Phys., 1967, 46, 1981.

¹² M. A. Robb and I. G. Csizmadia, Internat. J. Quantum Chem., 1972, **VI**, 367.

¹³ J. A. Pople and M. S. Gordon, J. Amer. Chem. Soc., 1967, 89, 4253.

¹⁴ ' Tables of Interatomic Distances,' ed. L. E. Sutton, Special

¹⁵ A. Streitwieser and J. E. Williams, J. Amer. Chem. Soc., 1975, **97**, 191.

¹⁶ F. Knoll, J. Gronebaum, and R. Appell, Chem. Ber., 1969, 102. 848.

A. Kucsman, Acta Chim. Acad. Sci. Hung., 1953, 3, 47.

T. L. Gilchrist and C. J. Moody, Chem. Rev., 1977, 77, 409.
 P. Mczey, A. Kucsman, G. Theodorakopoulos, and I. G. Csizmadia, Theor. Chim. Acta, 1975, 38, 115.

²⁰ P. Mezey and A. Kucsman, Chem. Comm., 1971, 1448; J.C.S. Faraday II, 1972, 2060.

²¹ A. Kálmán, Acta Cryst., 1967, **22**, 501; A. Kucsman, A. Kálmán, and I. Kapovits, Acta Chim. Acad. Sci. Hung., 1967, **53**.

97. ²² P. E. Cook, M. D. Click, J. J. Rigau, and C. R. Johnson, J. Amer. Chem. Soc., 1971, **93**, 924.

²³ A. Kucsman, F. Ruff, and B. Tanács, Internat. J. Sulphur Chem., 1976, 8, 505.

²⁴ A. Kálmán, B. Duffin, and A. Kucsman, Acta Cryst., 1971, B27, 586.

²⁵ A. F. Cameron, N. J. Hair, and D. G. Morris, Chem. Comm., 1971, 918.

²⁶ A. Kálmán and K. Sasvári, Cryst. Struct. Comm., 1972, 1, 243.