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Electronic Structure and g-Factor Anisstropy of d1 Systems in a Trigonal 
Environment 
By Luc G. Vanquickenborne t and Christiane Gorller-Walrand, Department of Chemistry, Celestijnenlaan 
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200F, 8-3030 Heverlee, University of Leuven, Belgium 
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The electronic structure of dl systems in trigonal complexes has been investigated ; analytical expressions have 
been derived for the g factors in both C,, (three-co-ordination) and DSd (six-co-ordination) symmetry. The 
calculations are made on the basis of an additive point-ligand model. The angle 0 between the z axis and the ligand 
bonds has been varied between 90 and 135”; the corresponding g values are calculated for different ligand-field 
parameters. 

IN a recent study a theoretical analysis was made of the 
g-factor anisotropy of the [CrO,]- radical ion. The 
ligand field affecting the central metal ion was con- 
sidered to arise from a tetrahedral co-ordination sphere, 
where one of the ligands had been removed along the 
z axis ; the resulting three-co-ordinate species (C, 
symmetry) was thus treated by studying the effect of a 
trigonal distortion of a Td entity. The angle 8 between 
the x axis and the Cr-0 bonds was varied around the 
tetrahedral value (8, = 109.4’) between 90 and 120” 
[Figure 1 (a)] .  
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detailed study has been carried out by Gladney and 
S ~ a l e n . ~  However, in their work, the systematic 
variation of the crystal-field parameters was not related 
to specific geometrical ligand rearrangements. We 
intend to provide a more physical understanding of the 
parameter variation by relating it directly to the geo- 
metrical structure of the molecule. In doing so, we will 
also stress the relationship between three- and six-co- 
ordinate complexes. 

THE LIGAND-FIELD MODEL AND THE HOLOHEDRON 
SYMMETRY 

If the ligand field is approximated by an additive point- 
ligand m~de l ,~ - l l  two one-electron parameters cr and x can 
be associated with each metal-ligand interaction [equations 
(1)-(5)], where X z  is the perturbation Hamiltonian due to  

cr = E(o) - E(6) 

x = E(x )  - E(6) 

(1) 

(2) 

E(o) = ( d z a ( z z p z 2 )  (3) 

E ( x )  = ( d z z l z q d z z )  = ( & l z z p y z )  (4) 

E(6) = (d,yl%%y) = (dza-y+@]d&y2) ( 5 )  

one ligand situated on the z axis. In  the general case, 
where the ligand field is composed of the contributions from 
the different ligands, the perturbation matrix is not diagonal 
in the real d-orbital set: the matrix elements are relatively 
simple functions of the (oL, xL) parameters of each metal- 
ligand interaction, and of the angular position (OL, $L) of 

on both sides of the metal ion the matrix elements are 

FIGURE 1 Trigonal three- and six-co-ordinate complexes. All each ligand. 
metal-ligand distances are assumed to be equal. Symmetry: When two ligands L and L’ are situated on the Same axis 
(a) C3ur (4 D3a 

The purpose of the present investigation is two-fold. 
(i) The previous study, which was aimed specifically a t  
an understanding of the [CrO,]- spectrum, will be ex- 
tended to accommodate a larger range of structural and 
chemical parameters; in this way, one might contribute 
to  a better knowledge of three-co-ordinate dl  species in 
general. (ii) In general, e.s.r. studies on trigonal 
systems make use of the crystal-field parameters B,O, 
B40, and B,, or alternatively of lODq (the cubic para- 
meter), 6 or v (the trigonal splitting parameter), and v’ 
(the trigonal off-diagonal The most 

functions 9 9 1 1  of the sums (q, + oL’) and (EL + xL’); they 
do not depend on the individual parameters oL, cL’, XL, and 
xL’. More specifically, whether the two ligands are identical 
or not has no consequence: as long as the sum c r ~  + c r ~ ’  
(or xL + xL’) remains constant, increasing crL and de- 
creasing crL’ does not affect the matrix elements. There- 
fore, the d-orbital perturbation matrix can exhibit a rather 
high effective symmetry. The structure obtained when 
L and L’ are the same, thus effectively adding an inversion 
centre, is called the holohedron equivalent of the complex 
under consideration. The symmetry group of the actual 
molecule, G, is a subgroup of the symmetry group Gh of 
the holohedron. 

7 To whom requests for reprints should be addressed. Figure 1 shows that the trigonal three- and six-co- 
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ordinate structures are characterized by the same holo- 
hedron symmetry DW: the three-co-ordinate Ctv entity is 
formally unaffected by replacing the three (OL, x ~ )  ligands 
by three fictitious (crL/2, xL/2) ligands, while a t  the same 
time adding three more fictitious (crL/2, 4 2 )  ligands at  the 
other side of the metal ion. The trigonal distortion of the 
six-co-ordinate complex is then of course described by a 
simultaneous change of the angles 8 and x - 0 for the 
upper and lower triangle respectively. The octahedron is 
obtained for 0 = & and x - &; we will adopt the con- 
vention that the octahedral angle 8, is given by (x - &) = 
125.3". 

In what follows, we restrict our attention to a trigonal 
distortion, which is completely described by angular 
variations, i.e. the metal-ligand distances are assumed to 
remain constant. This restriction will allow us to carry 
out the analysis by means of only two orbital parameters, 
cr an.! x .  

The non-zero elements of the perturbation matrix as a 
function of 8 are given by equations (6)-(9) where N = 3 

= N[&(3cos28 - 1 ) ' ~  + (3cos20sin20)x] 
E(z2) = ( z 2 p q 2 2 )  

HAA = ( Y Z ~ ~ [ Y Z )  = ( x ~ l z l x z )  

(6) 

= N[$(sin228)o + i(cOs28 + cos220)~] (7) 

HBB = ( x Y ~ ~ ~ x Y )  = (x2 - y 2 1 2 ] x 2  - y 2 )  
= N[Q(sin40)o + +(sin28 + zsin228)x] (8) 

HAB = ( Y Z ~ # ( X Y )  = - ( X Z [ # ( X '  - y') 

= - cosesin30(3o - 4x1 (9) 

or 6 (the number of identical ligands). If we define 1~12 

the expressions in (10) and ( l l ) ,  the e levels are described 

x 3x 
tan 2a = 2HBB/(HAA - HBB) where - < 2% < - (10) 2 2 

by the following wavefunctions and energies : 

E-  = HAA - HABCOtan E (12) 

(13) 

(15) 

(16) 

I#-) = sin Elyz) - cos Elxy) 

E ,  = HBB +- HABcotan 6 
I#+> = cos qr.> + sin E ( X Y )  

I#-') = sin E,Ixz) + cos Elx2 - y2)  (14) 

I#+') = cos E1x.z) - sin Elx2 - y 2 )  

With the conventions as specified, HABcotan E is always 
positive and E- is the energy of the lowest e level and E ,  
the energy of the highest e level, irrespective of the relative 
values of  HA^ and HBB. 

In our previous work the cr and x parameters were 
appropriate for the [CrO,]- ion:1713 cr = 13 900 cm-l and 
x = 3 880 cm-l. From a number of ligand-field studie~,~. l o 9 l 4  

the quotient x/cr, being a measure of the relative x- and cr- 
bonding capabilities, varies for most ligands (except 
possibly for certain x acceptors) and metals, from 0 (for 
pure cr donors) to ca. 0.3 (for strong x donors). Figure 2 
shows a few typical examples from a series of calculations 

(1 7) 

where cr was varied from 4 000 to 16 000 cm-1 and X / G  from 
0 to 0.5. 

The (8 = 90") case corresponds to the planar Deh holo- 
hedron, and the diagonal elements are given by H a  = 

N(+T) and HBB = N #G + - . Therefore, a t  8 = go", 

H A A  < HBB. At  the right-hand side of the diagram, where 
8 = 135", the diagonal elements are given by H&A = 

( 3 
'. - e+ --. 

4 

90 110 8' Oc=e0 130 
01" 

FIGURE 2 Orbital-energy diagrams as a function of the geo- 
metrical distortion angle 8 (defined in Figure 1): (a) xla 
= 0.25, cr = 8 000 cm-1; (b)  x/o  = 0.5, o = 4 000 crn-l; 
(c) Z/IT = 0, cr = 4 000 cm-1 

N(3o + ax)  and HBB = N(&G + &); hence, here HAA > 
HBB. Therefore HAA and H B B  will always cross in the 
relevant 0 range; their crossing point will be denoted 8'. 
l H A B l  on the other hand starts a t  zero when 8 = goo, 
reaches a maximum at  0 = 120°, and then decreases again. 
This means that in the region where H A A  and HBB approach 
each other lHABl will reach its maximal value, thereby 
repelling the two e levels in a very effective way. There- 
fore, the two e levels will remain rather far apart throughout 
the whole diagram. 

A t  8 = 8, = 125.3" the holohedron is octahedral and the 
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lowest level should be three-fold degenerate; this means 
that E- and E(z2)  should intersect a t  8 = 8,. In Figure 
2(u) i t  is obvious that a second intersection occurs a t  8, 
situated between 90 and 125.3". In Figure 2(b) the second 
intersection is a t  go", while in Figure 2(c) the second inter- 
section is coincident with 6 = 8,; indeed, if x = 0, the 
extremum of z2 is situated at cos2 8 = (a - 2x)/(3a - 4x) = 
6, that  is a t  8 = 8,. 

The evolution of E, as a function of 8 (Figure 2) is com- 
pletely described by equations (10)-(17). If 6 = 90°, 
E, = a = 90"; if 8 increases E, = a decreases monotonously 
and reaches the value 45" a t  8'. A t  this point E jumps 
abruptly to reach the value E, = a + 90" = 225" and then 
continues to decrease regularly (at 8 = O,, E = 8, + 90"). 

In  the 8 range under consideration the difference between 
the two lowest-energy levels is rather small, while the 
highest e level is a t  relatively high energy. Therefore, the 
effect of spin-orbit interaction will be restricted to the 
lowest subset of two energy levels. The spin functions 
(a, p) form a basis for I?,+ in D3d; therefore the a,  level 
becomes x I?,+ = r4+, while the e levels give rise to 
r3+ x r4+ = Fa+ + r5+ + rS+. The I?,+ orbitals inter- 
acting under the influence of spin-orbit coupling are given 
by (18) where the d orbitals lo), I&l), l f 2 )  satisfy the 

le-P) = -2-f[l$-'p) + il$-P)l 
= sinEII, p) - cosE,1-2, p) 1 -  . .  = sin E,I-l, a) + cos El2, a) 

e(r4-) le-'a> = 2-*[19-'a) - i~$-a)] 

Condon-Shortley sign convention, 
described by (19) and (20). 

The (r5+, re+) level is 

1e-a) = -Wl$-'a) + il$-a)I 

18-3)  = 2-"I!w) - il$-P)l 

= sin E,Il,a) - cos - 2,a) (19) 

= sin El - Lp)  + cosE,p,P) (20) 

The first-order splitting of the e- level is given by 
E(I',e) - E(r5 ,  I?,) = (3 cos2 E, - l)< where < is the spin- 
orbit coupling constant of the metal. It follows that I?5,S 
is the lowest e component if I H ~ B / ( H A ~  - HBB)I  > 2+. 
This is always the case when H U  > H B B ;  i t  is also true 
when H u  < HBB, if H A a  - H B B  is very small, that is in 

e / "  
FIGURE 3 Schematic energy-level diagram of the first-order 

spin-orbit splitting of a hypothetically isolated e- level in Dgd 
as a function of 8 

the immediate neighbourhood of the crossing point 8'. In 
the other cases r4 is the lowest e component (Figure 3). 

This pattern is of course thoroughly modified by the 
off-diagonal elements of the spin-orbit coupling operator. 

'4 

' 5  '6 

8, 8' 8,  

I 

( c )  

-- 
90 100 8' 120 e,=e, 

e / o  

FIGURE 4 Energy-level diagram (including spin-orbit coupling) 
of a d1 DM entity as a function of 8 ; the zone labels I through V 
are defined in the text (C = 200 cm-l) 

Defining the expressions (21) and (22), with 90 < 2y 6 
270"; let q = y if AE 2 0, q = y + 90" if AE < 0, then 

= E(z2)  - E(e-) - &(3cosa E - I)< (21) 
AE = E(z') - E(r,e) 

tan 2y = <6* sin E,/AE (22) 

the resulting wavefunctions of the lowest I?, state are given 
by (23) and (24). 

Ik) = sin qle-'a) + cos ?lop) 
IR') = sinqje-p) + cosqloa) 

(23) 

(24) 

From Figure 2 i t  is clear that the ul(z2) orbital intersects 
the e- level in the neighbourhood of 8'. The avoided 
crossings and the energy shifts due to the off-diagonal 
matrix elements of the spin-orbit coupling operator trans- 
form Figures 2 and 3 into 4. 
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g FACTORS AND DISCUSSION OF THE RESULTS 

In order to analyse the evolution of the g factors as a 
function of 8 it is useful to distinguish different regions 
in Figure 4. In principle, eight different regions are 

FIGURE 5 Variation of the g factors as a function of 0 (< = 200 
cm-l): (a)  0 = 8 000, x = 2 000; (b) 0 = 4 000, x = 2 000; 
(c )  CS = 4 000 cm-1, x = 0 cm-': (-) gll, (- - -) g l  

possible: the ground state can be either r4 or (r5, rs); 
in both cases HAA 2 HsB and E 2 0. In Figure 4, 
only five regions are to be considered. If the ground 
state as r, symmetry three possibilities arise: 

I HAA\(HBB; A E > O  F = a ;  q = y  

I1 H A A G H B B ;  A E < O  F = a ;  q = y + 9 0 °  

I11 HAA>HBB; A E < O  F = a + 9 O 0 ;  q = y + 9 0 °  

If the ground state has (r5, r,) symmetry two possibilities 
are to be considered: 

IV HAA > H B B ;  AE 2 0  AW > 0 
r=cc+90° ;  q = y  

V HAL \ ( H B B ;  AE 2 0  AW > O  
F = a ;  q = y  

The corresponding g factors are immediately calculated 
from equations (19), (20), (23), and (24). Thus, for 
1-111 we obtain (25) and (26), and for IV and V we 

lgll = 21cos2q - 3cos2Esin2q1 (25) 

lglll = 21cos2q + 6%inEsinycosyl (26) 

Is,,] = 212 - 3cos2EI (27) 

g l  = 0 (28) 

obtain (27) and (28). Figure 5 shows the variation of 

lgill and lgll as a function of 8. 
First, it should be stressed that the results of Figure 5 

(as well as Figures 4 and 6) are obtained from a computer 
diagonalization of the complete d-orbital set (thus in- 
cluding the higher e, level). Quantitatively, the com- 
puter results usually differ in the second decimal place 
from the analytical values. Yet, the general trends of 

the curves are very well reproduced by the analytical 
formulae (25)-(28), thereby providing an a posteriori 
justification for the neglect of the upper e, level in a 
qualitative treatment of the g-factor anisotropy. It is 
obvious from Figure 5, and implicit in equations (25)- 
(28), that the g factors are extremely sensitive functions 
of the distortion angle 8. In the entire range of 8 values, 
both gll and gl remain well below the spin-only value; 
that is, the orbital contribution to the molecular mag- 
netic moment is always quite significant. 

Comparison between experimental data and the 
theoretical values, as reproduced in Figure 5, can be 
useful in identifying certain paramagnetic species. In 
order to make a full comparison between theory and 
experiment, one needs e.s.r. data, optical spectra, as 
well as an X-ray structure analysis. An example of a 
combination of these data can be found in ref. 1; in 
most cases, however, it is difficult to  obtain a complete 
set of experimental data. 

Figure 6 shows that the qualitative features of the 
g-factor evolution are maintained when the value of the 
spin-orbit coupling constant is modified from 200 to 
500 cm-l. 

It is well to notice that the g tensor becomes isotropic 
for 8 = 8,. In this case, the analytical formulae (25)- 
(28) are not valid; instead, one has to consider the 

FIGURE 6 Variation of the g factors as a function of 0 (< = 500 
cm-l, 0 = 8 000 cm-l, TC = 2 000 cm-1): (-) gll, (- - -1 
&l 

splitting pattern corresponding to the four-fold de- 
generate rs cubic level l5 [equation (29)]. 

gll = g l  = 4</(3a - 4 4  (29) 
In the Ligand Field section we emphasized the formal 

identity of D3d holohedrons, irrespective of the co- 
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ordination numbers (N  = 3 or 6). This means that the 
ligand-field diagrams (Figure 2) for N = 3 or 6 are 
exactly identical except for a scaling factor of 2. If 
spin-orbit coupling is included, however (Figures 3 and 
4), the diagrams remain identical only if t: is simul- 
taneously modified by a factor of 2. In that case, the 
g factors are independent of N .  

The trigonal distortion of octahedral dl systems has 
been treated in standard texts2t3 For example, in the 
analysis of the Ti3+ ion the trigonal splitting 6 of the 
cubic tzg level can be introduced as a parameter. How- 
ever, the authors 2 9 3  continue their analysis in the hypo- 
thesis that the trigonal field does not mix significantly 
the tzs and e, levels. Therefore, they use the cubic 
wavefunctions in deriving the g factors; this means that 
the mixing coefficients in equations (12)-(17) are taken 
to be j-(1/3)f and & (2/3)*, instead of &sin 4 and +cos 6. 
On the basis of this hypothesis, one obtains expressions 
(30) and (31). 

Y 

If we consider, for example, a trigonal distortion 
corresponding to 8 = 120" (as compared to the cubic 
value of 125.3"), equations (10)-(17) predict 6 = 820 
cm-l (for 0 = 8 000 cm-l and x = 2 000 cm-l). With 
< = 200 cm-l, equations (30) and (31) yield gil = 1.87 
and gL = 1.10. If on the other hand one uses equations 
(25) and (26), the results are gll = 1.79 and g l  = 1.25. 
The discrepancy is significant ; we conclude that second- 
order effects of e+ should be taken into account, certainly 
for the trigonal field and perhaps even for spin-orbit 
coupling. It appears to be a doubtful procedure to 

introduce covalency effects and orbital-reduction factors 
k (or even kil and k l )  before allowing for all the conse- 
quences inherent in the ligand-field picture. Although 
this point has already been made emphatically by 
Gladney and S ~ a l e n , ~  even the recent literature contains 
many examples where orbital-reduction factors are 
introduced in a rather uncritical way. 

One of us  (R. D.) is indebted t o  the F.N.R.S. Belgium for 

[8/1023 Received, 1st June ,  19781 
support. 
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