1979

Preparation and Characterization of Tetrafluorophosphonium(v) Hexadecafluorotriantimonate(v), [PF₄][Sb₃F₁₆], the Adduct Arsenic Pentafluoride—Trifluorophosphine (1/1), and the Redox Reactions of Trifluorophosphine with Arsenic, Antimony, and Bismuth Pentafluoride

By Grace S. H. Chen and Jack Passmore,* Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3

Phosphorus pentafluoride and SbF₅ form a 1:3 adduct the vibrational spectrum of which is consistent with the formulation $[PF_4][Sb_3F_{16}]$. The 1:1 donor-acceptor adduct formed at -130 °C between PF₃ and AsF₅ has been characterized by Raman spectroscopy. The adduct is in equilibrium with its dissociated components between -130 and -78 °C; however, a redox reaction occurs at \geqslant -78 °C. Phosphorus trifluoride also undergoes redox reactions with antimony and bismuth pentafluorides.

COMPLEXES between phosphorus trifluoride and transition metals are well known; ¹⁻³ PF₃ also forms weak complexes with strong main-group ² Lewis acids, *e.g.* PF₃·BH₃, ^{2,4} PF₃·B(BF₂)₃, ⁵ and PF₃·AlCl₃. ⁶

Various two-co-ordinate phosphorus cations have been reported. 7-10 Thomas et al. 11 have prepared salts of $[P(NMe_2)_2]^+$ and $[PCl(NMe_2)]^+$, but attempts to identify $[PF(NMe_2)]^+$ and $[PF_2]^+$ were not successful. However, other workers 12 reported that PF_3 -As F_5 and PF_3 -Sb F_5 were stable at -78 °C and room temperature, respectively, and these adducts were formulated as $[PF_2]$ -[As F_6] and $[PF_2][SbF_6]$, with cation—anion interaction, on the basis of their vibrational spectra. The latter systems have been reinvestigated and the results are presented below.

In an attempt to determine the nature of the solid produced in the reaction of PF_3 with SbF_5 , PF_5 was found to react with SbF_5 to form a 1:3 adduct formulated as $[PF_4][Sb_3F_{16}]$. Phosphorus pentafluoride's ability to act as a fluoride-ion acceptor is well known; ¹³ however, since its discovery by Thorpe ¹⁴ in 1875 there have been no reports of it acting as a Lewis base. A preliminary account of part of this work has been reported. ¹⁵

EXPERIMENTAL

Reagents and Apparatus.—Unless otherwise stated, apparatus and materials and techniques were as given in refs. 16—18, and starting materials purified and characterized by routine methods. Raman spectra were obtained using a Spex Ramalab RS2 spectrometer with the green 5 145 Å exciting line and a slit width of $4~\rm cm^{-1}$, unless otherwise specified. Low-temperature Raman spectra were recorded using a variable-temperature assembly. The interior of the non-silvered Dewar was first cooled to at least $-100~\rm ^{\circ}C$, and then the sample, at $-196~\rm ^{\circ}C$, was quickly introduced.

Reaction of PF₃ with AsF₅ at -78 °C.—Phosphorus trifluoride and AsF₅ (50 cm³, 2 atm) † were condensed separately into a Kel-F vessel, and warmed to -78 °C. In 30 min the vapour pressure was 1 atm in 60 cm³, and the volatiles were PF₅, PF₃, and AsF₅. In a series of separate experiments, double the amounts of PF₃ and AsF₅ were

† Throughout this paper: 1 atm = 101 325 Pa; 1 mmHg $\approx 13.6\,\times\,9.8$ Pa.

allowed to react for 7 min, 1, 6.75, and 9.25 h, at -78 °C. Volatiles at -78 °C were removed and the AsF₃ residue identified. The reduction of AsF₅ to AsF₃ was found to be 70, 80, 94, and 100%, respectively, based on the weight of PF₃ added and AsF₃ produced.

The reaction was also followed by $^{19}{\rm F}$ n.m.r. spectroscopy in SO₂F₂ and SO₂ClF solvents. A redox reaction was observed to proceed at -60 to -55 °C, after 0.5 h, and increased with time.

Gas-phase Reaction between PF_3 and AsF_5 at Room Temperature.—Phosphorus trifluoride (0.17 atm in the volume of the line and i.r. cell) was condensed and isolated in the side arm of the i.r. cell. An equal amount of AsF_5 was introduced into the cell, and its spectrum taken. The valve separating the AsF_5 and PF_3 was opened. The spectrum of the reaction products was immediately taken and showed the presence of PF_3 , AsF_5 , PF_5 , and AsF_3 . The conversion was ca. 50, 95, and 100% in 7 min, 1, and 3 h, respectively based on calibration of the i.r. absorption intensity of PF_5 at known concentrations.

Preparation of Raman Samples of PF₃-AsF₅.—The samples were prepared by condensing pre-weighed stoicheiometric amounts of PF₃ and AsF₅ into sample tubes which were flame-sealed under vacuum. The components were mixed by warming gradually from -196 to $-78\,^{\circ}\text{C}$ (briefly), with mixing. The sample was then stored at $-196\,^{\circ}\text{C}$. The compound was a solid at $-130\,^{\circ}\text{C}$ and a solid-liquid mixture at $-78\,^{\circ}\text{C}$.

Reaction of PF₃ with SbF₅.—In a typical reaction, PF₃ (0.26 g) was condensed onto SbF₅ (1 g) in a Kel-F tube. In 1 h the vapour pressure had decreased from 760 to 645 mmHg at room temperature in a volume of 63 cm³. The compounds PF₃ and PF₅ were present in the gas phase and the relative amount of the latter increased with time. After 2 d the volatiles (700 mmHg) were removed by pumping for 10 min. The white solid left had a weight decrease of 6% relative to that of SbF₅ added, and only had a broad intense i.r. absorption at 500—700 cm⁻¹ in the Sb-F stretching region.

Reaction between PF_3 and SbF_5 in SO_2F_2 at -45 °C.— Phosphorus trifluoride (1.68 g) was condensed onto a mixture of SbF_5 (4.87 g) and SO_2F_2 (9.24 g), then the mixture was kept at -45 °C for 3 d. The volatiles at -45 °C (PF_3 , SO_2F_2) were distilled off leaving a white paste which had a weight increase of 0.18 g relative to SbF_5 added and had some vapour pressure at room temperature. The volatiles contained PF_5 and SO_2F_2 , but no PF_3 . The i.r. spectrum of the white paste had a weak absorption at

 $1\,160~{\rm cm^{-1}}$, indicating formation of [PF₄][Sb₃F₁₆] (see below), and a very intense peak in the Sb-F stretching region.

Reaction between PF_3 and SbF_5 in WF_6 .—Phosphorus trifluoride (0.25 g) was condensed onto a mixture of SbF_5 (4.87 g) and WF_6 (7.89 g) and stirred at room temperature. The volatile contained PF_5 and WF_6 , but no PF_3 after 18 h. The sample was evacuated to constant weight. A Raman spectrum of the white solid residue (1.13 g corresponding to $SbF_3:SbF_5=1.0:1.0$) showed peaks in the Raman corresponding to $SbF_3:SbF_5$ (form A) of Gillespie et al.^{19,20}

Attempted Identification of PF₃·SbF₅ by Raman Spectroscopy.—Phosphorus trifluoride (0.06 g) was condensed onto SbF₅ (0.63 g) in the form of a thin film on the wall of the sample tube, and flame-sealed. The Raman spectrum taken at room temperature, 10 min after the sample was removed from liquid N₂, showed peaks attributable to [PF₄][Sb₃F₁₆] a small amount of SbF₅, and probably SbF₃(SbF₅)_x. ¹⁹⁻²³

Vapour Pressure of [PF₄][Sb₃F₁₆].—The vapour pressure above [PF₄][Sb₃F₁₆] was measured using a Validyne AP10 pressure gauge with 0—100 and 0—1000 mmHg transducers calibrated for direct read out from a model CD transducer indicator. Pressures were obtained as the temperature was increased. The data for 0—23 °C were fitted by least squares yielding equation (1). The measured

$$\log_{10}(P/\text{mmHg}) = 11.4 - (2.740/T) \tag{1}$$

pressures were, for example, 139 \pm 2, 24 \pm 1, and 16 \pm 1 mmHg at 23, 0.1, and -23 °C, respectively. The experiment was repeated and the same results obtained within experimental error.

Attempted Preparations of Adducts PF_5-BiF_5 , $-NbF_5$, and $-TaF_5$, and AsF_5-SbF_5 and $-BiF_5$.—The systems PF_5-BiF_5 , $-NbF_5$, $-TaF_5$, AsF_5-SbF_5 , and AsF_5-BiF_5 were similarly investigated. The vapour pressure was constant during the reaction, and the products were found to be the same as the starting materials.

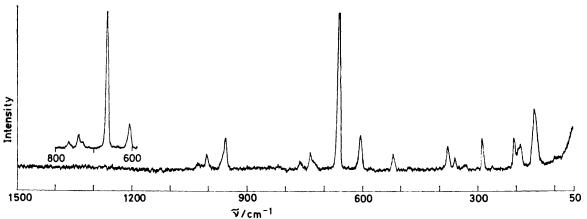


FIGURE 1 Raman spectra of solid PF₃·AsF₅ at ca. -162 °C

A Raman spectrum of PF₃: SbF₅ = 3.4:1, taken at $-135~^{\circ}\text{C}$ after standing at $-45~^{\circ}\text{C}$ for 8 d, showed peaks attributed to the starting material, as did that of PF₃: SbF₅: SO₂F₂ = 2.5:3:1 held at $-45~^{\circ}\text{C}$ for 8 d.

Reaction of PF₃ with BiF₅.—In a typical experiment, PF₃ (1.07 g) was condensed onto BiF₅ (1.55 g) in a Monel vessel. The vapour pressure remained constant and after 3 d the volatiles contained only PF₃. The reaction vessel was then heated for 5 d at 80 °C with the upper part of the vessel cooled with air. The gaseous product contained PF₅ and PF₃. Volatiles were removed leaving BiF₃ (1.37 g).

Preparation of [PF4][Sb3F16].—In a typical experiment PF_5 (3.62 g, 28.74 mmol) was condensed onto SbF_5 (4.65 g, 21.45 mmol) in a Pyrex glass bulb (60 cm³). The mixture was repeatedly thermally cycled between room temperature and -196 °C. After 2.5 d the excess of PF, was removed by pumping, with the reactor held at -78 °C. The weight of solid (5.62 g) corresponded to the formation of an adduct with mol ratio $PF_5: SbF_5 = 1:2.8$, assuming the weight increase was the amount of PF5 consumed. The compounds PF5 and SbF5 were separated by fractional distillation in a closed system recovering 6.70 mmol of PF5 and 21.70 mmol of SbF₅. The experiment was repeated ten times with various ratios of starting materials (PF, always in excess) including one carried out in a Parr bomb (50 cm³; SbF₅, 5.38 g; PF₅, 38.44 g). Adducts of PF₅: SbF₅ ratio ca. 1:3 were obtained in all cases.

Preparation of Raman Samples of PF_5 -Sb F_5 .—A Raman sample of $[PF_4][Sb_3F_{16}]$ was prepared in situ as above. The weight of the sample corresponded to PF_5 : $SbF_5 = 1:2.9$. The Raman spectrum was recorded on a Cary model 82 spectrometer.

The polarization measurements were obtained from a sample of ratio $\mathrm{PF}_5: \mathrm{SbF}_5 = 1:8$ which was prepared by condensing the stoicheiometric amounts into a sample tube. A homogeneous liquid sample was obtained by gentle heating. A sample of $\mathrm{SOF}_4\cdot3\mathrm{SbF}_5$ was similarly prepared, and Raman spectra obtained using a Spex 1400 spectrometer.

RESULTS AND DISCUSSION

Raman Spectrum of PF₃·AsF₅.—The Raman spectrum of solid PF₃·AsF₅ obtained at ca. —162 °C is given in Figure 1. The assignments given in Table 1 are made by comparison with the vibrational spectra of PF₃,²⁴ PF₃·BH₃,²⁵ [Ni(PF₃)₄],²⁶ SClF₅,²⁷⁻²⁹ S(CF₃)F₅,²⁷ SeClF₅,³⁰ TeClF₅,³¹ MeCN·AsF₅,³² and other L·AsF₅,³³ (L = POF₃, COF₂, SOF₂, or SO₂F₂) adducts.

The local symmetry of the P·AsF₅ moiety in PF₃·AsF₅ is considered to be C_{4v} .^{27,32,33} For the purpose of comparison and convenience, we follow the description given for SeClF₅ by Christe *et al.*³⁰ for the P·AsF₅ moiety. The peaks at 605, 663, 736, and 763 cm⁻¹ are

readily assigned as v_5 , v_2 , v_1 , and v_8 , respectively, of P·AsF₅, by comparison with the Raman spectra of related species. v_9 and v_{10} are assigned at 381 and 291 cm⁻¹; however, the assignments could be reversed as

 $\label{eq:table 1} \mbox{Raman spectrum (cm$^{-1}$) a of PF_3*AsF_5}$

		Species b	Assignments
$1027 \\ 1003$	$\binom{(6)}{(10)}$	E	PF ₃ asym str.
953	(28)	A_{1}	PF ₃ sym str.
763	(5)	$E(\nu_8)$	AsF ₄ asym str.
$\begin{array}{c} 736 \\ 728 \end{array}$	(13) (sh)	$A_1 (\nu_1)$	AsF' str.
663	(100)	$A_1 (\nu_2)$	AsF ₄ sym str.
605	(23)	$B_1 (\nu_5)$	AsF ₄ sym out-of-phase str.
519	(10)	A_1	PF ₃ sym def.
381	(16)	$E^{1}(\nu_{9})$ $A_{1}(\nu_{3})$?	F'AsF ₄ wag AsF ₄ sym out-of-plane
365	(5)	$\begin{cases} E \end{cases}$	def. PF ₃ asym def.
338	(5)	$B_2(\nu_2)$?	AsF ₄ sym in-plane def.
291	$(\hat{1}4)$	$E(\nu_{10})$	AsF ₄ asym in-plane def.
263	(2)		?
208	(16) }	E	PF ₃ rock
191	(12)∫		•
155	(38)	$egin{cases} A_{1} \ (u_{4}) \ E \ (u_{11}) \end{cases}$	AsP str. PAsF ₄ wag

^a Relative intensities (0-100) are given in parentheses. ^b Vibrations in parentheses are those referred to P·AsF₅ moiety $(C_{4v}$ symmetry) only.

discussed by Byler and Shriver, 32 $v_{\rm sym}(PF_3)$ (A_1) and $v_{\rm asym}(PF_3)$ (E) are assigned at 953 and 1 003, 1 027 cm⁻¹. The splitting of the E mode may be attributed to the lower symmetry in the solid state. The increase of $v(PF_3)$ in the adduct, relative to that in PF_3^{-24} $(v_{\rm sym}$ at 892, $v_{\rm asym}$ at 840 cm⁻¹), is consistent with an increase of the positive character on phosphorus accompanying lone-pair donation from phosphorus to arsenic and an increase in P-F bond strength. It is possible that in PF_3 - AsF_5 there is no back donation of electron density accounting for the higher $v_{\rm sym}$, $v_{\rm asym}$ - (PF_3) stretching frequencies relative to those observed for simple transition-metal PF_3 complexes. 1,26

The symmetric P-Ni stretch in the stable $[Ni(PF_3)_4]^{26}$ occurs at 195 cm⁻¹; therefore it is reasonable to assign v_4 to the weaker P-As stretch in the labile $PF_3 \cdot AsF_5$ adduct as the band at 155 cm⁻¹. The medium intensity of this peak also supports the assignments, since other peaks in the region observed for related species are weak.

The Raman spectrum is therefore consistent with the donor-acceptor formulation $PF_3 \cdot AsF_5$ rather than $[PF_2][AsF_6]^{.12}$

Behaviour of $PF_3 \cdot AsF_5$ above -130 °C.—The Raman spectrum of a sample of ratio $PF_3 : AsF_5 = 1:1$ at -130 °C showed peaks attributable to the adduct only; however, at -112 and -78 °C the individual compounds PF_3 and AsF_5 were present, the dissociation increasing with increase in temperature. A sample of ratio $PF_3 : AsF_5 = 1:3$ was kept at -78 °C for 3 h. The Raman spectrum showed a mixture of PF_5 , AsF_5 , AsF_5 , and the adduct $PF_3 \cdot AsF_5$. Therefore, the following equilibrium takes place between -130 and -78 °C,

and a redox reaction occurred at $\geqslant -78$ °C, the extent of reaction increasing with time:

reaction increasing with time:

$$PF_{3} \cdot AsF_{5} \xrightarrow{\text{between } -130 \text{ and } -78^{\circ} \text{ C}} PF_{3} + AsF_{5}$$

$$\xrightarrow{\geqslant -78^{\circ} \text{C}} PF_{5} + AsF_{3}$$

It appears that AsF₅ is a poorer acceptor toward PF₃ than either B₂H₆ ³ or AlCl₃.⁶

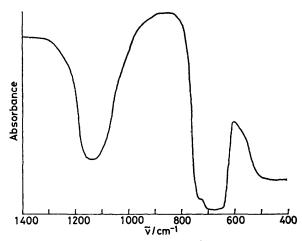


FIGURE 2 Infrared spectrum of [PF₄][Sb₃F₁₆]

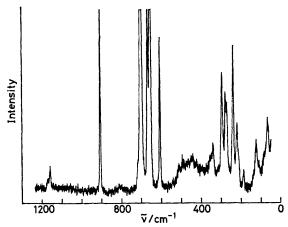


FIGURE 3 Raman spectrum of [PF4][Sb3F16] solid

The Raman results showing a redox reaction between PF₃ and AsF₅ at ≥ -78 °C are supported by the ¹⁹F n.m.r. experiments, the large-scale reactions, and the reaction carried out between PF₃ and AsF₅ in an i.r. cell at room temperature. It was previously reported ¹² that PF₃·AsF₅ was stable at -78 °C, and dissociated into its constituents at room temperature. The redox reaction involving components in their standard and other states is allowed ($\Delta H = -356$ kJ mol⁻¹ at 25 °C).³⁴⁻³⁸

 PF_3 -Sb F_5 System.—The salt $[PF_4][Sb_3F_{16}]$ was observed in the Raman spectrum of a sample of PF_3 -Sb F_5 obtained 10 min after removal from liquid N_2 , indicating that a redox reaction occurs at room temperature or below.

Raman spectra of PF₃–SbF₅ and PF₃–SbF₅–SO₂F₂ taken at $-135~^{\circ}\mathrm{C}$ after being held at $-45~^{\circ}\mathrm{C}$ showed peaks attributable to the starting materials. This suggests the absence of formation of 'PF₃·SbF₅' at this temperature and is further evidence for the lack of an extensive redox reaction under these conditions. Evidence for the reported [PF₂][SbF₆] 12 was not obtained. However, a redox reaction occurs between PF₃(g) and SbF₅(l) at room temperature. The redox reaction yielding SbF₃(s) and PF₅(g) is allowed $^{35,36,38-40}$ ($\Delta H = -207~\mathrm{kJ}$ mol $^{-1}$ at 25 °C). The reaction is,

particularly at lower temperatures where the experimental points were not fitted by equation (1). The low value of ΔH is consistent with the observation that excess of PF₅ was needed for the reaction to go to completion. We were unable to obtain evidence for [PF₄]-[SbF₆] or [PF₄][Sb₂F₁₁].

Vibrational Spectra of $[PF_4][Sb_3F_{16}]$.—The i.r. and Raman spectra of the title compound are shown in Figures 2 and 3 and a Raman spectrum of a sample of ratio $PF_5: SbF_5 = 1:8$ is shown in Figure 4. The assignments are given in Table 2.

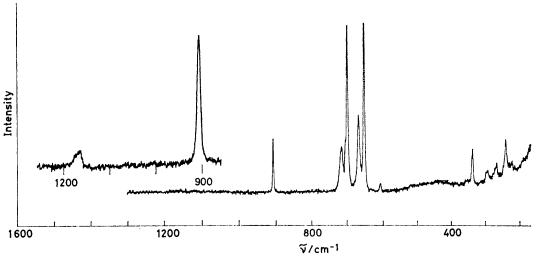


Figure 4 Raman spectra of a liquid sample of ratio PF₅: SbF₅ = 1:8

however, complicated by the further reaction of the products with ${\rm SbF_5}(l)$ to form ${\rm [PF_4][Sb_3F_{16}]}$ and ${\rm SbF_3}$ - ${\rm (SbF_5)_x.^{19-23}}$

Preparation of $[PF_4][Sb_3F_{16}]$.—This salt is prepared quantitatively from SbF_5 and excess of PF_5 at room temperature according to equation (2). The white solid has a vapour pressure of PF_5 of 139 ± 2 mmHg at 23 °C.

$$PF_5(g) + \frac{3}{n}(SbF_5)_n(l) \longrightarrow [PF_4][Sb_3F_{16}]$$
 (s) (2)

The compounds PF_5 and SbF_5 were quantitatively recovered by fractional distillation. The value for ΔH (dissociation) of 52 ± 3 kJ mol⁻¹ can be obtained from equation (1) and presumably is associated with equations (3), (4), (5), and (6) and others that are similar.

$$4[PF_4][Sb_3F_{16}] \longrightarrow PF_5(g) + 3[PF_4][Sb_4F_{21}]$$
 (3)
$$5[PF_4][Sb_4F_{21}] \longrightarrow PF_5(g) + 4[PF_4][Sb_5F_{26}]$$
 (4)

$$2[Sb_{n}F_{5n+1}]^{-} \longrightarrow [Sb_{n-1}F_{5(n-1)+1}]^{-} + [Sb_{n+1}F_{5(n+1)+1}]^{-}$$
 (5)

$$[Sb_nF_{5n+1}]^- \longrightarrow [Sb_{n-1}F_{5(n-1)+1}]^- + \frac{1}{n}(SbF_5)_n(l)$$
 (6)

It is noted that the Raman spectrum of PF_5 ·8Sb F_5 (Figure 4, Table 2) is not dissimilar to a superposition of $[PF_4][Sb_3F_{16}]$ and $(SbF_5)_n(l)$. Inhomogeneity and solidification of Sb F_5 at 8.3 °C ^{34,41} also complicate the system

Assignments of $[PF_4]^+$ are made by comparison with the isoelectronic tetrahedral SiF_4 , 42,43 $[NF_4]^+$, 44 CF_4 , 42,45 and $[BF_4]^-$, 42,44 of T_d symmetry. The strong i.r.

Table 2
Vibrational spectra (cm⁻¹) of [PF₄][Sb₃F₁₆]

$[\mathrm{PF_4}][\mathrm{Sb_3F_{16}}]$		$PF_5: SbF_5 = 1:8$	Tentative
Raman	I.r.a	Raman	assignments
$\frac{1}{1}\frac{170 \text{vw}}{160 \text{vw}}$	1 160s,br	1 165 [dp]	$\nu_3(F_2)$ PF asym str.
908s 800vvw		908 [p]	$\nu_1(A_i)$ PF sym str.
709 (sh) 703vs 670s 657vs 609m 520—	733sh 690s,br	717 [p] 707 (sh) ⁵ 701 [p] 670 [p] 657 [p] 608 [dp] 520— 380 ⁵	Sb-F str. Sb-F-Sb bridging str.
360vw 342vw 297m 281w 271w 240m 222w 188vw 125w	100111,01	342 [p] 294 [dp] 266 [dp] 240 [dp] 220 [dp]	Sb-F bendings and def.
70w			lattice vibration

^a It is possible that the compound might well have lost PF₅ on sample preparation and the i.r. may be that of [PF₄]-[Sb₃F₁₆]·xSbF₅. ^b Polarization measurement uncertain.

absorption at 1 160 cm⁻¹ is in the P-F stretching region which is assigned as $v_3(F_2)$. The weak doublet at 1 170 and 1 160 cm⁻¹ (broad, singlet, depolarized in the liquid phase) in the Raman supports this assignment. The intense, well polarized, Raman peak at 908 cm⁻¹ in the P-F stretching region is assigned as $v_1(A_1)$. The P-F stretching frequencies were similar in intensity, but at

Notwithstanding the difficulty of assigning the [Sb₃- F_{16}]⁻ peaks, the vibrational evidence suggests that $[PF_4]^+$ is essentially ionic, and therefore PF_5 acts as a fluoride-ion donor toward SbF₅. Various other less acidic fluorophosphonium(v) salts 46,59-62 have also been prepared. It is noted that SOF₄ containing formally S^{VI} is a better donor than PF₅ containing P^V. This

Fundamental vibrational modes (cm⁻¹) of tetrahedral [PF₄]⁺, [NF₄]⁺, SiF₄, CF₄, and [BF₄]⁻

Tetrahedral species	Ref.	Activity	$\nu_1 (A_1)$	ν_2 (E)	ν_3 (F_2)	ν_4 (F_2)
$[PF_4]^+$	This work	Raman	908s	• , ,	1 170vw	
c 43					1 160vw	
		I.r.			1 160s	
$[NF_4]^+$	44	Raman	849s	45 0m	1 185w	613s
					1 153w	
		I.r.			1 162s	613s
SiF ₄	42, 43	Raman	800s	268w	1 010w	390w
•	,	I.r.			1.031vs	391s
CF ₄	42, 45	Raman	908.5s	435m	1 234w	631.2m
•	•	I.r.			1 241.2s	631.3m
$[BF_4]^-$	42, 44	Raman	778m	358w	1.065vw	535w
. 43	,	I.r.			1 063s	529s

higher energy, than the corresponding bands of SiF₄, and are similar to those of [NF₄]⁺ (see Table 3).

The P-F stretching frequency is the highest so far observed.^{24-26,46} The isoelectronic [SOF₃]⁺ contains very strong S-O and S-F bonds,^{47,48} and exists as a discrete ion in solid [SOF₃][AsF₆].⁴⁸ The ionic formulation [PF₄]+ is therefore favoured although we cannot rule out the possibility of some weak anion-cation bridging.

It is expected that v_2 and v_4 of $[PF_4]^+$ would occur at ca. 300 and ca. 400 cm⁻¹, at slightly higher frequencies than those of the isoelectronic SiF₄ 42,43 which are observed at 268 and 390 cm⁻¹ (Table 3). After a careful comparison of both the position and relative intensities of vibrational spectra of the $[{\rm Sb_3F_{16}}]^-$ anions in salts containing the counter ions $[{\rm IF_6}]^+,^{49}$ $[{\rm ReF_6}]^+,^{50}$ and $[SOF_3]^+$ (see Table 4) we were unable to assign v_2 and v_4 with any confidence.

TABLE 4 Raman spectrum (cm⁻¹) a of [SOF₃][Sb₃F₁₆] b

1 542w	712m	531w	$235 \mathrm{m}$
1 265w	702s	505mw	219w
1 064w	690m	436vw	186vw
1 057w	676mw	38 4 mw	140w
<i>908</i> m	662 vs	290mw	126vw
850vw	607m	266w	112vw

" Italicized bands are assignable to [SOF₃]+ (see ref. 47). b It is possible that [SOF₃][Sb₃F₁₆] may be the average composition of the sample and the spectrum may be a superimposition of an equilibrium mixture of $[SOF_3][SbF_6]$, $[Sb_2F_{11}]^-$, $[Sb_3F_{16}]^-$, $[Sb_4F_{21}]^-$, etc.

Raman bands at ≤700 cm⁻¹ are similar, but not identical to, those of $[Sb_2F_{11}]^{-18,51-55}$ and may be due to the trans-bridged $[Sb_3F_{16}]^{-18,51-55}$ isomer, previously found in $[Br_2][Sb_3F_{16}]$. It is also possible that $[PF_4][Sb_3F_{16}]$ has a tetrameric structure similar to that of BiF5-(SbF₅)₃, 16,58 however, with very weak interaction between [PF₄]⁺ and the cis-bridged [Sb₃F₁₆]⁻.

may in part be due to the stability of the [SOF₃]⁺ ion arising from the π -bond energy associated with the SO bond.47,48

We thank Drs. H. L. Paige and R. Kaiser for ¹⁹F n.m.r. spectra, Dr. N. Bartlett for his suggestion in 1973 that [PF₄][Sb₃F₁₆] may have a cis-bridged ring structure, and the National Research Council of Canada for support.

[8/861 Received, 9th May, 1978]

REFERENCES

- ¹ T. Kruck, Angew. Chem. Internat. Edn., 1967, 6, 53.
- ² J. F. Nixon, Adv. Inorg. Chem. Radiochem., 1970, 13, 363.
- O. Stelzer, Topics Phosphorus Chem., 1977, 9, 1.
 R. W. Parry and T. C. Bissot, J. Amer. Chem. Soc., 1956, 78,
- 1524.⁵ B. G. DeBoer, A. Zalkin, and D. H. Templeton, Inorg. Chem.,
- 1969, **8**, 836.

 ⁶ E. R. Alton, R. G. Montemayor, and R. W. Parry, *Inorg*. Chem., 1974, 13, 2267.

 K. Dimroth, Topics Current Chem., 1973, 38, 1.
- 8 S. Fleming, M. K. Lupton, and K. Jekot, Inorg. Chem., 1972, 11, 2534.
- ⁹ O. J. Scherer and G. Schnabl, Chem. Ber., 1976, **109**, 2996. ¹⁰ E. Niecke and R. Kröher, Angew. Chem. Internat. Edn., 1976, **15**, 692.
- 11 M. G. Thomas, C. W. Schultz, and R. W. Parry, Inorg. Chem., 1977, 16, 994 and refs. therein.
- 12 R. D. W. Kemmitt, V. M. McRae, R. D. Peacock, and I. L. Wilson, J. Inorg. Nuclear Chem., 1969, **31**, 3674.

 ¹³ M. Webster, Chem. Rev., 1966, **66**, 87.
- Mr. Webself, Chem. Rev., 1805, 32, 232.
 T. E. Thorpe, Chem. News, 1875, 32, 232.
 G. S. H. Chen and J. Passmore, J.C.S. Chem. Comm., 1973,
- 559.
 ¹⁶ G. S. H. Chen, J. Passmore, P. Taylor, and T. K. Whidden, Inorg. Nuclear Chem. Letters, 1976, 12, 943.
 ¹⁷ J. Passmore and P. Taylor, J.C.S. Dalton, 1976, 804.
 ¹⁸ C. Lau and J. Passmore, J.C.S. Dalton, 1973, 2528.
 ¹⁹ T. Birchall, P. A. W. Dean, B. Della Valle, and R. J. Gillespie, Canad. J. Chem., 1973, 51, 667.
 ²⁰ R. J. Gillespie, D. R. Slim, and J. E. Vekris, J.C.S. Dalton, 1977, 971 and refs. therein
- 1977, 971 and refs. therein.
- ²¹ O. Ruff and W. Plato, Ber., 1904, 37, 674.
- ²² A. J. Edwards and D. R. Slim, J.C.S. Chem. Comm., 1974,
- 23 A. J. Hewitt, J. H. Holloway, and B. Frlee, J. Fluorine Chem., 1975, 5, 169
- ²⁴ H. S. Gutowsky and A. D. Liehr, J. Chem. Phys., 1952, 20,

- ²⁵ J. D. Odom, S. Riethmiller, S. J. Meischen, and J. R. Durig, J. Mol. Structure, 1974, 20, 471.
- 26 H. G. M. Edwards and L. A. Woodward, Spectrochim. Acta, 1970, A26, 897 and refs. therein.
- J. E. Griffiths, Spectrochim. Acta, 1967, A23, 2145.
 R. E. Noftle, R. R. Smardzeweski, and F. B. Fox, Inorg. Chem., 1977, 16, 3380.
- 29 R. R. Smardzeweski, R. E. Noftle, and F. B. Fox, J. Mol. Spectroscopy, 1976, 62, 449.
- 30 K. O. Christe, C. J. Schack, and E. C. Curtis, Inorg. Chem., 1972, **11**, 583.
- 31 W. V. F. Brooks, M. Eshaque, C. Lau, and J. Passmore,
- Canad. J. Chem., 1976, **54**, 817.

 32 D. M. Byler and D. F. Shriver, Inorg. Chem., 1974, **13**, 2697.
- G. S. H. Chen and J. Passmore, following paper.
 J. D. Smith, 'Comprehensive Inorganic Chemistry,' eds. . C. Bailar, H. J. Emeléus, R. S. Nyholm, and A. F. Trotman-
- Dickenson, Pergamon, Oxford, 1973, vol. 2, pp. 547—683.

 Soc., P. A. G. O'Hare and W. N. Hubbard, Trans. Faraday Soc., 1966, 62, 2709.
- 36 P. Gross C. Hayman, and M. C. Stuart, Trans. Faraday Soc., 1966, **62**, 2716.
- 37 P. A. G. O'Hare and W. N. Hubbard, J. Phys. Chem., 1965,
- **69**, 4358.

 38 G. K. Johnson, J. G. Malm, and W. H. Hubbard, J. Chem. Thermodyn., 1972, 4, 879.
- 39 M. C. Ball and A. H. Norbury, 'Physical Data for Inorganic
- Chemists,' Longmans, London, 1974. 40 J. Bousquet, J. Carre, M. Kollmannsberger, and P. Barberi,
- J. Chim. Phys. Phys.-Chim. Biol., 1975, 72, 280. ⁴¹ C. J. Hoffman and W. L. Jolly, J. Phys. Chem., 1957, **61**,
- 42 D. J. Reynolds, Adv. Fluorine Chem., 1973, 7, 1 and refs. therein.

- E. A. Jones, J. Kirby-Smith, P. J. H. Woltz, and A. H. Neilsen, J. Chem. Phys., 1951, 19, 242.
 C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, C. D. Wagner, and J. N. Wilson, Inorg. Chem., 1972, 11, 1696. 45 R. P. Fournier and R. Savoie, J. Chem. Phys., 1968, 49, 1159.
- F. Seel and H. J. Bassler, Z. anorg. Chem., 1975, 418, 263.
 M. Brownstein, P. A. W. Dean, and R. J. Gillespie, Chem. Comm., 1970, 9.
- ⁴⁸ C. Lau, H. Lynton, J. Passmore, and P. Y. Siew, J.C.S. Dalton, 1973, 2535.
 - 49 R. J. Gillespie, personal communication.
 - ⁵⁰ G. J. Schrobilgen, personal communication.
 - ⁵¹ P. A. W. Dean and R. J. Gillespie, personal communication.
 ⁵² A. M. Qureshi and F. Aubke, *Canad. J. Chem.*, 1970, 48, 3117.
 ⁵³ F. O. Sladky, P. A. Bulliner, and N. Bartlett, *J. Chem. Soc.*
- (A), 1969, 2179.

 54 D. E. McKee, C. J. Adams, and N. Bartlett, *Inorg. Chem.*, 1973, **12**, 1722.
- ⁵⁵ B. Frlec and J. H. Holloway, J.C.S. Dalton, 1975, 535.
- ⁵⁶ A. J. Edwards, G. R. Jones, and R. J. C. Sills, Chem. Comm., 1968, 1527.
- ⁵⁷ A. J. Edwards and G. R. Jones, J. Chem. Soc. (A), 1971, 2318.
- 58 G. S. H. Chen, Ph.D. Thesis, University of New Brunswick,
- Fredericton, New Brunswick, 1978.

 59 G. G. Furin, T. V. Terenteva, A. I. Rezvukhin, and G. G.
- Yakobson, Zhur. obshchei Khim., 1975, 45, 1473. 60 M. Brownstein and R. Schmutzler, J.C.S. Chem. Comm., 1975,
- 278.
- J. K. Ruff, Inorg. Chem., 1963, 2, 813.
 G. S. Reddy and R. Schmutzler, Inorg. Chem., 1966, 5, 164.