Reactions of Triorganosilanes with Tris- μ-(t-butyl isocyanide)-tris(tbutyl isocyanide)-triangulo-triplatinum: Crystal Structure of the Complex [\{Pt(CH:NBut)(SiMePh $\left.\left.\left.{ }_{2}\right)\left(\mathbf{C N B u}{ }^{t}\right)\right\}_{2}\right] \dagger$

By Miguel Ciriano, Michael Green, David Gregson, Judith A. K. Howard, John L. Spencer, F. Gordon A. Stone," and Peter Woodward, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Abstract

The triplatinum compound $\left[\mathrm{Pt}_{3}(\mathrm{CNBu})_{6}\right]$ reacts with triorganosilanes $\mathrm{SiR}_{3} \mathrm{H}\left[\mathrm{SiR}_{3}=\mathrm{SiMe}_{3}, \mathrm{SiEt}_{3}, \mathrm{SiMe}_{2} \mathrm{Ph}\right.$, $\mathrm{SiMePh}_{2}, \mathrm{SiPh}_{3}$, or $\left.\mathrm{Si}(\mathrm{OEt})_{3}\right]$ to give diplatinum complexes $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiR}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\right\}_{2}\right.$], arising from insertion of an isocyanide ligand into a $\mathrm{Pt}-\mathrm{H}$ bond, formed in an initial oxidative-addition step. The reaction with $\mathrm{SiPh}_{3} \mathrm{H}$ also afforded the bis(silyl) platinum complex $\left[\mathrm{Pt}\left(\mathrm{SiPh}_{3}\right)_{2}\left(\mathrm{CNBu}^{t}\right)_{2}\right]$. The structure of the diplatinum compounds has been established by a single-crystal X-ray diffraction study of $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{CNBu}^{t}\right)\right\}_{2}\right]$ which showed that the two platinum atoms, each in a square-planar environment, are bridged by $\mathrm{HC}^{2} \mathrm{NBu}^{t}$ ligands to give a six-membered ring of boat conformation. The terminal ligands are such that the silyl groups are trans to the N atoms of the central ring. The $\mathrm{Pt}-\mathrm{N}$ bond is exceptionally long ($2.17_{3} \AA$) and the trans-annular $\mathrm{Pt} \cdots \mathrm{Pt}$ distance of $3.05_{6} \AA$ suggests little metal-metal interaction. Crystals of the title compound are monoclinic, space group $P 2_{1} / c$, with $Z=4$ in a unit cell of dimensions $a=11.649(4), b=18.778(15), c=21.825(15) A$, and $\beta=$ $97.31(3)^{\circ}$. The structure has been solved by heavy-atom methods from 7096 intensity data $[1 \geqslant 2.0 \sigma(1)]$ measured on a four-circle diffractometer at $-50{ }^{\circ} \mathrm{C}$, and refined to $R 0.057$. The compound $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ reacts with $\mathrm{GeMe}_{3} \mathrm{H}$ to give an analogous diplatinum complex $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{GeMe}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right]$.

As part of studies on zerovalent platinum complexes the triplatinum compound $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]^{\mathbf{1}}$ was prepared from bis(cyclo-octa-1,5-diene)platinum, ${ }^{2}$ and we have shown that the former readily undergoes oxidativeaddition reactions with unsaturated fluorocarbons, ${ }^{3}$ diphenylcyclopropenone, ${ }^{4}$ and acetylenes, ${ }^{\mathbf{5 , 6}}$ and forms adducts $\left[\mathrm{Pt}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}(\mathrm{RCH}: \mathrm{CHR})\right]$ with olefins having electron-withdrawing substituents. ${ }^{7}$ In this paper we report on the reactivity of $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ towards triorganosilanes. This study was prompted by the discovery of novel di- μ-hydrido-diplatinum complexes $\left[\left\{\mathrm{Pt}(\mu-\mathrm{H})\left(\mathrm{SiR}_{3}\right)\left(\mathrm{PR}_{3}^{\prime}\right)\right\}_{2}\right]$ formed by oxidative addition of $\mathrm{SiR}_{3} \mathrm{H}$ to $\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PR}_{3}^{\prime}\right)\right] .{ }^{8} .}\right.$

RESULTS AND DISCUSSION

In general, reactions between silanes $\mathrm{SiR}_{3} \mathrm{H}$ or $\mathrm{SiCl}_{3} \mathrm{H}$ and the platinum (0) species $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ or $\left[\mathrm{Pt}(\mathrm{dppe})_{2}\right]$ (dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) afford bis(silyl)platinum compounds and release hydrogen rather than form hydridoplatinum complexes. ${ }^{9}$ However, Eaborn et al. ${ }^{10}$ have shown that the ethylene complex $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ reacts with silanes $\mathrm{SiR}_{3} \mathrm{H}$ to give products $\left[\mathrm{PtH}\left(\mathrm{SiR}_{3}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ expected from a simple oxidative-elimination reaction. Since the reactivity patterns of both $\left[\mathrm{Pt}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \text { - }}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ correspond to these compounds acting as formal sources of 14 -electron [PtL_{2}] ($\mathrm{L}=\mathrm{PPh}_{3}$ or $\mathrm{CNBu}^{\mathrm{t}}$) moieties, it was anticipated that the isocyanide complex would yield hydrides $\left[\mathrm{PtH}\left(\mathrm{SiR}_{3}\right)\right.$ $\left.\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$ analogous to the phosphine complexes $\left[\mathrm{PtH}\left(\mathrm{SiR}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. However, Clark and co-workers ${ }^{11}$ have found that the salts $\left[\left\{\mathrm{PtH}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PR}_{3}\right)_{2}\right\} \mathrm{Cl}\right]$ undergo insertion of isocyanide into the $\mathrm{Pt}-\mathrm{H}$ bonds to give formimidoyl complexes $\left[\mathrm{PtCl}\left(\mathrm{CH}: \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ $\left.\left(\mathrm{PR}_{3}\right)_{2}\right]$. Hence the nature of the final products of reactions between $\mathrm{SiR}_{3} \mathrm{H}$ and $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ was of interest.

In diethyl ether, the silanes $\mathrm{SiR}_{3} \mathrm{H}\left[\mathrm{SiR}_{3}=\mathrm{SiMe}_{3}\right.$, $\mathrm{SiEt}_{3}, \mathrm{SiMe}_{2} \mathrm{Ph}, \mathrm{SiMePh}_{2}, \mathrm{SiPh}_{3}$, or $\left.\mathrm{Si}(\mathrm{OEt})_{3}\right]$ react with
$\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ at room temperature to give white or pale yellow crystalline complexes (1)-(6). Qualitatively, the rate of reaction, as judged by the rate of consumption of the triplatinum compound, is in the order $\mathrm{SiMe}_{3} \mathrm{H}<$ $\mathrm{SiEt}_{3} \mathrm{H}<\mathrm{Si}(\mathrm{OEt})_{3} \mathrm{H}<\mathrm{SiMe}_{2} \mathrm{PhH}<\mathrm{SiMePh}_{2} \mathrm{H} \simeq$ $\mathrm{SiPh}_{3} \mathrm{H}$. The i.r. spectra of the products (Table l) each

Table 1

Infrared spectra $\left(\mathrm{cm}^{-1}\right)$ of the diplatinum complexes $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\dagger}\right)\left(\mathrm{MR}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right](\mathrm{M}=\mathrm{Si}$ or Ge$){ }^{*}$

Compound
(i) $\mathrm{MR}_{3}=\mathrm{SiMe}_{3}$
(2) $\quad=\mathrm{SiEt}_{3}$
(3) $\quad=\mathrm{SiMe}_{2} \mathrm{Ph}$
$3050 \mathrm{mw}, 2185 \mathrm{vs}, 2082 \mathrm{w}, 1566 \mathrm{mw}$ $1541 \mathrm{~m}, 1432 \mathrm{~m}, 1391 \mathrm{~m}, 1378 \mathrm{~m}$, $1370 \mathrm{~m}, 1316 \mathrm{w}, 1269 \mathrm{w}, 1239 \mathrm{~s}, 1207 \mathrm{~s}$, $1100 \mathrm{~m}, 1068 \mathrm{vw}, 894 \mathrm{w}, 840 \mathrm{sm}, 808 \mathrm{~s}$, $787 \mathrm{w}, 768 \mathrm{vw}, 751 \mathrm{wm}, 737 \mathrm{~s}, 712 \mathrm{~m}$ $692 \mathrm{w}, 670 \mathrm{w}, 657 \mathrm{~m}, 528 \mathrm{~m}, 512 \mathrm{w}, 480 \mathrm{w}$, 461w, 430w
(4) $\quad=\mathrm{SiMePh}_{2} 3070 \mathrm{~m}, 2192 \mathrm{vs}, 2075 \mathrm{w}, 1560 \mathrm{mw}$ $1540 \mathrm{~m}, 1430 \mathrm{~s}, 1387 \mathrm{~m}, 1373 \mathrm{~m}$, $1364 \mathrm{~m}, 1325 \mathrm{w}, 1306 \mathrm{vs}, 1260 \mathrm{w}$, $1237 \mathrm{~ms}, 1206 \mathrm{~s}(\mathrm{br}), 1100 \mathrm{~s}, 1063 \mathrm{w}$, $1018 \mathrm{w}, 997 \mathrm{w}, 920 \mathrm{w}, 882 \mathrm{mw}, 792 \mathrm{vs}$, $782 \mathrm{vs}, 751 \mathrm{~s}, 743 \mathrm{~s}, 710 \mathrm{vs}, 687 \mathrm{w}, 667 \mathrm{~ms}$, 523 wm , $506 \mathrm{vs}, 472 \mathrm{~s}, 456 \mathrm{w}, 437 \mathrm{~ms}$, 418 ms
(5) $\quad=\mathrm{SiPh}_{3} \quad 3072 \mathrm{~m}, 3050 \mathrm{~m}, 2182 \mathrm{vs}, 2074 \mathrm{w}, 1952 \mathrm{w}$, $1880 \mathrm{w}, 1820 \mathrm{w}, 1764 \mathrm{w}, 1582 \mathrm{w}$ $1563 \mathrm{w}, 1550(\mathrm{sh}), 1538 \mathrm{~m}, 1430 \mathrm{~s}$, $1396 \mathrm{~m}, 1374 \mathrm{~m}, 1360 \mathrm{~m}, 1312 \mathrm{w}(\mathrm{br})$, $1259 \mathrm{w}, 1236 \mathrm{~m}, 1205 \mathrm{~s}, 1101 \mathrm{~s}, 1029 \mathrm{w}$, $1000 \mathrm{w}, 891 \mathrm{wm}, 788 \mathrm{w}, 748 \mathrm{~s}, 710 \mathrm{vs}$, $680 \mathrm{~m}, 526 \mathrm{vs}, 504 \mathrm{~s}, 493 \mathrm{~s}, 452 \mathrm{w}, 430 \mathrm{~m}$
(6) $\quad=\mathrm{Si}(\mathrm{OEt})_{3} 2180 \mathrm{vs}, 2078 \mathrm{w}, 1564 \mathrm{w}, 1540 \mathrm{wm}$, $1387 \mathrm{~m}, 1363 \mathrm{~m}, 1238 \mathrm{~m}, 1207 \mathrm{~s}$, $1172 \mathrm{~m}, 1107 \mathrm{vs}, 1078 \mathrm{vs}, 942 \mathrm{~s}, 889 \mathrm{w}$, $762 \mathrm{~ms}, 707 \mathrm{~ms}, 515 \mathrm{~m}, 460 \mathrm{w}$
(8) $=\mathrm{GeMe}_{3} \quad 2142 \mathrm{vs}, 2070 \mathrm{mw}, 1558 \mathrm{w}, 1533 \mathrm{w}, 1374 \mathrm{~s}$, $1234 \mathrm{~ms}, 1224 \mathrm{~ms}, 1210 \mathrm{~s}(\mathrm{br}), 805 \mathrm{~s}$, $737 \mathrm{mw}, 571 \mathrm{~s}, 552 \mathrm{~ms}, 525 \mathrm{~s}, 453 \mathrm{~m}$ * Nujol mulls.

Table 2

${ }^{13} \mathrm{C}$ ($\delta /$ p.p.m.)
$199.6[\mathrm{PtCH}, J(\mathrm{PtC}) 946,11], 62.2\left[\mathrm{CMe}_{3}\right.$,
$J(\mathrm{PtC})$ 17], 55.8 (CMe_{3}), $29.7(\mathrm{Me}), 4.8$
[MeSi, J (PtC) 85]
$199.3(\mathrm{PtCH}), 62.6\left(\mathrm{CMe}_{3}\right), 55.8\left(\mathrm{CMe}_{3}\right), 29.9$
and 29.7 (Me), $10.2\left[M e \mathrm{CH}_{2} \mathrm{Si}, J(\mathrm{PtC}) 31\right]$,
$8.2\left[\mathrm{CH}_{2} \mathrm{Si}, J(\mathrm{PtC}) 73\right]$
$199.1(\mathrm{PtCH}), 148.6\left[\mathrm{Ph}\left(\mathrm{C}^{1}\right) \mathrm{Si}\right], \quad 135.1$
$\left[\mathrm{Ph}\left(\mathrm{C}^{2}\right) \mathrm{Si}, J(\mathrm{PtC}) 23\right], 127.1\left[\mathrm{Ph}\left(\mathrm{C}^{3}, \mathrm{C}^{4}\right) \mathrm{Si}\right]$,
62.5 (CMe_{3}), 55.8 (CMe_{3}), $29.8(\mathrm{Me}), 29.4$
(Me), 3.6 (MeSi), $3.1[\mathrm{MeSi}, J(\mathrm{PtC}) 79]$
$197.9[\mathrm{PtCH}, J(\mathrm{PtC}) 914], 146.3$ and 145.2
$\left[\mathrm{Ph}\left(\mathrm{C}^{1}\right) \mathrm{Si}\right], 135.7$ and $135.4\left[\mathrm{Ph}\left(\mathrm{C}^{2}\right) \mathrm{Si}\right]$,
$127\left[\mathrm{Ph}\left(\mathrm{C}^{3}, \mathrm{C}^{4}\right) \mathrm{Si}\right], \quad 62.7 \quad\left(\mathrm{CMe}_{3}\right), \quad 56.4$
$\left(\mathrm{CMe}_{3}\right), 1.3[\mathrm{MeSi}, J(\mathrm{PtC}) 79]$
$198.2[\mathrm{PtCH}, J(\mathrm{PtC}) 908], 143.8\left[\mathrm{Ph}\left(\mathrm{C}^{1}\right) \mathrm{Si}\right.$,
$J(\mathrm{PtC}) 57], 137.4\left[\mathrm{Ph}\left(\mathrm{C}^{2}\right) \mathrm{Si}, J(\mathrm{PtC}) 24\right]$,
$127.1\left[\mathrm{Ph}\left(\mathrm{C}^{3}, \mathrm{C}^{4}\right)\right], 63.4\left(\mathrm{CMe}_{3}\right), 56\left(\mathrm{CMe}_{3}\right)$,
29.5 and 29.2 (Me)
$196.3(\mathrm{PtCH}), 61.4\left(\mathrm{CMe}_{3}\right), 55.7 \mathrm{CH}_{2}$,
$J(\mathrm{PtC}) 22], 28.5$ and 28.1 (Me), 17.8
(MeCH_{2})
$145.8\left[\mathrm{Ph}\left(\mathrm{C}^{1}\right) \mathrm{Si}, J(\mathrm{PtC}) 29\right], 136.9\left[\mathrm{Ph}\left(\mathrm{C}^{2}\right) \mathrm{Si}\right.$,
$J(\mathrm{PtC}) \quad 12], \quad 127.4 \quad\left[\mathrm{Ph}\left(\mathrm{C}^{3}, \mathrm{C}^{4}\right)\right], \quad 58.4$
$\left.{ }_{\left[C \mathrm{Me}_{3}\right.} . J(\mathrm{PtC}) 14\right], 29.1(\mathrm{Me})$
 form and ${ }^{13} \mathrm{C}$ spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
showed a very strong band near $2180 \mathrm{~cm}^{-1}$ characteristic of a terminally bonded CNBu ${ }^{\text {t }}$ ligand; the absence of two such absorptions indicated that cis- $\left[\mathrm{Pt}\left(\mathrm{CNBu}^{t}\right)_{2}\right]$ groups are not present in these molecules. The spectra also showed a band of medium intensity near $1540 \mathrm{~cm}^{-1}$ in the region expected for the absorption of a $\mathrm{C}: \mathrm{N}$ group.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of all the complexes (Table 2) displayed a singlet resonance between $\tau 0$ and -1 , as previously observed ${ }^{11}$ for compounds containing the $\mathrm{Pt} \cdot \mathrm{CH}: \mathrm{NR}$ imidoyl ligand. However, this resonance showed coupling to two platinum nuclei establishing that compounds (1)-(6) were diplatinum species. Thus, for the product (4) from $\mathrm{SiMePh}_{2} \mathrm{H}$ the resonance at $\tau-0.02$ shows two sets of ${ }^{1} \mathrm{H}-{ }^{195} \mathrm{Pt}$ couplings (127 and 88 Hz), together with satellite resonances due to molecules with two ${ }^{195} \mathrm{Pt}$ nuclei $\left[\left|J(\mathrm{PtH})+J\left(\mathrm{Pt}^{\prime} \mathrm{H}\right)\right|=215 \mathrm{~Hz}\right]$. Moreover, the ${ }^{13} \mathrm{C}$ n.m.r. spectra (Table 2) showed a resonance at about 200 p.p.m. with $J(\mathrm{PtC}) c a .900 \mathrm{~Hz}$, a value characteristic of a carbon atom σ-bonded to platinum. ${ }^{12}$ This signal in the spectrum of (1) showed coupling (ca. 10 Hz) with a second platinum nucleus. The dimeric nature of the complexes was further confirmed by molecular weights measured in solution.

The spectroscopic properties can be accommodated by six-membered ring structures (la)-(6a) or (lb)-(6b). The relative simplicity of the ${ }^{1} \mathrm{H}$ n.m.r. spectra, e.g. only two resonances for the Bu^{t} groups and one PtCH signal for each compound, corresponded to the formation of one isomer.

In order to fully understand the geometry of these ring systems and to define which isomer was actually produced, a single-crystal X-ray diffraction study was undertaken with compound (4) for which suitable crystals were available. Such an investigation was an
obvious prerequisite for any consideration of mechanism.

(a)

(b)
SiR_{3}
(1) SiMe_{3}
(2) SiEt_{3}
(3) $\mathrm{SiMe}_{2} \mathrm{Ph}$
(4) SiMePh_{2}
(5) SiPh_{3}
(6) $\mathrm{Si}(\mathrm{OEt})_{3}$

Table 3
Atomic-positional parameters (fractional co-ordinates) for
complex (4a) with estimated standard deviations in
parentheses

parentheses	
Atom	x
Central diplatina-ring system	
$\mathrm{Pt}(1)$	$0.49088(4)$
$\mathrm{C}(1)$	$0.6053(11)$
$\mathrm{H}(1)$	0.590
$\mathrm{~N}(2)$	$0.7047(8)$
$\mathrm{Pt}(2)$	$0.72063(4)$
$\mathrm{C}(2)$	$0.7084(12)$
$\mathrm{H}(2)$	0.800
$\mathrm{~N}(1)$	$0.6168(8)$

y	z
$0.16808(2)$	$0.09923(2)$
$0.1610(6)$	$0.0385(5)$
0.140	-0.006
$0.1906(5)$	$0.0528(4)$
$0.24200(2)$	$0.14259(2)$
$0.1405(6)$	$0.1765(6)$
0.120	0.200
$0.1059(5)$	$0.1591(4)$
$0.0297(6)$	$0.1764(6)$
$0.0284(7)$	$0.2197(7)$
0.040	0.200
-0.017	0.240
0.063	0.253
$-0.0093(7)$	$0.1157(8)$
0.000	0.100

t-Butyl ligands on central ring			
C(11)	$0.6005(11)$	$0.0297(6)$	$0.1764(6)$
$\mathrm{C}(12)$	$0.5078(13)$	$0.0284(7)$	$0.2197(7)$
$\mathrm{H}(121)$	0.420	0.040	0.200
$\mathrm{H}(122)$	0.507	-0.017	0.240
$\mathrm{H}(123)$	0.528	0.063	0.253
$\mathrm{C}(13)$	$0.5644(15)$	$-0.0093(7)$	$0.1157(8)$
H(131)	0.640	0.000	

Atom	x	y	z
Terminal silyl ligands (Continued)			
$\mathrm{C}(93)$	$0.7642(17)$	0.1143 (7)	0.368 2(7)
$\mathrm{H}(93)$	0.673(15)	$0.081(9)$	$0.395(7)$
C (94)	$0.8805(17)$	0.1140 (8)	0.388 9(7)
$\mathrm{H}(94)$	0.940(29)	0.079(18)	0.457(14)
$\mathrm{C}(95)$	$0.9512(16)$	$0.1653(9)$	0.3684 (6)
$\mathrm{H}(95)$	0.030(14)	$0.164(8)$	0.386(7)
C(96)	$0.9025(15)$	0.216 7(7)	$0.3264(6)$
H(96)	0.956(9)	0.247(5)	0.317 (4)
C(101)	$0.8153(10)$	$0.3689(5)$	$0.2585(5)$
$\mathrm{C}(102)$	$0.7838(12)$	0.4224 (6)	$0.2981(5)$
H(102)	$0.707(14)$	0.426(8)	$0.326(7)$
$\mathrm{C}(103)$	$0.8525(14)$	0.483 7(7)	$0.3095(6)$
H(103)	$0.834(11)$	0.523(7)	$0.341(6)$
$\mathrm{C}(104)$	$0.9515(13)$	0.4920 (8)	0.282 2(7)
$\mathrm{H}(104)$	$0.002(16)$	0.020(10)	0.215(8)
$\mathrm{C}(105)$	0.987 3(13)	$0.4398(7)$	$0.243 .5(6)$
H(105)	0.057 (13)	0.451 (8)	0.204 (6)
$\mathrm{C}(106)$	$0.9175(11)$	$0.3772(6)$	$0.2319(6)$
H(106)	0.934(10)	0.347(6)	$0.188(5)$
Terminal t-butyl ligands			
C(31)	0.377 6(11)	0.1826 (6)	$0.1581(5)$
N(3)	0.3114 (9)	$0.1959(5)$	$0.1901(5)$
C(32)	$0.2218(11)$	$0.2101(7)$	0.2286 (5)
C(33)	$0.2355(14)$	0.1597 (8)	0.284 3(6)
$\mathrm{H}(331)$	0.320	0.160	0.300
H(332)	0.195	0.175	0.317
$\mathrm{H}(333)$	0.215	0.113	0.273
C(34)	0.2363 (13)	0.287 2(7)	$0.2516(7)$
H(341)	0.237	0.323	0.208
$\mathrm{H}(342)$	0.174	0.300	0.274
H(343)	0.307	0.291	0.279
C (35)	$0.1067(11)$	0.1989 (7)	0.1890 (6)
$\mathrm{H}(351)$	0.100	0.240	0.160
H(352)	0.105	0.156	0.167
$\mathrm{H}(353)$	0.043	0.201	0.213
C(41)	$0.7205(12)$	$0.3405(6)$	0.1118 8(5)
N(4)	$0.7159(11)$	$0.3985(5)$	0.0974 (4)
$\mathrm{C}(42)$	0.7070 (11)	$0.4732(6)$	0.0801 (6)
$\mathrm{C}(43)$	$0.6201(17)$	0.5075 (8)	0.1174 (8)
H(431)	0.640	0.500	0.160
$\mathrm{H}(432)$	0.617	0.559	0.111
$\mathrm{H}(433)$	0.544	0.489	0.105
C (44)	0.6619 (18)	0.477 2(9)	0.0130 (7)
H(441)	0.720	0.460	0.000
$\mathrm{H}(442)$	0.594	0.447	0.002
$\mathrm{H}(443)$	0.642	0.523	-0.003
$\mathrm{C}(45)$	0.8240 (16)	0.5093 (7)	$0.0950(9)$
$\mathrm{H}(451)$	0.840	0.500	0.140
H(452)	0.883	0.488	0.073
H(453)	0.825	0.560	0.086

The results of the X-ray diffraction study are embodied in Figure 1, which also shows the atom-numbering system. Figure 2 shows the packing of molecules within the monoclinic unit cell, Table 3 the atomic fractional co-ordinates, Table 4 bond lengths and interbond angles, and Table 5 planarities of significant portions of the molecule. Compound (4) does indeed contain a central diplatina-ring structure, the six-membered ring being of ' boat ' conformation with two HC: $\mathrm{NBu}^{\mathrm{t}}$ bridges between the two Pt atoms. Each Pt atom is itself the centre of a square-planar fragment, the two terminal groups (SiMePh_{2} and $\mathrm{CNBu}{ }^{\mathrm{t}}$) being arranged with the silyl group trans to the ring N atom in both cases. The isomer is therefore (4a) and not (4b). Within the ring, the $\mathrm{Pt}-\mathrm{N}$ bond length (mean $2.173 \AA$) is exceptionally long, presumably because of the high trans influence of the silyl ligand. ${ }^{13}$ As far as we are aware, only one longer $\mathrm{Pt}^{-} \mathrm{N}$ bond has been recorded, in $[\mathrm{PtCl}(\mathrm{py})-$
$\left.\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\right]$ (py $=$ pyridine), which has the N atom of the pyridine ring trans to a σ-bonded carbon atom. ${ }^{14}$

Figure 1 The molecular structure of $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\dagger}\right)\left(\mathrm{SiMePh}_{2}\right)\right.\right.$ (CNBut) $\}_{2}$] (4a), showing the crystallographic numbering system

Figure 2 Contents of the monoclinic cell projected on to the $b c$ plane (i.e. looking down a^{*} towards the origin). The molecule nearest to the origin comprises the atoms of the crystallographic asymmetric unit listed in Table 3

The ring $\mathrm{C}=\mathrm{N}$ bond length of $1.277 \AA$ (mean) is reasonably characteristic of what might be expected for a double bond. Likewise the $\mathrm{Pt}-\mathrm{C}$ bond length of $2.028 \AA$ (mean) is indicative of a single σ bond. The central ring system shows symmetrical folds across $\mathrm{C}(1) \cdots \mathrm{N}(1)$ and $\mathrm{C}(2) \cdots \mathrm{N}(2)$, of dihedral angle $c a$. 124° (Table 5), but the co-ordination sites around each Pt atom remain substantially planar. The trans-

Table 4
Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for complex (4a)
(a) Distances

Central diplatina-ring system

$\mathrm{Pt}(1)-\mathrm{C}(1)$	1.999(13)	$\mathrm{Pt}(2)-\mathrm{C}(2)$	2.056(12)
$\mathrm{Pt}(\mathbf{1})-\mathrm{N}(1)$	2.175(9)	$\mathrm{Pt}(2)-\mathrm{N}(2)$	$2.172(9)$
$\mathrm{C}(1)-\mathrm{N}(2)$	1.287(15)	$\mathrm{C}(2)-\mathrm{N}(1)$	1.267(16)
$\mathrm{C}(1)-\mathrm{H}(1)$	1.05(9)	$\mathrm{C}(2)-\mathrm{H}(2)$	$1.19(13)$
$\mathrm{N}(1)-\mathrm{C}(11)$	1.498(14)	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.509(17)$
t-Butyl ligands on central ring			
C(11)-C(12)	1.525(21)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.497(19)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.524(20)	$\mathrm{C}(21)-\mathrm{C}(23)$	1.542(21)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.534(18)	$\mathrm{C}(21)-\mathrm{C}(24)$	$1.504(19)$
Terminai silyl ligands			
Pt(1)-Si(1)	2.312(4)	$\mathrm{Pt}(2)-\mathrm{Si}(2)$	2.316(4)
$\mathrm{Si}(1)-\mathrm{C}(51)$	1.911(18)	$\mathrm{Si}(2)-\mathrm{C}(81)$	$1.899(15)$
$\mathrm{Si}(1)-\mathrm{C}(61)$	1.900(12)	$\mathrm{Si}(2)-\mathrm{C}(91)$	$1.909(11)$
$\mathrm{Si}(1)-\mathrm{C}(71)$	1.893(13)	$\mathrm{Si}(2)-\mathrm{C}(101)$	$1.894(11)$
$\mathrm{C}(61)-\mathrm{C}(62)$	1.383(19)	$\mathrm{C}(91)-\mathrm{C}(92)$	$1.398(22)$
$\mathrm{C}(62)-\mathrm{C}(63)$	1.390(24)	$\mathrm{C}(92)-\mathrm{C}(93)$	1.398(21)
$\mathrm{C}(63)-\mathrm{C}(64)$	1.349(24)	$\mathrm{C}(93)-\mathrm{C}(94)$	$1.373(27)$
$\mathrm{C}(64)-\mathrm{C}(65)$	1.383 (20)	$\mathrm{C}(94)-\mathrm{C}(95)$	$1.378(25)$
$\mathrm{C}(65)-\mathrm{C}(66)$	1.377(20)	$\mathrm{C}(95)-\mathrm{C}(96)$	$1.401(20)$
$\mathrm{C}(66)-\mathrm{C}(61)$	$1.412(19)$	$\mathrm{C}(96)-\mathrm{C}(91)$	$1.362(20)$
$\mathrm{C}(71)-\mathrm{C}(72)$	1.387(19)	C(101)-C(102)	$1.404(16)$
$\mathrm{C}(72)-\mathrm{C}(73)$	1.374(22)	$\mathrm{C}(102)-\mathrm{C}(103)$	$1.406(18)$
$\mathrm{C}(73)-\mathrm{C}(74)$	1.404(23)	$\mathrm{C}(103)-\mathrm{C}(104)$	$1.373(23)$
$\mathrm{C}(74)-\mathrm{C}(75)$	$1.386(25)$	$\mathrm{C}(104)-\mathrm{C}(105)$	$1.393(21)$
$\mathrm{C}(75)-\mathrm{C}(76)$	1.369(21)	$\mathrm{C}(105)-\mathrm{C}(106)$	$1.434(18)$
$\mathrm{C}(76)-\mathrm{C}(71)$	$1.410(18)$	$\mathrm{C}(106)-\mathrm{C}(101)$	1.398(18)
Terminal t-butyl ligands			
$\mathrm{Pt}(1)-\mathrm{C}(31)$	1.975(13)	$\mathrm{Pt}(2)-\mathrm{C}(41)$	1.968(12)
$\mathrm{C}(31)-\mathrm{N}(3)$	1.131(17)	$\mathrm{C}(41)-\mathrm{N}(4)$	$1.133(16)$
$\mathrm{N}(3)-\mathrm{C}(32)$	$1.446(17)$	$\mathrm{N}(4)-\mathrm{C}(42)$	$1.451(15)$
$\mathrm{C}(32)-\mathrm{C}(33)$	1.532(18)	$\mathrm{C}(42)-\mathrm{C}(43)$	$1.521(23)$
$\mathrm{C}(32)-\mathrm{C}(34)$	$1.535(18)$	$\mathrm{C}(42)-\mathrm{C}(44)$	$1.495(21)$
$\mathrm{C}(32)-\mathrm{C}(35)$	1.515(17)	$\mathrm{C}(42)-\mathrm{C}(45)$	1.521(21)

(b) Angles

Central diplatina-ring system

$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	84.6(4)	$\mathrm{N}(2)-\mathrm{Pt}(2)-\mathrm{C}(2)$	84.9(4)
$\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	117.8(8)	$\mathrm{Pt}(2)-\mathrm{C}(2)-\mathrm{N}(1)$	117.5(9)
$\mathrm{Pt}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	112.5(8)	$\mathrm{Pt}(2)-\mathrm{N}(2)-\mathrm{C}(1)$	112.3(8)
$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{C}(31)$	98.0(4)	$\mathrm{N}(2)-\mathrm{Pt}(2)-\mathrm{C}(41)$	96.5(4)
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Si}(1)$	87.8(3)	$\mathrm{C}(2)-\mathrm{Pt}(2)-\mathrm{Si}(2)$	89.0(4)
$\mathrm{C}(31)-\mathrm{Pt}(1)-\mathrm{Si}(1)$	89.6(4)	$\mathrm{C}(41)-\mathrm{Pt}(2)-\mathrm{Si}(2)$	89.4(3)
t-Butyl ligands on central ring			
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	122.9 (10)	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(21)$	122.2(10)
$\mathrm{Pt}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	124.5(7)	$\mathrm{Pt}(2)-\mathrm{N}(2)-\mathrm{C}(21)$	125.1(7)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	107.1(9)	$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	105.0(10)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(13)$	105.7(10)	$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(23)$	106.4(11)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(14)$	112.8(10)	$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(24)$	114.9(11)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	113.1(11)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)$	108.9(11)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	109.8(11)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(24)$	113.0(12)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	108.5(11)	$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(24)$	108.3(12)
Terminal silyl ligands			
$\mathrm{Pt}(1)-\mathrm{Si}(1)-\mathrm{C}(51)$	116.8(6)	$\mathrm{Pt}(2)-\mathrm{Si}(2)-\mathrm{C}(81)$	112.0(5)
$\mathrm{Pt}(1)-\mathrm{Si}(1)-\mathrm{C}(61)$	109.1(4)	$\mathrm{Pt}(2)-\mathrm{Si}(2)-\mathrm{C}(91)$	113.5(4)
$\mathrm{Pt}(1)-\mathrm{Si}(1)-\mathrm{C}(71)$	$113.0(4)$	$\mathrm{Pt}(2)-\mathrm{Si}(2)-\mathrm{C}(101)$	114.5(4)
$\mathrm{C}(51)-\mathrm{Si}(1)-\mathrm{C}(61)$	107.2(6)	$\mathrm{C}(81)-\mathrm{Si}(2)-\mathrm{C}(91)$	$105.2(6)$
$\mathrm{C}(61)-\mathrm{Si}(1)-\mathrm{C}(71)$	106.4(5)	$\mathrm{C}(91)-\mathrm{Si}(2)-\mathrm{C}(101)$	104.5(5)
$\mathrm{C}(51)-\mathrm{Si}(1)-\mathrm{C}(71)$	103.7(7)	$\mathrm{C}(81)-\mathrm{Si}(2)-\mathrm{C}(101)$	106.2(6)
$\mathrm{Si}(1)-\mathrm{C}(61)-\mathrm{C}(62)$	124.1(10)	$\mathrm{Si}(2)-\mathrm{C}(91)-\mathrm{C}(92)$	121.3(10)
$\mathrm{Si}(1)-\mathrm{C}(61)-\mathrm{C}(66)$	120.0(9)	$\mathrm{Si}(2)-\mathrm{C}(91)-\mathrm{C}(96)$	123.0(10)
$\mathrm{Si}(1)-\mathrm{C}(71)-\mathrm{C}(72)$	124.9(9)	$\mathrm{Si}(2)-\mathrm{C}(101)-\mathrm{C}(102)$	121.8(9)
$\mathrm{Si}(1)-\mathrm{C}(71)-\mathrm{C}(76)$	120.1(10)	$\mathrm{Si}(2)-\mathrm{C}(101)-\mathrm{C}(106)$	118.6(10)
Terminal t-butyl ligands			
$\mathrm{Pt}(1)-\mathrm{C}(31)-\mathrm{N}(3)$	174.9(11)	$\mathrm{Pt}(2)-\mathrm{C}(41)-\mathrm{N}(4)$	175.0(12)
$\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(32)$	$176.5(12)$	$\mathrm{C}(41)-\mathrm{N}(4)-\mathrm{C}(42)$	178.1(14)
$\mathrm{N}(3)-\mathrm{C}(32)-\mathrm{C}(33)$	109.8(10)	$\mathrm{N}(4)-\mathrm{C}(42)-\mathrm{C}(43)$	107.6(11)
$\mathrm{N}(3)-\mathrm{C}(32)-\mathrm{C}(34)$	107.8(11)	$\mathrm{N}(4)-\mathrm{C}(42)-\mathrm{C}(44)$	108.0(11)
$\mathrm{N}(3)-\mathrm{C}(32)-\mathrm{C}(35)$	107.1(10)	$\mathrm{N}(4)-\mathrm{C}(42)-\mathrm{C}(45)$	110.0(11)
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(34)$	109.1(10)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(44)$	109.1(13)
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(35)$	$111.2(11)$	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(45)$	109.6(12)
$\mathrm{C}(34)-\mathrm{C}(32)-\mathrm{C}(35)$	111.7(11)	$\mathrm{C}(44)-\mathrm{C}(42)-\mathrm{C}(45)$	112.4(14)

Scheme (i) SiHR_{3}; (ii) $-\mathrm{H}_{2}$; (iii) via a Y -shaped intermediate (ref. 16)
annular $\mathrm{Pt} \cdots \mathrm{Pt}$ distance of $3.056(2) \AA$ suggests little metal-metal interaction in this class of complex.

The geometry of the terminal ligands calls for no special comment. The difference between the $\mathrm{Pt}^{-} \mathrm{C}$ bond lengths in the terminal Bu^{t} groups, relative to those in the central ring, can be accounted for by the difference in the hybridisation states of the C atoms ($s p^{2}$ in the ring, $s p$ in the Bu^{t} ligand) to which the Pt atoms are bonded. There is no lengthening of the $\mathrm{C}-\mathrm{N}$ bond.

Table 5

Some least-squares planes and interplanar angles for complex (4a): distances (\AA) of relevant atoms from these planes are given in square brackets
Plane (1): $\mathrm{Pt}(\mathbf{1}), \mathrm{Si}(1), \mathrm{C}(1), \mathrm{N}(1), \mathrm{C}(31)$

$$
4.704 x+16.029 y+6.001 z=5.604
$$

$[\mathrm{Pt}(1)-0.005, \mathrm{Si}(1)-0.048, \mathrm{C}(1) 0.055, \mathrm{~N}(1)-0.050, \mathrm{C}(31)$ 0.048]

Plane (2): $\mathrm{Pt}(2), \mathrm{Si}(2), \mathrm{C}(2), \mathrm{N}(2), \mathrm{C}(41)$
$11.584 x-0.961 y-0.771 z=7.951$
$[\mathrm{Pt}(2) 0.055, \mathrm{Si}(2)-0.010, \mathrm{C}(2)-0.016, \mathrm{~N}(2)-0.011, \mathrm{C}(41)$ -0.018]
Plane (3): C(1), N(1), C(2), N(2)

$$
-6.229 x+15.157 y+6.898 z=-1.102
$$

[C(1) 0.037, $\mathrm{N}(1)-0.037, \mathrm{C}(2) 0.037, \mathrm{~N}(2)-0.036]$
Angles $\left({ }^{\circ}\right)$ between least-squares planes: (1)-(2) 67.2; (2)-(3) 123.4; (1)-(3) 123.7

There is, however, a significant shortening of the $\mathrm{Pt}-\mathrm{Si}$ bond ($2.314 \AA$, mean) relative to the sum of the covalent radii of Pt and $\mathrm{Si},{ }^{15}$ which would suggest a covalent bond length of ca. $2.53 \AA$. Some degree of multiple-bond character may thus be implied. Furthermore, the $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ angles are all significantly less than the ideal tetrahedral value.

Although in many of the reactions of $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ mononuclear compounds are formed, this does not require that fragmentation of the cluster occurs before reaction occurs. In fact a detailed examination of this Pt_{3} cluster provided no evidence for such a dissociative process. ${ }^{1}$ It is possible that on the approach of a silane molecule to one of the platinum centres of the Pt_{3} cluster the bonding mode of the bridging isocyanides is transformed to the terminal mode with a formal decrease $\left(\mathrm{Pt}^{\mathrm{II}} \longrightarrow \mathrm{Pt}^{0}\right)$ in the oxidation state of the platinum thus allowing consecutive cis-oxidative addition of the silane to the platinum centres (Scheme). The availability of low-lying $3 d$ orbitals on the silicon atom would facilitate nucleophilic attack by the platinum(0) centre thus initiating the formal insertion into the $\mathrm{Si}^{-} \mathrm{H}$ bond. Fragmentation of the resulting platinum(II) cluster might occur readily and this is probably the penultimate step before formal cis insertion of a co-ordinated isocyanide into the platinum-hydrogen bond. The driving
force for this step is not obvious, and it is particularly interesting that such a reaction occurs easily with isocyanide, whereas the generation of a formyl ligand by an analogous process with co-ordinated carbon monoxide, while of considerable interest in relationship to the Fischer-Tropsch process, is proving somewhat elusive.

In the case of the isocyanide system this insertion generates via a least-motion process a three-co-ordinate platinum(II) species with a T-shaped structure. Calculations ${ }^{16}$ with the isoelectronic gold(III) potential-energy surface indicate that T -shaped structures are of lower energy than Y-shaped configurations. Depending on whether the hydrogen migrates onto the isocyanide or the isocyanide inserts into the $\mathrm{Pt}-\mathrm{H}$ bond, a T -shaped molecule would be formed with the imidoyl ligand either trans or cis to the SiR_{3} group. Since it is not possible to ascertain the stereochemical stability of such a T shaped platinum(iI) intermediate, it is not possible to deduce the precise mechanism of the imidoyl-generating reaction from the established stereochemistry of compound (4). Moreover, there is also the possibility that
over a period of days even when stored under nitrogen below room temperature.

EXPERIMENTAL

N.m.r. studies were made with JEOL PFT and PS 100 spectrometers. Infrared spectra were recorded on a Perkin-Elmer 457 grating spectrometer. Experiments were carried out under a dry oxygen-free nitrogen atmosphere using Schlenk-tube techniques, and with solvents which were dried and distilled under nitrogen prior to use. Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. The triorganosilanes were prepared by reduction of chlorotriorganosilanes with lithium tetrahydroaluminate. Analytical data are given in Table 6.

Preparation of the Diplatinum Complexes $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)\right.\right.$ $\left.\left(\mathrm{SiR}_{3}\right)\left(\mathrm{CNBu}{ }^{t}\right)\right\}_{2}$]. -The following representative syntheses are given for the complexes listed in the Tables.
(a) The complex $\left[\mathrm{Pt}_{3}(\mathrm{CNBut})_{6}\right](0.36 \mathrm{~g}, 0.33 \mathrm{mmol})$ was suspended in diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ in a Schlenk tube and dimethylphenylsilane ($0.5 \mathrm{~cm}^{3}, c a .3 .7 \mathrm{mmol}$) was added with a syringe. After 0.5 h at room temperature, the solvent was removed in vacuo. The oily residue was

Table 6
Analytical ${ }^{4}$ and physical data for the complexes

Compound		$\begin{gathered} \text { M.p. }\left(\theta_{c}{ }^{\circ}{ }^{\circ} \mathrm{C}\right) \\ \text { (decomp.) } \end{gathered}$	Colour	Yield (\%)	Analysis (\%)			$M^{\text {b }}$	
		C			H	N			
(1)	[\{Pt $\left.\left.\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{CNBu}{ }^{\text {l }}\right)\right\}_{2}\right]$		135-136	Pale yellow	52	36.9 (35.9)	6.7 (6.5)	6.4 (6.4)	
(2)	$\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiEt}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\right\}_{2}\right]$	123-124	Cream	50	42.3 (40.2)	7.9 (7.2)	5.1 (5.8)	954 (955)	
(3)	$\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)\left(\mathrm{CNBu}^{t}\right)\right\}_{2}\right]$	126-132	Pale yellow	95	43.6 (43.4)	6.4 (5.9)	5.4 (5.6)	1005 (995)	
(4)	$\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{CNBu}{ }^{t}\right)\right\}_{2}\right]$	159-161	Pale yellow	60	49.4 (49.8)	5.8 (5.8)	5.0 (4.8)	1080 (1119)	
(5)	$\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{SiPh}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\right\}_{2}\right]$	188-189	Cream	27	54.2 (54.1)	5.5 (5.6)	4.4 (4.5)		
(6)	$\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left[\mathrm{Si}(\mathrm{OEt})_{3}\right]\left(\mathrm{CNBu}{ }^{4}\right)\right\}_{2}\right]$	152	White	50	37.5 (36.6)	6.9 (6.5)	4.5 (5.3)		
(7)	$\left[\mathrm{Pt}\left(\mathrm{SiPh}_{3}\right)_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$	207-208	Yellow	45	61.8 (62.8)	5.6 (5.5)	3.2 (3.2)		
(8)	$\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{t}\right)\left(\mathrm{GeMe}_{3}\right)\left(\mathrm{CNBu}{ }^{\prime}\right)\right\}_{2}\right]$	180	Yellow	75	33.3 (32.5)	6.4 (5.9)	4.9 (5.8)		

(4a) is formed in a subsequent thermodynamically controlled rearrangement.

During the reactions which gave complexes (1a)--(4a) or (6a) there was evidence for formation of a second product yellow in colour but produced in such small quantity that characterisation was not possible. It was of interest, therefore, that reaction of $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ with $\mathrm{SiPh}_{3} \mathrm{H}$ gave, in addition to (5a) (27%), the yellow complex trans- $\left[\mathrm{Pt}\left(\mathrm{SiPh}_{3}\right)_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$ (7) (45%), characterised by analysis, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra, and the appearance in the i.r. of a single $v(\mathrm{~N}=\mathrm{C})$ band at 2176 s cm^{-1}. Formation of (7) in the reaction parallels the results mentioned earlier, ${ }^{9}$ concerning the isolation of bis(silyl)platinum complexes from reactions of silanes $\mathrm{SiR}_{3} \mathrm{H}$ and (tertiary phosphine)platinum(0) complexes. Evidently, with $\mathrm{SiPh}_{3} \mathrm{H}$, an initially formed hydride complex $\left[\mathrm{PtH}\left(\mathrm{SiPh}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$ reacts with a second molecule of triphenylsilane, possibly via an oxidativeaddition reductive-elimination $\left(\mathrm{H}_{2}\right)$ pathway, to give (7) more rapidly than isocyanide insertion occurs to give (5) (Scheme). Release of hydrogen was observed.

The reaction between $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ and trimethylgermane was also investigated, and found to give the complex $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)\left(\mathrm{GeMe}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right]$ (8), the germanium analogue of (1). Compound (8) decomposes
treated with diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ and filtered through an alumina column (Brockman activity II, $1 \times 1 \mathrm{~cm}^{3}$). Solvent was pumped off, and the residue was dissolved in light petroleum and cooled to $-78{ }^{\circ} \mathrm{C}$ giving complex (3), $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right]$, as pale yellow slightly air-sensitive crystals ($0.46 \mathrm{~g}, 95 \%$), washed with hexane and dried in vacuo.
(b) The complex $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right](0.33 \mathrm{~g}, 0.30 \mathrm{mmol})$ was suspended in diethyl ether ($10 \mathrm{~cm}^{3}$) and treated with triphenylsilane ($0.52 \mathrm{~g}, 2 \mathrm{mmol}$) at room temperature. Gas evolution $\left(\mathrm{H}_{2}\right)$ was observed on mixing, and a yellow crystalline solid precipitated. After 15 min the solvent was removed in vacuo, and the residue was suspended in light petroleum $\left(2 \mathrm{~cm}^{3}\right)$ for 3 h , then filtered off and washed with light petroleum to give a mixture ($c a .0 .5 \mathrm{~g}$) of complexes (5) and (7). These compounds were readily separated because of the insolubility of (7) in diethyl ether. Extraction of the mixture with diethyl ether ($10 \mathrm{~cm}^{3}$) gave yellow crystals $(0.35 \mathrm{~g}, 45 \%)$ of $\left[\mathrm{Pt}\left(\mathrm{SiPh}_{3}\right)_{2}(\mathrm{CNBu})_{2}\right]$ (7). Infrared spectrum: $v_{\text {max }}$ at $3078 \mathrm{~s}, 3058 \mathrm{~s}, 2176 \mathrm{vs}$ (NC), 2068 w , $1944 \mathrm{w}, 1874 \mathrm{w}, 1812 \mathrm{w}, 1583 \mathrm{w}, 1560 \mathrm{w}, 1431 \mathrm{~s}, 1325 \mathrm{w}$, $1300 \mathrm{w}, 1257 \mathrm{w}, 1239 \mathrm{w}, 1202 \mathrm{w}(\mathrm{br}), 1110 \mathrm{~s}, 1031 \mathrm{w}$, $1002 \mathrm{w}, 912 \mathrm{w}, 854 \mathrm{w}, 751 \mathrm{~s}, 743 \mathrm{~s}, 708 \mathrm{vs}, 680 \mathrm{~m}, 539 \mathrm{mw}$, $504 \mathrm{vs}, 485 \mathrm{~s}, 450 \mathrm{~s}, 427 \mathrm{~s}$, and $416 \mathrm{~s} \mathrm{~cm}^{-1}$. The extract was concentrated to $1 \mathrm{~cm}^{3}$ and light petroleum ($10 \mathrm{~cm}^{3}$) was added, affording cream crystals ($0.15 \mathrm{~g}, 27 \%$) of [$\{\mathrm{Pt}-$ $\left.\left.\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)\left(\mathrm{SiPh}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right]$ (5).
(c) The complex $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ ($0.33 \mathrm{~g}, 0.30 \mathrm{mmol}$) in diethyl ether ($10 \mathrm{~cm}^{3}$) was placed in a tube fitted with a Westef high-pressure stopcock. Trimethylsilane (2.0 mmol) was distilled into the tube, and the mixture was shaken for 3 h at room temperature affording a yellow solution. Solvent was removed in vacuo and the residue dissolved in light petroleum ($1 \mathrm{~cm}^{3}$) giving cream crystals ($0.20 \mathrm{~g}, 52 \%$) of $\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right]$ (1), washed with the minimum volume of cold light petroleum and dried in vacuo.

Reaction of $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right]$ with Trimethylgermane.-A sealed tube fitted with a Westef stopcock was charged with $\left[\mathrm{Pt}_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{6}\right](0.36 \mathrm{~g}, 0.33 \mathrm{mmol})$, trimethylgermane ($\mathbf{1 . 5}$ $\mathrm{mmol})$, and diethyl ether ($10 \mathrm{~cm}^{3}$). The suspension was warmed to room temperature and reaction was complete in 1 h giving a yellow solution. Solvent was removed in vacuo and the resulting oil was dissolved in light petroleum. On standing (2 h), yellow crystals (75%) of [$\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)$ $\left.\left.\left(\mathrm{GeMe}_{3}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}\right]$ (8) formed.

Crystal-structure Determination of $\quad\left[\left\{\mathrm{Pt}\left(\mathrm{CH}: \mathrm{NBu}^{\mathrm{t}}\right)-\right.\right.$ $\left.\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right\}_{2}$]. -The complex crystallises as colourless prisms from diethyl ether. Diffracted intensities were collected from a crystal of dimensions $0.10 \times 0.10 \times 0.22$ mm on a Syntex $P 2_{1}$ four-circle diffractometer according to methods described earlier. ${ }^{17}$ Of the total 9805 reflections for $2.9<2 \theta<60.0^{\circ}, 7096$ satisfied the criterion $I \geqslant$ $2.0 \sigma(I)$, and only these were used in the solution and refinement of the structure. The intensities were corrected for Lorentz, polarisation, and X-ray absorption effects.

Crystal Data.- $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{Pt}_{2} \mathrm{Si}_{2}, M=1119.2$, Monoclinic, $a=11.649(4), \quad b=18.778(15), \quad c=21.825(15) \quad \AA, \quad \beta=$ $97.31(3)^{\circ}, \quad D_{\mathrm{m}}=1.50, Z=4, \quad D_{\mathrm{c}}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}, U=$ $4735 \AA^{3}, F(000)=2208$, space group $P 2_{1} / c$, Mo- $K_{\alpha} X-$ radiation (graphite monochromator), $\lambda=0.71069 \quad \AA$, $\mu\left(\operatorname{Mo}-K_{\alpha}\right)=62.7 \mathrm{~cm}^{-1}$. The structure was solved by heavy-atom methods, and refined by blocked-matrix least squares. Some of the hydrogen atoms were located on the electron-density difference maps and these were allowed to refine with isotropic thermal parameters. The remaining hydrogen atoms were incorporated at calculated positions and were not refined. All other atoms were ascribed anisotropic thermal parameters (Appendix). Atomic scattering factors were those of ref. 18 for $\mathrm{Pt}, \mathrm{Si}, \mathrm{C}$, and N ; those for Pt and Si were corrected for anomalous dispersion ${ }^{19}$ (Pt , $\Delta f^{\prime}-2.35, \Delta f^{\prime \prime} 8.39 ; \mathrm{Si}, \Delta f^{\prime} 0.07, \Delta f^{\prime \prime} 0.07$). Scattering factors for hydrogen were from ref. 20. Weights were applied according to the scheme $1 / w=\sigma\left(F_{0}\right)+\alpha\left|F_{o}\right|$, where $\alpha=0.085$ and $\sigma\left(F_{0}\right)$ is the estimated standard

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1978, Index issue.
deviation in $\left|F_{\text {obs. }}\right|$ based on counting statistics. This gave a satisfactory weight analysis. Refinement converged at $R 0.057, R^{\prime} 0.067$, and a final electron-density difference synthesis showed no peaks >0.9 or <-0.5 e \AA^{-3}, except in the neighbourhood of the Pt atoms where values of $c a$. $\pm 3 \mathrm{e} \AA^{-3}$ occurred. All the computational work was carried out at the University of London Computing Centre with the ' X-Ray' system of programs. ${ }^{21}$ Observed and calculated structure factors, and all thermal parameters, are listed in Supplementary Publication No. SUP 22506 (32 pp.).*

We thank the S.R.C. for support and the Spanish Ministry of Education and Science for the award of a Fellowship (to M. C.).
[8/1686 Received, 25th September, 1978]

REFERENCES

${ }^{1}$ M. Green, J. A. K. Howard, M. Murray, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1977, 1509.
${ }^{2}$ M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1977, 271.
${ }^{3}$ J. Forniés, M. Green, A. Laguna, M. Murray, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1977, 1515.
${ }_{4}$ W. E. Carroll, M. Green, J. A. K. Howard, M. Pfeffer, and F. G. A. Stone, Angew. Chem. Internat. Edn., 1977, 16, 793; J.C.S. Dalton, 1978, 1472.
${ }_{5}$ N. M. Boag, G. H. M. Dias, M. Green, J. L. Spencer, F. G. A. Stone, and J. Vicente, unpublished work.
${ }_{6}$ J. B. B. Heyns and F. G. A. Stone, J. Organometallic Chem., 1978, 160, 337.
${ }^{7}$ M. T. Chicote, M. Green, J. L. Spencer, F. G. A. Stone, and J. Vicente, J.C.S. Dalton, 1979, 536.

8 M. Ciriano, M. Green, J. A. K. Howard, J. Proud, J. L. Spencer, F. G. A. Stone, and C. A. Tsipis, J.C.S. Dalton, 1978, 801.
${ }^{9}$ J. Chatt, C. Eaborn, and P. N. Kapoor, J. Chem. Soc. (A), 1970, 881.
${ }^{10}$ C. Eaborn, B. Ratcliff, and A. Pidcock, J. Organometallic Chem., 1974, 65, 181.
${ }^{11}$ D. F. Christian, H. C. Clark, and R. F. Stepaniak, J. Organometallic Chem., 1976, 112, 209.

12 B. E. Mann, Adv. Organometallic Chem., 1974, 12, 193.
13 J. Chatt, C. Eaborn, S. D. Ibekwe, and P. N. Kapoor, J. Chem. Soc. (A), 1970, 1343.

14 G. Bombieri, E. Forsellini, and R. Graziani, J.C.S. Dalton, 1972, 525.

15 ' International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1962, vol. 3.
${ }_{16}$ S. Komiya, T. A. Albright, R. Hoffmann, and J. K. Kochi, J. Amer. Chem. Soc., 1976, 98, 7255.

17 A. Modinos and P. Woodward, J.C.S. Dalton, 1974, 2065.
18 D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
19 D. T. Cromer, Acta Cryst., 1965, 18, 17.
${ }_{20}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{21}$ Technical Report TR 192, Computer Science Centre, University of Maryland, June 1972.

