Spectroscopic and Structural Studies on Cobalt Complexes of the Methyl Esters of Dithiocarbazic and 2-Methyldithiocarbazic Acids. Crystal Structure of $\left[\mathrm{Co}\left\{\mathrm{NH}_{2} \mathbf{N H C}(=\mathrm{S}) \mathrm{SMe}\right\}\left\{\mathrm{NH}_{2} \mathrm{~N}=\mathrm{C}(\mathrm{S}) \mathrm{SMe}\right\}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O} \dagger$

By Anna Monaci and Franco Tarli, Laboratorio Teoria e Struttura Elettronica e Comportamento Spettrochimico dei Composti di Co-ordinazione del C.N.R., Roma, Italy
Anna Maria Manotti Lanfredi, Antonio Tiripicchio,* and Marisa Tiripicchio Camellini, Istituto di Chimica Generale, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Parma, Italy

Abstract

The ligand behaviour of methyl esters of dithiocarbazic acid $\mathrm{NH}_{2} \mathrm{NHC}(=\mathrm{S}) \mathrm{SMe}(\mathrm{HL})$ and of 2-methyldithiocarbazic acid $\mathrm{NH}_{2} \mathrm{NMeC}(=\mathrm{S}) \mathrm{SMe}$ (MeL) in cobalt complexes has been investigated. Complexes of $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Co}^{\text {III }}$ have been prepared under different conditions and characterized by their electronic and i.r. spectra. HL can act as a ligand when neutral or when deprotonated (L^{-}); MeL can be deprotonated at the terminal N only after co-ordination. The crystal structure of $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ has been determined by X-ray diffraction methods: crystals are monoclinic, space group $P 2_{1} / c, Z=4$, in a unit cell of dimensions $a=12.085(9), b=8.903(8), c=17.287(16) ~ A$, and $\beta=104.2(1)^{\circ}$. The structure has been solved by Patterson and Fourier methods and refined by block-diagonal least squares to $R=0.042$ for 1993 reflections. It consists of cis-octahedral $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right]^{+}$cations, in which one neutral and two deprotonated molecules of methyl dithiocarbazate act as chelating ligands, chloride anions, and water molecules, held together by a network of hydrogen bonds. The bond distances in the co-ordination polyhedron are: $\mathrm{Co}-\mathrm{S} 2.203(4), \mathrm{Co}-\mathrm{N} 1.993(6) \AA$ for the neutral ligand; $\mathrm{Co}-\mathrm{S} 2.212(5)$ and 2.218(3), $\mathrm{Co}-\mathrm{N}$ 1.977 (6) and $1.980(6) \AA$ for the deprotonated ligands. The conformation of the three ligands is cis,cis, i.e. with both NHNH_{2} and SMe groups bent towards the $\mathrm{C}=\mathrm{S}$ bond.

The ligating properties of N - and S-substituted derivatives of dithiocarbazic acid $\mathrm{NH}_{2} \mathrm{NHC}(=\mathrm{S}) \mathrm{SH}$ have been studied in recent years by us ${ }^{1}$ and other workers. ${ }^{2}$ Some of their co-ordination compounds have shown biological activity as pesticides ${ }^{3}$ and, more recently, as carcinostatic agents. ${ }^{4}$ The S-methyl dithiocarbazates show different ligating behaviour with the same metal (e.g. Ni) depending on the type of N -substitution and on the reaction conditions. ${ }^{5}$ It was of interest to study the complexes of S-methyl dithiocarbazates with cobalt, which can also present different oxidation states depending on the reaction conditions and the co-ordination environment.

We started with $\mathrm{NH}_{2} \mathrm{NHC}(=\mathrm{S}) \mathrm{SMe}(\mathrm{HL})$ and $\mathrm{NH}_{2}-$ $\mathrm{NMeC}(=\mathrm{S}) \mathrm{SMe}(\mathrm{MeL})$; HL can act as a ligand when neutral or when deprotonated (L^{-}). The anion L^{-}, which is present also in the potassium salt, is characterized by the disappearance of the bands of $v(\mathrm{~N}-\mathrm{H})$ at $1170 \mathrm{~cm}^{-1}$ and $v(\mathrm{C}=\mathrm{S})$ at $1010 \mathrm{~cm}^{-1}$ in the i.r. spectrum. Among the complexes obtained, $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ was chosen for the X-ray structure determination because both neutral and anionic forms of the ligand are present thus providing an opportunity to study whether structural modifications are induced by deprotonation of the ligand. The structure of the unco-ordinated ligand has already been described. ${ }^{6}$

EXPERIMENTAL

Materials.-The ligands HL and MeL were prepared as in refs. 2 and 7 respectively. All other chemicals were commercial analytical grade reagents and were used without further purification. Nitrogen gas was an ultra highpurity commercial product.

Preparations of the Complexes.-Previous studies ${ }^{8}$ on the behaviour of HL in solvents with increasing polarity (anhydrous ethanol, ethanol, and water) showed that it is not deprotonated in anhydrous ethanol. By taking this into
account, several complexes of $\mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Co}^{\mathrm{II}}$ containing HL and/or L were prepared. Thus, $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br) was prepared from $\mathrm{CoX}_{2}\left(1 \mathrm{mmol}\right.$ in $10 \mathrm{~cm}^{3}$ anhydrous ethanol) and HL (3 mmol in $10 \mathrm{~cm}^{3}$ of anhydrous ethanol) in a N_{2} atmosphere. The precipitated compound was filtered off and dried under N_{2} (yield 65%). The same compound can be obtained by working in ethanol acidified with $3.7 \% \mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$, thus preventing deprotonation of HL; yield 49%. The solid compound is stable under a N_{2} atmosphere.
$\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$. These complexes were obtained by exposing to air finely powdered $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{X}_{\mathbf{2}}$; yield $c a .100 \%$.
$\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$. Treatment of $\mathrm{CoCl}_{2} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}(3.4 \mathrm{mmol}$ in $15 \mathrm{~cm}^{3}$ ethanol) with HL (10.2 mmol in $15 \mathrm{~cm}^{3}$ ethanol) gave a mixture of $\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$. After crystallization from boiling ethanol, crystals of the less-soluble $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ were obtained, yield 20%.
[CoL_{3}]. This complex was obtained from $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 mmol in $10 \mathrm{~cm}^{3}$ water) and $\mathrm{HL}\left(3 \mathrm{mmol}\right.$ in $100 \mathrm{~cm}^{3}$ water) (yield 95%), or from water and any compound containing HL and/or L reported in this work.
$\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. This was prepared from $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (2 mmol in $30 \mathrm{~cm}^{3}$ ethanol) and $\mathrm{HL}\left(6 \mathrm{mmol}\right.$ in $30 \mathrm{~cm}^{3}$ ethanol with $4 \mathrm{~cm}^{3}$ of $37 \% \mathrm{HCl}$), by bubbling O_{2} to increase the reaction velocity, yield 55%.
$\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HL})_{3}\right]_{2}\left[\mathrm{Co}^{\mathrm{II}} \mathrm{X}_{4}\right]_{3}(\mathrm{X}=\mathrm{Cl}$ or Br$)$. These complexes were prepared from the cobalt halide $(1.5 \mathrm{mmol}$ in anhydrous ethanol) and HL (1.8 mmol in $20 \mathrm{~cm}^{3}$ anhydrous ethanol). The compounds, precipitated after evaporation of part of the solvent in vacuo (15 mmHg), \ddagger are hygroscopic and can be dried at $100^{\circ} \mathrm{C}$ in vacuo (1 mmHg), yield 37% for $\mathrm{X}=\mathrm{Cl}, \mathbf{5 4} \%$ for $\mathrm{X}=\mathrm{Br}$.
$\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{MeL})_{2.5} \mathrm{Cl}_{2}\right] \S$ was prepared from $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\mathbf{1 . 5}$ mmol in $10 \mathrm{~cm}^{3}$ ethanol) and $\mathrm{MeL}\left(3 \mathrm{mmol}\right.$ in $40 \mathrm{~cm}^{3}$
\dagger (Methyl dithiocarbazate- $N^{3} S$) bis[methyl dithiocarbazato($1-$)- $\left.N^{3} S\right]$ cobalt(InI) chloride monohydrate.
\ddagger Throughout this paper: $1 \mathrm{mmHg} \approx 13.6 \times 9.8 \mathrm{~Pa}$.
\S Note added at proof: preliminary results of the X-ray crystal analysis of this compound have shown that it must be formulated as $\left[\mathrm{Co}^{11}(\mathrm{MeL})_{2} \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{MeL}$.

TAble 1
Analytical data

Compound
$\left[\mathrm{Co}(\mathrm{HL})_{3}\right]_{3} \mathrm{Cl}_{3} \cdot \mathrm{H}_{3} \mathrm{O}$
$\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{Cl}_{2}$
$\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{Br}_{2}$
$\left[\mathrm{Co}(\mathrm{HL})_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{CoL} \mathrm{O}_{3}\right]$
$\left[\mathrm{Co}(\mathrm{HL})_{3}\right]_{2}\left[\mathrm{CoCl}_{4}\right]_{3}$
$\left[\mathrm{Co}(\mathrm{HL})_{3}\right]_{2}\left[\mathrm{CoBr}_{4}\right]_{3}$
$\left[\mathrm{Co}(\mathrm{MeL})_{3}\right]_{3} \cdot \mathrm{Cl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Co}(\mathrm{MeL})_{2}\left(\mathrm{MeL}_{2}-\mathrm{H}\right)\right] \mathrm{Br}_{2}$
$\left[\mathrm{Co}(\mathrm{MeL})_{2}\left(\mathrm{SO}_{4}\right)\right]$
$\left[\mathrm{Co}(\mathrm{MeL})_{2}{ }_{2} \mathrm{Cl}_{2}\right]$
$\left[\mathrm{Co}(\mathrm{MeL})_{3}\right]_{2}\left[\mathrm{CoCl}_{4}\right]_{3}$
$\left[\mathrm{Co}(\mathrm{MeL})_{3}\right]_{2}\left[\mathrm{CoBr}_{4}\right]_{3}$

Colour
Red-brown
Brown
Brown
Brown
Brown
Dark brown
Dark brown
Red-brown
Brown
Pink
Blue
Dark brown
Dark brown

Analysis (\%) *			
C	H	N	Cl
12.85 (13.1)	3.85 (3.65)	15.3 (15.3)	19.15 (19.35)
14.65 (14.55)	3.80 (3.45)	16.9 (16.95)	14.25 (14.3)
12.15 (12.35)	3.05 (2.95)	14.3 (14.4)	
15.25 (15.1)	3.90 (3.80)	17.8 (17.6)	7.30 (7.45)
17.1 (17.05)	3.65 (3.60)	19.7 (19.9)	
10.2 (9.90)	2.85 (2.50)	11.45 (11.55)	29.15 (29.3)
7.25 (7.25)	1.80 (1.85)	8.45 (8.45)	
17.5 (17.2)	4.85 (4.80)	13.35 (13.4)	16.85 (16.95)
17.15 (17.25)	3.80 (3.70)	13.35 (13.4)	
16.9 (16.85)	3.75 (3.75)	12.95 (13.1)	
19.15 (19.15)	4.40 (4.30)	15.0 (14.9)	15.3 (15.05)
14.55 (14.05)	3.30 (3.15)	10.8 (10.95)	27.5 (27.7)
10.4 (10.45)	2.40 (2.35)	8.00 (8.10)	

* Calculated values are given in parentheses.
ethanol) in a $\mathrm{N}_{\mathbf{2}}$ atmosphere. The compound precipitated after evaporation of part of the solvent in a stream of N_{2}, yield $\mathbf{8 2} \%$. The same compound was obtained by working with different mol ratios of the reagents (e.g. 1:3).
$\left[\mathrm{Co}(\mathrm{MeL})_{2}\left(\mathrm{SO}_{4}\right)\right]$. This was obtained from $\mathrm{Co}\left[\mathrm{SO}_{4}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (1.1 mmol in $10 \mathrm{~cm}^{3}$ methanol) and $\mathrm{MeL}(3.3 \mathrm{mmol}$ in 20 cm^{3} methanol) in a N_{2} atmosphere. The solution was evaporated to dryness by N_{2} bubbling. The excess of MeL was sublimed off at $85^{\circ} \mathrm{C}$ in vacuo (1 mmHg), yield 90\%.
$\left[\mathrm{Co}(\mathrm{MeL})_{3}\right] \mathrm{Br}_{2}$. This complex was prepared from CoBr_{2} (1 mmol in $20 \mathrm{~cm}^{3}$ ethanol) and $\mathrm{MeL}\left(3 \mathrm{mmol}\right.$ in $40 \mathrm{~cm}^{3}$ of ethanol) in a N_{2} atmosphere. The compound precipitated after evaporation of the solvent by N_{2} bubbling. It was filtered off and dried in a stream of N_{2}, yield 76%. The solid is stable under N_{2}.
$\left[\mathrm{Co}(\mathrm{MeL})_{2}(\mathrm{MeL}-\mathrm{H})\right] \mathrm{Br}_{2}$. This was obtained in $c a$. 100% yield by exposing finely powdered $\left[\mathrm{Co}(\mathrm{MeL})_{3}\right] \mathrm{Br}_{2}$ to air. The deprotonated ligand $[\mathrm{MeL}-\mathrm{H}=$ NHNMeC $=$ S) SMe] necessarily involves the loss of one hydrogen from the co-ordinated terminal N . We have already observed the same behaviour for MeL in the corresponding nickel complexes. ${ }^{1 c}$
$\left[\mathrm{Co}(\mathrm{MeL})_{3}\right] \mathrm{Cl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. This complex was prepared from $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(0.7 \mathrm{mmol}\right.$ in $20 \mathrm{~cm}^{3}$ ethanol with $1 \mathrm{~cm}^{3}$ of 37% $\mathrm{HCl})$ and $\mathrm{MeL}\left(2.1 \mathrm{mmol}\right.$ in $20 \mathrm{~cm}^{3}$ ethanol with $1 \mathrm{~cm}^{3}$ of $37 \% \mathrm{HCl})$. Crystals of the compound separated after some days, yield 49%.
$\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{MeL})_{3}\right]_{2}\left[\mathrm{Co}^{\mathrm{II}} \mathrm{X}_{4}\right]_{3} \quad(\mathrm{X}=\mathrm{Cl}$ or Br$)$. These complexes were obtained from the cobalt halide $(2.3 \mathrm{mmol}$ in $15 \mathrm{~cm}^{3}$ water) and MeL (2.7 mmol in $60 \mathrm{~cm}^{3}$ water). The compounds precipitated after evaporation of part of the solvent in vacuo (1 mmHg), yield 32% for $\mathrm{X}=\mathrm{Cl}, 47 \%$ for $\mathrm{X}=\mathrm{Br}$.

In general, all the compounds described in this work dissolve only in polar solvents, and undergo modifications. Analytical data are given in Table 1.

Physical Measurements.-The visible reflectance spectra of the finely powdered solids were recorded on a Beckman DK2 spectrophotometer fitted with a standard reflectance attachment and MgO in the reference beam. Solution spectra were obtained for ethanol solutions at room temperature on a Beckmann DK2 spectrophotometer (concentration range $10^{-5}-10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$). Infrared spectra were recorded on a Perkin-Elmer model 621 spectrophotometer as Nujol or poly(chlorotrifluoroethylene) mulls. Magnetic measurements were performed on solid samples with a Gouy balance calibrated with $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$.

Crystal Data.- $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{ClCoN}_{8} \mathrm{OS}_{6}, \quad M=476.93$, Monoclinic, $\quad a=12.085(9), \quad b=8.903(8), \quad c=17.287(16) \quad \AA$, $\beta=104.2(1)^{\circ}, U=1803(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.76 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=976$, Mo- K_{α} radiation, $\lambda=0.71069 \AA, \mu(\mathrm{Mo}-$ $\left.K_{\alpha}\right)=17.73 \mathrm{~cm}^{-1}$, space group $P 2_{1} / c$ from systematic absences.

Preliminary unit-cell parameters were determined from rotation and Weissenberg photographs, and refined by a least-squares procedure applied to the diffractometer measurements of θ for 15 reflections.

Intensity Data.--Intensity data were collected on a Siemens AED single-crystal diffractometer, by use of zirconium-filtered Mo- K_{α} radiation and the $\omega-2 \theta$ scan technique. A prismatic crystal of dimensions ca. $0.15 \times$ $0.25 \times 0.35 \mathrm{~mm}$ was aligned with its b axis along the ϕ axis of the diffractometer and all the reflections with $29<50^{\circ}$ were measured. Of 3179 independent reflections, 1993 having $I>2 \sigma(I)$ were considered observed and used in the analysis. Intensity data were corrected for Lorentz and polarization factors, but not for absorption effects. The absolute scale and the overall temperature factor were determined by Wilson's method.

Structure Determination and Refinement.-The structure was solved by Patterson and Fourier methods and refined by block-diagonal least squares, first with isotropic, then with anisotropic, thermal parameters. Hydrogen atoms were located directly from a ΔF map. Further leastsquares cycles were computed, including isotropic thermal parameters for the hydrogen atoms. Unit weights were chosen at every stage of the refinement by analyzing the variation of $|\Delta F|$ with $\left|F_{\mathrm{o}}\right|$. The final R was 0.042 (observed reflections only). Atomic scattering factors for non-hydrogen atoms were taken from ref. 9 and for hydrogen atoms from ref. 10. Final atomic co-ordinates are given in Table 2. Thermal parameters, observed and calculated structure factors, hydrogen-atom parameters, details of hydrogen bonding, rotation angles of SMe groups, and electronic and magnetic data are in Supplementary Publication No. SUP 22523 (21 pp.).*

All the calculations were performed on a CYBER 76 computer of the Centro di Calcalo Interuniversitario dell'Italia Nord-Orientale (Bologna).

RESUlTS AND DISCUSSION

X-Ray Structure of $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$.-The structure is shown in Figure 1; bond distances and angles are

[^0] Index issue.

Figure 1 Structure of $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ with the atom-labelling system
given in Table 3. The structure consists of octahedral $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right]^{+}$cations linked to the chloride anions and to the water molecules by a network of hydrogen bonds. One neutral and two deprotonated methyl dithiocarbazate molecules, acting as chelating ligands through sulphur and nitrogen, co-ordinate to $\mathrm{Co}^{\mathrm{III}}$ in a cisoctahedral arrangement. The S and N atoms of the $\mathrm{Co}^{\text {III }} \mathrm{S}_{3} \mathrm{~N}_{3}$ chromophore are at the corners of two nearly equilateral triangles $[\mathrm{N}(21)-\mathrm{N}(22) \quad 2.858(6), \quad \mathrm{N}(22)-$ $\mathrm{N}(23) \quad 2.825(7), \quad \mathrm{N}(21)-\mathrm{N}(23) \quad 2.811(6), \quad \mathrm{S}(21)-\mathrm{S}(22)$

Table 2
Fractional atomic co-ordinates for non-hydrogen atoms $\left(\times 10^{4}\right)$ with estimated standard deviations in parentheses

	x / a	y / b	z / c
Co	2909 (1)	$2172(1)$	$1303(1)$
Cl	$6150(1)$	2 326(2)	2 489(1)
S(11)	1826 (2)	229(2)	3 530(1)
S(21)	1 697(1)	792(2)	$1772(1)$
S(12)	3 208(1)	-695(2)	-903(1)
S(22)	2 144(1)	$1458(2)$	57(1)
S(13)	1960 (1)	7042 (2)	401(1)
S(23)	$1693(1)$	4 057(2)	1 140(1)
N(11)	3 205(4)	$1932(6)$	3 045(3)
$\mathrm{N}(21)$	3 590(4)	2 750(5)	2 423(2)
$\mathrm{N}(12)$	4 024(4)	-182(5)	595(2)
$\mathrm{N}(22)$	3 987(4)	479(5)	$1354(2)$
N(13)	3 527(4)	5 025(5)	692(2)
$\mathrm{N}(23)$	3 979(3)	3 549(5)	939(2)
C(11)	902(6)	- $1128(9)$	3 013(4)
C(21)	2 349(5)	$1103(7)$	$2772(3)$
C(12)	$1872(5)$	$-110(8)$	$-1553(3)$
C(22)	$3188(4)$	200(6)	1(3)
C(13)	688(5)	7 207(8)	758(4)
C(23)	2 499(4)	5 302(6)	767(3)
$\mathrm{O}(\mathrm{W})$	$4848(3)$	2 104(4)	$4521(2)$

3.197(4), $\mathrm{S}(22)-\mathrm{S}(23) 3.108(3), \mathrm{S}(21)-\mathrm{S}(23) 3.105(4) \AA]$, which are almost parallel, the dihedral angle they form being 179°. The distortion of the co-ordination octahedron is mainly due to the different size of the ligand atoms; nevertheless this distortion does not influence the dihedral angles between the main planes of the octahedron which are near to 90°. The conformation of the three independent ligands is cis,cis, i.e. both the NH_{2} and methyl groups are cis with respect to the $\mathrm{C}=\mathrm{S}$ bond. This conformation is different from the cis,trans one found for the uncomplexed molecule. ${ }^{6}$ There are no regular differences between corresponding bond distances and angles in the neutral and deprotonated ligands, even if some of these differences are significant. In all the three complexed molecules the $\mathrm{N}-\mathrm{N}$ distances and the $\mathrm{N}-\mathrm{N}-\mathrm{C}, \mathrm{S}-\mathrm{C}-\mathrm{S}$, and $\mathrm{N}-\mathrm{C}-\mathrm{SMe}$ angles are significantly different with respect to those found for the uncomplexed ester: the lengthening of the $\mathrm{N}-\mathrm{N}$ distances and the narrowing of the $\mathrm{N}-\mathrm{N}-\mathrm{C}$ angles in the chelating esters are probably related to the chelation to the metal, while the variations of the $\mathrm{S}-\mathrm{C}-\mathrm{S}$ and $\mathrm{N}-\mathrm{C}-\mathrm{SMe}$ angles are probably related to steric effects due to the transition from the cis,trans to cis,cis conformation. In all the ligands the hydrogen atoms of the SMe groups are gauche with respect to the $\mathrm{S}-\mathrm{CH}_{3}$ bond.

The NCSS group is strictly planar in the deprotonated anions (Table 4), with small but significant displacement from planarity in the neutral molecule indicating that there is more conjugation through the NCSS group in the anions. The analysis of the planarity shows that

Table 3
Bond distances (\AA) and angles (${ }^{\circ}$)
(a) In the co-ordination polyhedron

$\mathrm{Co}-\mathrm{N}(21) \quad 1$	1.977(4)	$\mathrm{Co}-\mathrm{S}(21)$	2.212(5)
$\mathrm{C} 0-\mathrm{N}(22)$	1.980(6)	$\mathrm{Co}-\mathrm{S}(22)$	$2.218(3)$
$\mathrm{Co}-\mathrm{N}(23)$	1.993(6)	$\mathrm{Co}-\mathrm{S}(23)$	2.203(4)
$\mathrm{N}(21)-\mathrm{Co}-\mathrm{N}(22)$	92.5(2)	$\mathrm{S}(21)-\mathrm{Co}-\mathrm{S}(23)$	89.4(1)
$\mathrm{N}(21)-\mathrm{Co}-\mathrm{N}(23)$	90.2(2)	$\mathrm{N}(22)-\mathrm{Co}-\mathrm{S}(23)$	175.3(1)
$\mathrm{N}(21)-\mathrm{Co}-\mathrm{S}(21)$	86.5(2)	$\mathrm{N}(23)-\mathrm{Co}-\mathrm{S}(21)$	175.3(1)
$\mathrm{N}(21)-\mathrm{Co}-\mathrm{S}(23)$	91.8(2)	$\mathrm{S}(22)-\mathrm{Co}-\mathrm{N}(22)$	86.5(1)
$\mathrm{N}(21)-\mathrm{Co}-\mathrm{S}(22) \quad 1$	178.4(2)	$\mathrm{S}(22)-\mathrm{Co}-\mathrm{N}(23)$	91.0(1)
$\mathrm{N}(22)-\mathrm{Co}-\mathrm{N}(23)$	90.7(2)	$\mathrm{S}(22)-\mathrm{Co}-\mathrm{S}(21)$	92.4(1)
$\mathrm{N}(22)-\mathrm{Co}-\mathrm{S}(21)$	92.8(1)	$\mathrm{S}(22)-\mathrm{Co}-\mathrm{S}(23)$	89.3(1)
$\mathrm{N}(23)-\mathrm{Co}-\mathrm{S}(23)$	87.4(1)		
(b) In the organic ligands			
$\mathrm{N}(21)-\mathrm{N}(11)$	1.466(7)	$\mathrm{N}(21)-\mathrm{H}(211)$	1.09(6)
$\mathrm{N}(11)-\mathrm{C}(21)$	1.264(8)	$\mathrm{N}(21)-\mathrm{H}(212)$	1.02(5)
$\mathrm{C}(21)-\mathrm{S}(21)$	1.737(6)	$\mathrm{C}(11)-\mathrm{H}(111)$	$0.85(7)$
$\mathrm{C}(21)-\mathrm{S}(11)$	1.769(6)	$\mathrm{C}(11)-\mathrm{H}(112)$	0.95(9)
$\mathrm{S}(11)-\mathrm{C}(11)$	1.737(8)	$\mathrm{C}(11)-\mathrm{H}(113)$	1.07(7)
$\mathrm{N}(22)-\mathrm{N}(12)$	1.449(5)	$\mathrm{N}(22)-\mathrm{H}(221)$	1.02(5)
$\mathrm{N}(12)-\mathrm{C}(22)$	1.297(7)	$\mathrm{N}(22)-\mathrm{H}(222)$	0.81(5)
$\mathrm{C}(22)-\mathrm{S}(22)$	1.708(7)	$\mathrm{C}(12)-\mathrm{H}(121)$	1.12(5)
$\mathrm{C}(22)-\mathrm{S}(12)$	$1.760(6)$	$\mathrm{C}(12)-\mathrm{H}(122)$	$1.00(7)$
$\mathrm{S}(12)-\mathrm{C}(12)$	1.803(7)	$\mathrm{C}(12)-\mathrm{H}(123)$	1.01 (7)
$\mathrm{N}(23)-\mathrm{N}(13)$	1.447(6)	$\mathrm{N}(23)-\mathrm{H}(231)$	0.95(5)
$\mathrm{N}(13)-\mathrm{C}(23)$	$1.304(9)$	$\mathrm{N}(23)-\mathrm{H}(232)$	0.92(5)
$\mathrm{C}(23)-\mathrm{S}(23)$	1.703(6)	$\mathrm{C}(13)-\mathrm{H}(131)$	0.97(6)
$\mathrm{C}(23)-\mathrm{S}(13)$	1.738(6)	$\mathrm{C}(13)-\mathrm{H}(132)$	0.90(5)
$\mathrm{S}(13)-\mathrm{C}(13)$	1.798(9)	$\mathrm{C}(13)-\mathrm{H}(133)$	0.84(6)
$\mathrm{N}(13)-\mathrm{H}(13)$	1.08(6)		
$\mathrm{N}(21)-\mathrm{N}(11)-\mathrm{C}(21)$	$113.2(5)$	$\mathrm{H}(211)-\mathrm{N}(21)-\mathrm{H}(212)$	103(5)
$\mathrm{N}(11)-\mathrm{C}(21)-\mathrm{S}(21)$	126.5(5)	$\mathrm{S}(11)-\mathrm{C}(11)-\mathrm{H}(111)$	129(5)
$\mathrm{N}(11)-\mathrm{C}(21)-\mathrm{S}(11)$	$112.9(4)$	$\mathrm{S}(11)-\mathrm{C}(11)-\mathrm{H}(112)$	121(5)
$\mathrm{S}(11)-\mathrm{C}(21)-\mathrm{S}(21)$	120.7(4)	$\mathrm{S}(11)-\mathrm{C}(11)-\mathrm{H}(113)$	97(4)
$\mathrm{C}(21)-\mathrm{S}(11)-\mathrm{C}(11)$	103.1(3)	$\mathrm{H}(111)-\mathrm{C}(11)-\mathrm{H}(112)$	104(7)
$\mathrm{N}(11)-\mathrm{N}(21)-\mathrm{H}(211)$	114(3)	$\mathrm{H}(111)-\mathrm{C}(11)-\mathrm{H}(113)$	101(6)
$\mathrm{N}(11)-\mathrm{N}(21)-\mathrm{H}(212)$	108(3)	$\mathrm{H}(112)-\mathrm{C}(11)-\mathrm{H}(113)$	97(6)
$\mathrm{N}(22)-\mathrm{N}(12)-\mathrm{C}(22)$	114.8(4)	$\mathrm{H}(221)-\mathrm{N}(22)-\mathrm{H}(222)$	110(5)
$\mathrm{N}(12)-\mathrm{C}(22)-\mathrm{S}(12)$	114.0(4)	$\mathrm{S}(12)-\mathrm{C}(12)-\mathrm{H}(121)$	$105(3)$
$\mathrm{N}(12)-\mathrm{C}(22)-\mathrm{S}(22)$	124.8(4)	$\mathrm{S}(12)-\mathrm{C}(12)-\mathrm{H}(122)$	103(4)
$\mathrm{S}(12)-\mathrm{C}(22)-\mathrm{S}(22)$	121.3(3)	$\mathrm{S}(12)-\mathrm{C}(12)-\mathrm{H}(123)$	116(4)
$\mathrm{C}(22)-\mathrm{S}(12)-\mathrm{C}(12)$	102.6(3)	$\mathrm{H}(121)-\mathrm{C}(12)-\mathrm{H}(122)$	105(4)
$\mathrm{N}(12)-\mathrm{N}(22)-\mathrm{H}(221)$	106(3)	$\mathrm{H}(121)-\mathrm{C}(12)-\mathrm{H}(123)$	110(5)
$\mathrm{N}(12)-\mathrm{N}(22)-\mathrm{H}(222)$	106(4)	$\mathrm{H}(122)-\mathrm{C}(12)-\mathrm{H}(123)$	116(5)
$\mathrm{N}(23)-\mathrm{N}(13)-\mathrm{C}(23)$	116.3(4)	$\mathrm{N}(23)-\mathrm{N}(13)-\mathrm{H}(13)$	$115(3)$
$\mathrm{N}(13)-\mathrm{C}(23)-\mathrm{S}(23)$	124.2(4)	$\mathrm{C}(23)-\mathrm{N}(13)-\mathrm{H}(13)$	129(3)
$\mathrm{N}(13)-\mathrm{C}(23)-\mathrm{S}(13)$	114.4(4)	$\mathrm{S}(13)-\mathrm{C}(13)-\mathrm{H}(131)$	106(4)
$\mathrm{S}(23)-\mathrm{C}(23)-\mathrm{S}(13)$	121.3(3)	$\mathrm{S}(13)-\mathrm{C}(13)-\mathrm{H}(132)$	116(4)
$\mathrm{C}(23)-\mathrm{S}(13)-\mathrm{C}(13)$	102.9(3)	$\mathrm{S}(13)-\mathrm{C}(13)-\mathrm{H}(133)$	104(4)
$\mathrm{N}(13)-\mathrm{N}(23)-\mathrm{H}(231)$	106(3)	$\mathrm{H}(131)-\mathrm{C}(13)-\mathrm{H}(132)$	109(5)
$\mathrm{N}(13)-\mathrm{N}(23)-\mathrm{H}(232)$	110(3)	$\mathrm{H}(131)-\mathrm{C}(13)-\mathrm{H}(133)$	110(6)
$\mathrm{H}(231)-\mathrm{N}(23)-\mathrm{H}(232)$	2) 97(4)	$\mathrm{H}(132)-\mathrm{C}(13)-\mathrm{H}(133)$	111(6)

(c) In the water molecule			
$\mathrm{O}(\mathrm{W})-\mathrm{H}(3)$	$0.79(5)$	$\mathrm{H}(3)-\mathrm{O}(\mathrm{W})-\mathrm{H}(4)$	$111(6)$
$\mathrm{O}(\mathrm{W})-\mathrm{H}(4)$	$0.88(7)$		

the plane running through the NCSS conjugated system leaves the $N(22)$ and $C(12)$ atoms on the same side and the terminal N atoms and the C atoms of the SMe groups of the other two ligands on opposite sides.

The three five-membered chelating rings are not perfectly planar (Table 4). They show slight but different puckering as indicated by the puckering parameters calculated following ref. 11:

Ring	q_{2} / \AA	$\psi_{2} /^{\circ}$
$\mathrm{N}(21) \mathrm{N}(11) \mathrm{C}(21) \mathrm{S}(21) \mathrm{Co}$	0.158	341
$\mathrm{~N}(22) \mathrm{N}(12) \mathrm{C}(22) \mathrm{S}(22) \mathrm{Co}$	0.180	331
$\mathrm{~N}(23) \mathrm{N}(13) \mathrm{C}(23) \mathrm{S}(23) \mathrm{Co}$	0.054	138

The conformation of these groups is intermediate between the envelope and half-chair.

It is worthy of note that the neutral ligand forms the less puckered chelation ring, while it is the only ligand which is not perfectly planar.

The packing is determined by a network of intermolecular hydrogen bonds involving the chloride ions, the water molecules, and the N atoms of the ligands.

Table 4

Equations of the best least-squares planes in the form $m X+n Y+p Z=d$ where X, Y, Z are co-ordinates (\AA) referred to orthogonal axes $X \equiv x, Y \equiv y$, and Z perpendicular to X, Y. Deviations (\AA) of relevant atoms from the planes are in square brackets

$$
\begin{aligned}
& m \quad n \quad p \quad d \\
& \text { Plane (I): C(21), S(11), S(21), N(11) } \\
& 0.6273-0.7788 \quad-0.0070 \quad 0.2454 \\
& {[C(21) 0.001(6), S(11)-0.001(2), S(21)-0.001(2), \mathrm{N}(11)} \\
& -0.001(5), \mathrm{N}(21)-0.103(5), \mathrm{C}(11) 0.384(8)] \\
& \text { Plane (II): C(22), S(12), S(22), N(12) } \\
& 0.001(5), \mathrm{N}(22)-0.075(5), \mathrm{C}(12)-0.214(7)] \\
& \text { Plane (III): C(23), S(13), S(23), N(13) } \\
& \begin{array}{llll}
-0.1394 & -0.3907 & -0.9099 & -3.3702
\end{array} \\
& {[\mathrm{C}(23)-0.019(5), \mathrm{S}(13) \quad 0.003(2), \mathrm{S}(23) \quad 0.003(2), \mathrm{N}(13)} \\
& 0.014(4), \mathrm{N}(23) 0.089(4), \mathrm{C}(13)-0.364(7), \mathrm{H}(13)-0.10(5)] \\
& \text { Plane (IV): S(21), C(21), N(11), N(21) } \\
& 0.6635 \quad-0.7474 \quad-0.0333 \quad 0.2351 \\
& {[\mathrm{~S}(21) \quad 0.001(2), \mathrm{C}(21)-0.020(6), \mathrm{N}(11) \quad 0.023(5), \mathrm{N}(21)} \\
& -0.003(5), \text { Co } 0.213(5)] \\
& \text { Plane (V): S(22), C(22), N(12), N(22) }
\end{aligned}
$$

Electronic Spectra.-The cobalt(III) complexes exhibit electronic spectra which fit pseudo-octahedral patterns for a d^{6} configuration of $\approx O_{h}$ geometry, according to their diamagnetism. The nearly coincident values for the electronic transitions of all the compounds indicate the same co-ordination environment in each case. The chromophore is, indeed, cis- $\mathrm{Co}^{\mathrm{III}} \mathrm{N}_{3} \mathrm{~S}_{3}$, as indicated by the X-ray structure determination of $\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The close similarity of the electronic spectra of compounds containing neutral and/or anionic ligands is indicative of high charge delocalization in the $\mathrm{N} \cdots$ $\mathrm{C}(\cdots \mathrm{S}) \mathrm{SMe}$ moiety as already suggested by photoelectron spectral measurements on nickel S-methyl dithiocarbazates ${ }^{12}$ and clearly confirmed by X-ray structural data.

The spectroscopic parameters $\Delta=10 D q=19900$ $\mathrm{cm}^{-1}, B=389 \mathrm{~cm}^{-1}$, and $\beta=0.355$ (calculated following ref. 13) for $\left[\mathrm{Co}(\mathrm{MeL})_{3}\right] \mathrm{Cl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ can be extended to all the cobalt(iii) compounds. The low value of β agrees with the presence of S in the co-ordination sphere. The electronic spectra of $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HL})_{3}\right]_{2}\left[\mathrm{Co}^{\mathrm{II}} \mathrm{X}_{4}\right]_{3}$ and $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{MeL})_{3}\right]_{2}\left[\mathrm{Co}^{\mathrm{II}} \mathrm{X}_{4}\right]_{3}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ exhibit
features which are characteristic of both octahedral $\mathrm{Co}^{\text {III }}$ and tetrahedral $\mathrm{Co}^{\mathrm{II}}$.

The complexes $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{X}_{\mathbf{2}}(\mathrm{X}=\mathrm{Cl}$ or Br$),[\mathrm{Co}-$ $\left.(\mathrm{MeL})_{3}\right] \mathrm{Br}_{2},\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{MeL})_{2.5} \mathrm{Cl}_{2}\right]$, and $\left[\mathrm{Co}(\mathrm{MeL})_{2}\left(\mathrm{SO}_{4}\right)\right]$ exhibit electronic spectra which fit pseudo-octahedral models for a d^{7} configuration, according to their magnetic moments. The coincident spectra of $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{Br}_{2}$ suggest that both compounds have the same chromophore. This can be reasonably considered
of O_{h} symmetry due to the presence of Cl and O in the co-ordination environment, respectively.

Infrared Spectra (Tables 5 and 6).-All the complexes show $v\left(\mathrm{NH}_{2}\right)$ and $\delta\left(\mathrm{NH}_{2}\right)$ frequencies and bands attributable to the NCSS group, in the $900-1200 \mathrm{~cm}^{-1}$ region, split and lowered upon co-ordination, confirming the N, S co-ordination. The complexes $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HL})_{3}\right]_{2^{-}}$ $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{4}\right]_{3}$ and $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{MeL})_{3}\right]_{2}\left[\mathrm{Co}^{\mathrm{II}} \mathrm{Cl}_{4}\right]_{3}$ show absorption frequencies comparable with those of $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$

Table 5
Infrared spectra (cm^{-1}) of the cobalt(iII) complexes

HL *	MeL	$\begin{gathered} {\left[\mathrm{Co}(\mathrm{HL})_{3}\right]-} \\ \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{gathered} {\left[\mathrm{Co}(\mathrm{MeL})_{3}\right]-} \\ \mathrm{Cl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\underset{\left[\mathrm{Co}(\mathrm{HL})_{3}\right]_{2}-}{\left[\mathrm{CoCl}_{4}\right]_{3}}$	$\begin{gathered} {\left[\mathrm{Co}(\mathrm{MeL})_{3}\right]_{2^{-}}} \\ {\left[\mathrm{CoCl}_{4}\right]_{3}} \end{gathered}$	$\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{Cl}_{2}$	$\begin{gathered} {\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right]-} \\ \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O} \end{gathered}$	[CoL_{3}]	Tentative assignments $\nu(\mathrm{O}-\mathrm{H})$
			3380 br	3400	3400				
3280	3290 s	3060	3040	3060		3070	3160 (sh)	3200	$\boldsymbol{\nu}(\mathrm{N}-\mathrm{H})$
3210	3235 m						3 040w		
3170	$3190 w$								
		2620 br	2590 br						$\nu(\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{Cl})$
1600	1608	1620 (sh)	1645	1600 br	1600 br	1610	1610	1580	$\delta\left(\mathrm{NH}_{2}\right)$
1580		1600	1600			1590	1585		
		1570	1590 (sh)						
1520						1510 w	1510 w	1520 s	$\begin{aligned} & \nu(\mathrm{C} \cdots \mathrm{~N}) \\ & +\delta(\mathrm{NH}) \end{aligned}$
						1070 (sh)	1070 (sh)		
1155 s	1100	1070 s	$1095 m$	1070 s	1090 s	1060 s	1060 s	1235 m	$\begin{aligned} & \nu(\mathrm{NCSS}) \\ & +\nu(\mathrm{C}=\mathrm{S}) \end{aligned}$
		1035 m	1015 m	1035 m	1015	1010 (sh)			
1010	$\begin{aligned} & 1030 \text { (sh) } \\ & 1050 \mathrm{~s} \end{aligned}$	970 vs	975s	985 vs	975 vs	980s	960s		$v(\mathrm{C} \stackrel{\cdots}{\mathrm{~S}})$
						995 (sh)	990	995s	$\begin{aligned} & \nu_{\text {asym }}\left[C\left(S^{-}\right)-\right. \\ & \text {SMe }^{-} \end{aligned}$
975 (sh)	965 (sh)	955s	955w	960s	960 (sh)	950	950 (sh)	960s	$\nu(\mathrm{N}-\mathrm{N})$
945 s	945 s								$\nu(\mathrm{C}-\mathrm{S})$
						915 (sh)	915 (sh)	915 m	$\nu_{\mathrm{sym}}\left[\mathrm{C}\left(\mathrm{~S}^{-}\right)-\right.$ SMe]

* Previous reports: M. F. Iskander, El Sayed, and L. El Sayed, J. Inorg. Nuclear Chem., 1971, 33, 4253; D. Fak-Michalska and B. B. Kedzia, Bull. Acad. Polon Sci., 1976, 24, 393.

Table 6
Infrared (cm^{-1}) spectra of the cobalt(ii) complexes

$\begin{gathered} {\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{Cl}_{2}} \\ 3 \mathbf{1 0 0} \end{gathered}$	$\left[\mathrm{Co}(\mathrm{MeL})_{2 \cdot 5} \mathrm{Cl}_{2}\right]$	$\left[\mathrm{Co}(\mathrm{MeL})_{2}\left(\mathrm{SO}_{4}\right)\right]$ *	$\left[\mathrm{Co}(\mathrm{MeL})_{3}\right] \mathrm{Br}_{2}$	$\begin{gathered} \text { Tentative } \\ \text { assignments } \\ \boldsymbol{\nu}(\mathrm{N}-\mathrm{H}) \end{gathered}$
	3085	3208	3145	
	3040	3156	3100	
		3116	3048	
1615	1616	1605	1617	$\delta\left(\mathrm{NH}_{2}\right)$
1080 s	1 096s	1096 vs	1600 1100 m	$\nu(\mathrm{NCSS})+\nu(\mathrm{C}=\mathrm{S})$
	1084 (s)			
970	${ }_{9} 996$ s	992 vs	1000 vs	$\nu(\mathrm{C} \cdots \mathrm{S})$
960vs	964 s 960 s	964 vs 960 vs	980 s 960 s	$\nu(\mathrm{N}-\mathrm{N})$
960 vs	896 m	960 vs	905 m	$\nu(\mathrm{N}-\mathrm{N})$

* SO stretching frequencies ν_{1} at $1015 \mathrm{vs}, \nu_{3}$ at $1036 \mathrm{~s}, 1100 \mathrm{vs}, 1104 \mathrm{vs}$, and 1145 s , and ν_{4} at $598 \mathrm{vs}, 628 \mathrm{~m}$, and $652 \mathrm{~cm}^{-1}$.
to be $\mathrm{Co}^{\mathrm{II}} \mathrm{N}_{3} \mathrm{~S}_{3}$, as suggested by their easy oxidation in the air in the solid state to $\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{X}_{2}$, whose chromophore is $\mathrm{Co}^{I I I} \mathrm{~N}_{3} \mathrm{~S}_{3}$. The reflectance spectra of [Co$\left.(\mathrm{HL})_{3}\right] \mathrm{X}_{2}$ and $\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{X}_{2}$ are given in Figure 2. $\Delta=9100 \mathrm{~cm}^{-1}$ (ref. 14) for both $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{X}_{2}$ and [Co$\left.(\mathrm{MeL})_{3}\right] \mathrm{Br}_{2}$ indicates the same ligand-field strength for both these ligands in cobalt(II) complexes, as already observed for the nickel(II) complexes. ${ }^{5}$ The stoicheiometries of the compounds $\left[\mathrm{Co}^{I I}(\mathrm{MeL})_{2 \cdot 5} \mathrm{Cl}_{2}\right]$ and $[\mathrm{Co}-$ $(\mathrm{MeL})_{2}\left(\mathrm{SO}_{4}\right)$] suggest co-ordination of the anions, as is also indicated by the electronic spectra. The broadening of the first spin-allowed band and the splitting of the second spin-allowed band indicate a significant lowering
and $\left[\mathrm{Co}(\mathrm{MeL})_{3}\right] \mathrm{Cl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, confirming that they possess the same co-ordination sphere, as already suggested by the electronic spectra.

The presence of the deprotonated ligand $\mathrm{L}\left[\mathrm{NH}_{2} \mathrm{~N}=\mathrm{C}\right.$ -$\left.\left(\mathrm{S}^{-}\right) \mathrm{SMe}\right]$ in $\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{Cl}_{2}, \quad\left[\mathrm{Co}(\mathrm{HL}) \mathrm{L}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$, and [CoL_{3}] is accompanied by the appearance of a band, in the $1500-1550 \mathrm{~cm}^{-1}$ region, which is essentially a CN vibration with enhanced double-bond character. Moreover, for $\left[\mathrm{CoL}_{3}\right] \vee(\mathrm{C}=\mathrm{S})$ disappears and a new band, assignable to $v_{\text {assm }}\left[\mathrm{C}\left(\mathrm{S}^{-}\right) \mathrm{SMe}\right]$ appears at $995 \mathrm{~cm}^{-1}$. The same band is also present in the spectra of all compounds containing L .

In the spectrum of $\left[\mathrm{Co}(\mathrm{MeL})_{\mathbf{2}}\left(\mathrm{SO}_{\mathbf{4}}\right)\right]$, bands indicating

Figure 2 Reflectance spectra of (a) $\left[\mathrm{Co}(\mathrm{HL})_{3}\right] \mathrm{X}_{2}$ and (b) $\left[\mathrm{Co}(\mathrm{HL})_{2} \mathrm{~L}\right] \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$
co-ordination of the SO_{4} group are also present. The splitting of v_{3} and v_{4} suggests a bridging co-ordination. ${ }^{15}$

We thank Professor M. Nardelli for his interest in this work, and Mr. M. Zugarini for help in preparing and characterizing the compounds.
[8/1122 Received, 16th June, 1978]

REFERENCES

${ }^{1}$ C. Battistoni, G. Mattogno, A. Monaci, and F. Tarli, (a) J. Inorg. Nuclear Chem., 1971, 33, 3815; (b) Inorg. Nuclear Chem. Letters, 1971, 7, 981; (c) ibid., p. 1081.
${ }^{2}$ M. Das and S. E. Livingstone, Inorg. Chim. Acta, 1976, 19, 5 and refs. therein.
${ }^{3}$ U.S.P. $3,458,638$; B.P. 963,924 and 918,367 ; Jap. P. $21,744 / 1963,4,518 / 1962,6,677 / 1964,22,569 / 1963$, and $19,114 /$ 1963.
${ }^{4}$ M. Akbar Ali and S. E. Livingstone, Co-ordination Chem. Rev., 1973, 13, 126.
${ }^{5}$ A. Monaci and F. Tarli, unpublished work.
${ }^{6}$ A. M. Manotti Lanfredi, A. Tiripicchio, M. Tiripicchio Camellini, A. Monaci, and F. Tarli, J.C.S. Dalton, 1977, 417.
${ }^{7}$ K. A. Jensen, U. Anthoni, and A. Holm, Acta Chem. Scand., 1969, 23, 1916.
${ }^{8}$ A. Monaci and F. Tarli, J.C.S. Dalton, in the press.
${ }^{9}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{10}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{11}$ D. Cremer and J. A. Pople, J. Amer. Chem. Soc., 1975, 97. 1354.
${ }^{12}$ C. Battistoni, M. Bossa, C. Furlani, and G. Mattogno, J. Electron Spectroscopy, 1973, 2, 355.
${ }_{13}$ A. B. P. Lever, 'Inorganic Electronic Spectroscopy,' Elsevier, Amsterdam, 1968.
${ }^{14}$ E. König, Structure and Bonding, 1971, 9, 175.
${ }^{15}$ K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1963, p. 174.

[^0]: * For details see Notices to Authors No. 7, J.C.S. Dalton, 1978,

