
Cation Radicals of Phenothiazines. Part 2.¹ Electron Transfer between Aquacobalt(μ) and N-Alkylphenothiazines

By Ezio Pelizzetti • and Roberto Giordano, Istituto di Chimica Analitica, Università di Torino, Via P. Giuria, 5. 10125 Torino, Italy

The kinetics of electron transfer between aquacobalt(III) and some *N*-alkylphenothiazines has been investigated by means of the stopped-flow technique. The reaction consists of a one-electron transfer with formation of the corresponding cation radicals. The reaction rates have been found to be independent of acidity in the range $0.40 \leq [\text{HCIO}_4] \leq 2.00 \text{ mol dm}^3$, suggesting that $\text{Co}^{3+}(\text{aq})$ is the main reacting species. The results are discussed in terms of the Marcus cross-reaction equation for outer-sphere electron-transfer reactions.

STUDIES of the oxidation kinetics of series of related organic compounds have played an important role in understanding the mechanism of electron-transfer reactions involving metal-ion complexes. The benzenediols, which have been used in previous investigations, allowed us to assess a dependence of activation energy on free-energy change for reactions with different complexes {[IrCl₆]²⁻ and related complexes,² [FeL₃]³⁺ where L = phenanthroline- or bipyridine-like ligands,³ [Mo- $(CN)_8]^{3-,4}$ and $[Fe(CN)_6]^{3-}$ (ref. 4)} and to estimate their characteristic intrinsic parameters. Different behaviour has been observed with aquametal ions, like manganese(III)⁵ or cobalt(III).⁶ These reactions were found to be largely acid-dependent: the reaction path which pertains to M³⁺ exhibited a relationship between the free energy of activation and free-energy change, while the rates of the paths referred to [M(OH)]²⁺ species were found to be almost independent of the nature of the organic substrate.

responding cation radicals,⁷ according to:

The cation radicals of phenothiazines are stable in acidic solution, are strongly absorbing in the visible,⁷ and the reduction potentials and self-exchange rates between radicals and parent molecules are known.¹

EXPERIMENTAL

Reagents.—Cobalt(III) solutions were prepared by anodic oxidation of cobalt(II) perchlorate solutions, as previously described.⁶ The investigated phenothiazines (collected in Table 1) were supplied by Rhône-Poulenc. Perchloric acid and sodium perchlorate (E. Merck) were used to adjust

TABLE 1

Reduction potentials of investigated phenothiazines and spectral characteristics of the corresponding cation radicals

 $\swarrow 1^{S}$

Compound	x	R	<i>E</i> ⇔/V *	λ/nm	10 ⁻³ ɛ/dm³ mol-1 cm ⁻¹			
(1)	OH	CH ₂ CH ₂ CH ₂ NMe ₂	0.625	562	9.5			
(2)	н	CH ₂ CH ₂ CH ₂ N/NMe	0.72	514	9.4			
(3) (4)	OMe H	CH ₂ CH ₂ CH ₂ NMe ₂ CH ₂ CH ₂ CH ₂ NMe ₂	$0.71 \\ 0.71_{5}$	$\begin{array}{c} 566 \\ 513 \end{array}$	9.0 9.2			
(4) (5)	Cl	CH ₂ CH ₂ CH ₂ NMe ₂	0.78	525	10.2			
(6)	H	CH ₂ CH ₂ NEt ₂	0.82	511	10.5			
(7) (8)	H H	CH ₂ CH(Me)NMe ₂ CH(Me)CH ₂ NMe ₂	0.86 ₅ 0.89	$\begin{array}{c} 515 \\ 524 \end{array}$	9.3 8.8			
	* At 2	5.0 °C, $[HClO_4] = 1.00 \text{ mol } dm^{-3}$, and $I = 1.0$ mc	ol dm ⁻³ .				

* At 25.0 °C, $[HCIO_4] = 1.00$ mol dm °, and I = 1.0 mol dm

The present paper deals with the kinetics and mechanism of electron transfer between Co^{III} in aqueous perchlorate solutions and a series of *N*-alkylphenothiazines. This class of compounds, which are of pharmaceutical interest,⁷ has been found to be particularly versatile in these investigations: they give rise to a one-electron oxidation, with formation of the corthe acidity and the ionic strength. Doubly distilled water was used.

Procedure.—The kinetic runs were performed with a Durrum–Gibson stopped-flow spectrophotometer, the phenothiazines being present in excess. The concentrations of organic substrates were varied from 5×10^{-5} to 2×10^{-4} mol dm⁻³ and the acidity range investigated was 0.40—2.00 mol dm⁻³ HClO₄. The spectral range 520—560 nm

Kinetic parameters for oxidation of phenothiazines with CoIII a

	<i>k</i> ^{<i>b</i>} /dm ³ n	$\Delta H^{\ddagger b}$	ΔS‡ °	
Compound	7.5 ℃	25.0 °C	kcal mol-1	cal K ⁻¹ mol ⁻¹
(1)	$(5.8 + 0.4) \times 10^4$	$(1.8 \pm 0.2) \times 10^{5}$	10.2	0
(2)	$(2.1 \pm 0.2) \times 10^4$	$(7.5 \pm 0.6) \times 10^4$	11.6	2
(3)	$(1.5 \pm 0.1) \times 10^4$	$(6.0 \pm 0.5) \times 10^4$	12.6	6
(4)	$(2.3 \pm 0.2) \times 10^4$	$(9.2 \pm 0.9) \times 10^4$	12.6	6
(5)	$(1.3 \pm 0.1) \times 10^4$	$(4.0 \pm 0.3) \times 10^4$	10.1	3
(6)	$(4.8 \pm 0.5) \times 10^3$	$(1.9 \pm 0.2) \times 10^4$	12.5	3
(7)	$(4.3 \pm 0.3) \times 10^3$	$(1.4 \pm 0.1) \times 10^4$	10.7	— 4
(8)	$(4.2 \pm 0.4) \times 10^3$	$(1.3 \pm 0.1) \times 10^4$	10.2	-6

^a $[Co^{III}]_0 = 1.5 \times 10^{-5} - 2.0 \times 10^{-5} \text{ mol dm}^{-3}$, $I = 2.0 \text{ mol dm}^{-3}$ $(Na[ClO_4])$. ^b The error is 1.2–1.5 kcal mol⁻¹. ^c The error is 4–5 cal K⁻¹ mol⁻¹.

was found particularly useful owing to the high absorptivity of the cation radicals (see Table 1). Second-order plots were linear for at least three half-lives. Alternatively, as suggested by Corbett,⁸ a reaction with only two-fold excess of one reagent can be treated as a pseudo-first-order reaction, with an error in the calculated k of < 2% for 60% conversion. The agreement between the data computed with the two methods was good.

RESULTS AND DISCUSSION

Stoicheiometry.—By operating with Co^{III} as the limiting reagent in order to avoid further oxidation of cation radicals,⁷ and by evaluating spectrophotometrically the cation radical formed, a stoicheiometric ratio of 1:1 was established, according to reaction (1).

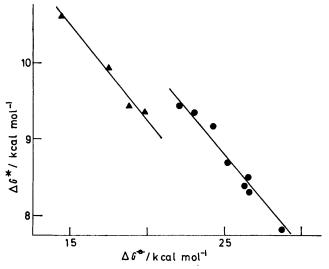
$$Co^{III} + ptz \longrightarrow Co^{II} + ptz^{+}$$
 (1)

Kinetics.—The second-order plots were found to be linear and the first-order dependence on the concentration of each reagent corresponds to the rate law (2).

$$-d[Co^{III}]/dt = k[Co^{III}][ptz]$$
(2)

No effect of acidity was observed in the range 0.40— $2.00 \text{ mol dm}^3 \text{HClO}_4$. The second-order rate constants, averaged from the data obtained at different acidities, are collected in Table 2 together with corresponding activation parameters.

The absence of an acid-dependent path is rather unusual in oxidation reactions involving Co^{III}, particularly with organic substrates.⁹ The same behaviour, *i.e.* a negligible contribution of the hydrolysed form to the reaction progress, has been observed also in the oxidation with Fe^{III} of the same phenothiazines.¹ In other outer-sphere electron transfers involving metal-ion complexes, an unfavourable reactivity ratio of the hydrolysed species compared with the unhydrolysed one has been observed.¹⁰ Thus, in this case, the hydroxo-group is unable to act as bridging group which catalyses the electron-transfer act.


The values of k reported exceed the rate of water exchange in the co-ordination sphere of $\operatorname{Co}^{3+}(\operatorname{aq})$,⁹ thus suggesting an outer-sphere mechanism. Then, according to the Marcus theory,¹¹ a dependence of activation energy on free-energy change is expected, of the form (3)

$$\Delta G^{*}_{12} = \lambda_{12} [1 + (\Delta G^{\circ} / \lambda_{12})]^2 / 4$$
 (3)

(owing to the high ionic strength, the work terms have \dagger Throughout this paper: 1 cal = 4.184 J.

been neglected), where λ_{12} is the intrinsic parameter related to the self-exchange activation parameters through the relationship $\lambda_{12} = 2(\Delta G^*_{11} + \Delta G^*_{22})$ and ΔG^*_{12} may be obtained from the expression k = $Z \exp(-\Delta G^*_{12}/RT)$ where Z is the collision frequency assumed to be 10^{11} dm³ mol⁻¹ s⁻¹. Accordingly to equation (3), a plot of ΔG^*_{12} as a function of ΔG° , for a small range of ΔG° with respect to λ_{12} , is practically linear with slope $\frac{1}{2}[1 + (\Delta G^{\circ}/2\lambda_{12})]$. By computing λ_{12} from the reported values of self-exchange activation energy for ptz⁺-ptz ($\Delta G^*_{11} = 3.3$ kcal mol⁻¹)¹ and for $Co^{III}-Co^{II}$ ($\Delta G^*_{22} = 13.8$ kcal mol⁻¹),⁹ the slope is expected to have a value 0.31 : the Figure shows that the experimental data agree with this expectation (slope 0.28).[†]

As is usual in cobalt(III) oxidations,^{6,9} for the present

Variation of ΔG^* with ΔG^{\odot} for outer-sphere oxidation of Co^{III}: (\bigcirc) phenothiazines; (\triangle) phenanthroline complexes of Fe^{II}. The reduction potential of Co^{III}-Co^{II} has been assumed as 1.87 V (ref. 9)

systems the calculated rate constants differ from the experimental ones by about five orders of magnitude. Several explanations have been advanced in order to account for this discrepancy.^{9,12}

It is also interesting to compare the present results with the oxidation of $[FeL_3]^{2+}$ systems ¹³ and in the Figure the data concerning such systems are included for comparison: the observed slopes are very similar and the slight difference in the intercepts can be attributed to small differences in the intrinsic terms of the two families.¹⁴ This suggests that the same mechanism, that is a simple outer-sphere electron transfer, is operating in the oxidation with CoIII of phenanthroline complexes of iron(II) and of phenothiazines.

[8/1351 Received, 20th July, 1978]

REFERENCES

¹ Part 1, E. Pelizzetti and E. Mentasti, Inorg. Chem., 1979,

18, 583. ² E. Pelizzetti, E. Mentasti, and C. Baiocchi, J. Phys. Chem., E. Pelizzetti, and C. Baiocchi, J.C.S. 1976, 80, 2979; E. Mentasti, E. Pelizzetti, and C. Baiocchi, J.C.S. Dalton, 1977, 132; E. Pelizzetti, E. Mentasti, and E. Pramauro, J.C.S. Perkin II, 1978, 620. ³ E. Pelizzetti and E. Mentasti, Z. phys. Chem. (Frankfurt),

1977, 105, 21; E. Mentasti and E. Pelizzetti, Internat. J. Chem. Kinetics, 1977, 9, 215.

⁴ E. Pelizzetti, E. Mentasti, and E. Pramauro, Inorg. Chem., 1978, 17, 1688.

⁶ G. Davies, Inorg. Chim. Acta. 1975, 14, L13; E. Pelizzetti,
E. Mentasti, and G. Giraudi, *ibid.*, 15, L1.
⁶ E. Pelizzetti and E. Mentasti, J.C.S. Dalton, 1976, 2222.
⁷ 'Phenothiazines and Structurally Related Drugs,' eds.
I. S. Forrest, C. J. Carr, and E. Usdin, in 'Advances in Biochemical Psychopharmacology,' Raven Press, New York, 1974, vol. 9; C. Bodea and I. Silberg, Adv. Heterocyclic Chem., 1968, 9, 291 321.

⁸ J. F. Corbett, J. Chem. Educ., 1972, 49, 663.

⁸ J. F. Corbett, J. Chem. Educ., 1972, 49, 003.
⁹ A. McAuley, Co-ordination Chem. Rev., 1970, 5, 245; G. Davies and B. Warnqvist, *ibid.*, p. 349; I. Bodek and G. Davies, *ibid.*, 1974, 14, 269; G. Davies, *ibid.*, p. 287.
¹⁰ T. J. Meyer and H. Taube, Inorg. Chem., 1968, 7, 2369.
¹¹ R. A. Marcus, Ann. Rev. Phys. Chem., 1964, 15, 155.
¹² P. A. Marcus in 'The Nature of Seawater ' ed. E. D. Gold-

¹² R. A. Marcus, in 'The Nature of Seawater,' ed. E. D. Gold-B. Harcus, M. The Nature of Seawater, ed. E. B. Goldson, Dahlem Workshop Report, p. 477; T. J. Przystas and N. Sutin, J. Amer. Chem. Soc., 1973, 95, 5545; M. A. Hoselton, R. S. Drago, L. J. Wilson, and N. Sutin, *ibid.*, 1976, 98, 6967; D. P. Rillema and J. F. Endicott, *ibid.*, 1972, 94, 8711.

¹³ R. J. Campion, N. Purdie, and N. Sutin, Inorg. Chem., 1964, 8, 1091.

¹⁴ R. C. Young, F. R. Keene, and T. J. Meyer, J. Amer. Chem. Soc., 1977, 99, 2468; E. Pelizzetti, E. Mentasti, and E. Pramauro, Inorg. Chem., 1978, 17, 1181.