Crystal and Molecular Structure of μ -Carbonyl- μ -(1—3- η : 1- σ , 4–2'- η -{1,3-dimethyl-4-[5-oxo-4-phenyl-2(5H)-furan-2-ylidene]but-1-ene-1,3-diyl})-bis(dicarbonylcobalt) (*Co*-*Co*)

By John A. D. Jeffreys,* Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL

The crystal and molecular structure of the title compound have been determined by X-ray diffraction methods from photographic data. Crystals are triclinic tablets, space group $P\overline{I}$, with Z = 2 in a cell with dimensions a = 9.41(3), b = 9.98(3), c = 11.90(3) Å, $\alpha = 97.3(3)$, $\beta = 100.9(3)$, and $\gamma = 108.3(3)^{\circ}$. The structure has been solved by Patterson and Fourier methods, and refined by least-squares techniques to R 0.096 for 946 reflections. The cobalt-cobalt distance is 2.48 Å.

REACTION between a butenolide complex, (1; R = H, Me, or Ph) and a monosubstituted acetylene, L, gives a mixture of products which includes two isomeric com-

pounds of formula $[(1) - 2 \text{ CO}]L_2$. In the case of the butenolide (1; R = Ph) and methylacetylene, both isomers, denoted A and B,¹ have been obtained pure. This paper reports the structure of the B isomer. The A isomer has so far provided only multiply twinned crystals that have frustrated X-ray analysis.

EXPERIMENTAL

The title compound forms red tablets (m.p. 184 °C). The crystal selected was bounded by (1 0 $\overline{1}$) and ($\overline{1}$ 0 $\overline{1}$), with (0 1 0), (0 0 1), and (0 1 1) displayed.

Crystal Data.— $C_{21}H_{14}Co_2O_7$, M = 496.2, Triclinic, a = 9.41(3), b = 9.98(3), c = 11.90(3) Å, $\alpha = 97.3(3)$, $\beta = 100.9(3)$, $\gamma = 108.3(3)^{\circ}$, $U = 1\ 002$ Å³, $D_m = 1.603 \pm 0.005$ g cm⁻³, Z = 2, $D_c = 1.644$ g cm⁻³, F(000) = 500, space group PI, Cu- K_{α} radiation, $\lambda = 1.541$ 8 Å, μ (Cu- K_{α}) = 136.1 cm⁻¹. Crystal dimensions, *ca.* 0.1 mm along each axial direction.

Crystallographic Measurements.—The parameters of the unit cell were found from rotation and Weisenberg photographs about a with $\text{Cu}-K_{\alpha}$ radiation, and from precession photographs with $\text{Mo}-K_{\alpha}$ ($\lambda = 0.710$ 7 Å) radiation. The intensity data for the layers 0-7 kl were collected as equiinclination multiple-film Weissenberg photographs. The intensities for 981 reflections were measured and corrected for absorption at the S.R.C. Microdensitometer Laboratory. In each case these were corrected for time of exposure, polarization, and Lorentz factors.

Structure Determination.—The known molecular weight, the density, and the volume of the unit cell gave Z = 2, and the space group was taken as $P\overline{I}$. A three-dimensional Patterson map gave co-ordinates for the cobalt atoms and successive rounds of structure-factor calculations and

Fourier syntheses revealed the remaining carbon and oxygen atoms. Scattering factors for the atom types were taken from ref. 2, and throughout the calculations were corrected for the real and imaginary components of anomalous dispersion. The co-ordinates and temperature factors for the atoms (anisotropic for cobalt) were optimized by blockdiagonal least-squares methods; the course of the calculations was that used for tricarbonyl(2-methylindolyl)manganese,³ except that the final weighting scheme was $w^{\frac{1}{2}} = 1.0$ if $|F_0| \leq 35.0$, otherwise $w^{\frac{1}{2}} = 35.0/|F_0|$. The final discrepancy ratios were R 0.096, $R' (= \Sigma w \Delta^2 / \Sigma w F_0^2)$ 0.132. Observed and calculated structure factors, temperature parameters, and evidence of convergence of the refinement are listed in Supplementary Publication No. SUP 22681 (13 pp.).[†] An attempt to continue refinement with anisotropic temperature parameters for all atoms produced little change in bond lengths, but gave implausible temperature parameters, possibly a consequence of the low ratio of intensities (981) to parameters (270 atomic and temperature parameters). When refinement had converged, a difference-Fourier map was computed and searched for peaks of maximum density $\ge |0.5|$ e A⁻³. Sixteen were found, nine with positive density, seven with negative density; the extreme values were 0.7 and -0.6 e Å⁻³. One, of height 0.6 e Å⁻³, was the hydrogen at C(20); C-H 1.04 Å, H-C(20)-C angles 118 [C(19)] and 129° [C(22)]. No other peak was chemically significant.

DISCUSSION

Table 1 gives the final co-ordinates of the atoms, and standard derivations derived from the final least-squares matrix. Figure 1 shows the non-standard crystallographic numbering of the molecule and Figure 2 is a stereoscopic drawing of the molecule, seen normal to the plane through Co(1), Co(2), and C(15). Table 2 lists interatomic distances, valency angles, and some nonbonded interactions; Table 3 gives mean values of the parameters for selected types of bond, together with the means of some previously measured values, and the mean estimated standard deviations for bond lengths and Table 4 lists radial and angular co-ordinates in angles. stereographic projections of the bond vectors about the two cobalt atoms and Table 5 comparative data for bond lengths within the furanone ring for different compounds.

 \ddagger For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

The title compound is derived from the butenolide

FIGURE 1 A molecule of the title compound showing the crystallographic numbering used

(1; R = Ph); the crystal and molecular structures of the analogue (1; R = H) have been described by Mills and Robinson.⁴ The cobalt-cobalt distance in the title

mean C-Co-C angle (98°) is similar to that (101°) for dicobalt octacarbonyl,⁵ and for those in (1; R = H)

TABLE	

Final atomic co-ordinates $(\times 10^4)$ with standard deviations in parentheses

Atom	x la -	v/b	zlc
$C_0(1)$	5 671(5)	2 102(4)	2 1 3 2 (3)
$C_0(2)$	3 562(5)	3.098(4)	1773(3)
O(3)	5 486(30)	-647(27)	2 629(22)
O(4)	7 516(26)	2 152(23)	408(19)
O(5)	380(26)	1.562(23)	1477(19)
$\tilde{O}(6)$	3 438(27)	$5\ 253(24)$	364(20)
$\tilde{O}(\tilde{z})$	3579(27)	1223(24)	-231(19)
Õ(8)	11 003(22)	3 211(20)	4 176(16)
Ō(9)	8 937(18)	3585(16)	3 226(13)
C(10)	5 469 (32)	386(30)	2 371(23)
C(11)	6 823(31)	2 072(28)	1 116(22)
C(12)	1 639(31)	2 157(28)	1594(22)
C(13)	3 457(35)	4 324(32)	941(25)
C(14)	3 995(36)	1 905(33)	751(26)
C(15)	4 218(24)	2 239(22)	3 128(18)
C(16)	4 352(27)	3 630(25)	3 540(20)
C(17)	5 443(26)	4 646(24)	3 062(19)
C(18)	6 692(28)	4 237(26)	2724(21)
C(19)	7 443(28)	3 568(25)	3 438(20)
C(20)	7 523(26)	3 303(23)	4 607(18)
C(21)	8 874(26)	3 090(24)	5 036(19)
C(22)	9 667(30)	3 216(27)	4 171(21)
C(23)	9 356(28)	2 705(26)	6 177(20)
C(24)	8 930(31)	3 249(28)	7 107(23)
C(25)	9 432(36)	2 923(34)	8 210(26)
C(26)	10 317(37)	$2\ 113(33)$	8 330(27)
C(27)	10 802(39)	1 533(36)	7 402(29)
C(28)	10 268(30)	1823(27)	6 292(21)
C(29)	$3\ 262(31)$	1 044(29)	3626(23)
C(30)	5 631(33)	6 291(30)	3 240(24)

 $(101^{\circ} \text{ at each cobalt atom}).*$ The bond angles at C(10) and C(11) depart from 180° by two standard deviations;

FIGURE 2 Stereoscopic drawing showing the molecule viewed normal to the plane through Co(1), Co(2), and C(15). Co(1) lies to the left; in front of it are C(18) (upper) and C(19) (lower)

compound (2.48 Å) is similar to that in (1; R = H), and in other organometallic compounds containing a cobaltcobalt bond. Neither cobalt atom has octahedral coordination. For the terminal carbonyl groups the this may indicate disorder, as the highest temperature parameters are systematically those for the oxygen atoms of the carbonyl ligands. The Co-C distances * Values calculated from published data.

TABLE 2

Selected valency parameters

(a) Bond lengths (Å)		
$\begin{array}{c} \mathrm{Co}(1){-}\mathrm{Co}(2)\\ \mathrm{Co}(1){-}\mathrm{C}(10)\\ \mathrm{Co}(1){-}\mathrm{C}(11)\\ \mathrm{Co}(1){-}\mathrm{C}(11)\\ \mathrm{Co}(1){-}\mathrm{C}(15)\\ \mathrm{Co}(1){-}\mathrm{C}(18)\\ \mathrm{Co}(2){-}\mathrm{C}(12)\\ \mathrm{Co}(2){-}\mathrm{C}(12)\\ \mathrm{Co}(2){-}\mathrm{C}(13)\\ \mathrm{Co}(2){-}\mathrm{C}(14)\\ \mathrm{Co}(2){-}\mathrm{C}(16)\\ \mathrm{Co}(2){-}\mathrm{C}(17)\\ \mathrm{O}(3){-}\mathrm{C}(10)\\ \mathrm{O}(4){-}\mathrm{C}(11)\\ \mathrm{O}(5){-}\mathrm{C}(12)\\ \mathrm{O}(6){-}\mathrm{C}(13)\\ \mathrm{O}(7){-}\mathrm{C}(14)\\ \mathrm{O}(8){-}\mathrm{C}(22)\end{array}$	$\begin{array}{c} 2.48\\ 1.73\\ 1.77\\ 1.99\\ 2.00\\ 2.01\\ 2.06\\ 1.71\\ 1.68\\ 1.79\\ 2.01\\ 2.03\\ 2.13\\ 1.12\\ 1.15\\ 1.12\\ 1.12\\ 1.22\\ 1.20\\ 1.26\\ \end{array}$	$\begin{array}{c} O(9)-C(1)\\ O(9)-C(2)\\ C(15)-C(1)\\ C(15)-C(1)\\ C(15)-C(2)\\ C(16)-C(1)\\ C(17)-C(3)\\ C(17)-C(3)\\ C(17)-C(3)\\ C(17)-C(2)\\ C(20)-C(2)\\ C(20)-C(2)\\ C(20)-C(2)\\ C(21)-C(2)\\ C(23)-C(2)\\ C(23)-C(2)\\ C(23)-C(2)\\ C(25)-C(2)\\ C(26)-C(2)\\ C(27)-C(2)\\ C$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
(b) Bond angles (°) (i) Bound Co(1)			
$\begin{array}{c} (c) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	126 121 46 52 75 107 95 107 90 148 109	$\begin{array}{c} C(11)-Co(\\ C(11)-Co(\\ C(11)-Co(\\ C(11)-Co(\\ C(14)-Co(\\ C(14)-Co(\\ C(14)-Co(\\ C(15)-Co(\\ C(15)-Co(\\ C(15)-Co(\\ C(18)-Co(\\ C(18$	$\begin{array}{cccccc} 1)-C(14) & 86\\ 1)-C(15) & 173\\ 1)-C(15) & 93\\ 1)-C(19) & 95\\ 1)-C(15) & 88\\ 1)-C(18) & 105\\ 1)-C(18) & 105\\ 1)-C(19) & 144\\ 1)-C(18) & 85\\ 1)-C(19) & 86\\ 1)-C(19) & 36\\ 1)-C($
(<i>ii</i>) Round Co(2)	100		
$\begin{array}{c} \text{Co}(1) - \text{Co}(2) - \text{C}(12) \\ \text{Co}(1) - \text{Co}(2) - \text{C}(13) \\ \text{Co}(1) - \text{Co}(2) - \text{C}(14) \\ \text{Co}(1) - \text{Co}(2) - \text{C}(15) \\ \text{Co}(1) - \text{Co}(2) - \text{C}(16) \\ \text{Co}(1) - \text{Co}(2) - \text{C}(17) \\ \text{C}(12) - \text{Co}(2) - \text{C}(13) \\ \text{C}(12) - \text{Co}(2) - \text{C}(14) \\ \text{C}(12) - \text{Co}(2) - \text{C}(14) \\ \text{C}(12) - \text{Co}(2) - \text{C}(15) \\ \text{C}(12) - \text{Co}(2) - \text{C}(16) \\ \text{C}(12) - \text{Co}(2) - \text{C}(17) \end{array}$	126 126 53 52 77 72 100 99 94 103 139	$\begin{array}{c} C(13)-Co(\\ C(13)-Co(\\ C(13)-Co(\\ C(13)-Co(\\ C(14)-Co(\\ C(14)-Co(\\ C(14)-Co(\\ C(15)-Co(\\ C(15)-Co(\\ C(16)-Co(\\ C(16)-Co(\\ \end{array}) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(iii) Carbonyl liga	inds		
Co(1)-C(10)-O(3) Co(1)-C(11)-O(4) Co(1)-C(14)-O(7)	$172 \\ 173 \\ 134$	Co(2)C(1 Co(2)C(1 Co(2)C(1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
(iv) Internal angle	s within	the ring systems	
C(16) C(17) C(18)	111 118 119	C(23) C(24) C(25) C(26)	121 119 121 123
C(19) C(20) C(21) C(22)	106 104 110 107 113	C(27) C(28)	116 120
(v) Other angles $C_0(1) = C(15) = C(16)$	113	Co(1)-C(1	(0) = O(0) 11(
$\begin{array}{c} \hline c_{11} - \overline{c_{15}} - \overline{c_{29}} \\ \hline c_{02} - \overline{c_{15}} - \overline{c_{29}} \\ \hline c_{02} - \overline{c_{15}} - \overline{c_{16}} \\ \hline c_{02} - \overline{c_{15}} - \overline{c_{29}} \\ \hline c_{16} - \overline{c_{15}} - \overline{c_{29}} \\ \hline c_{02} - \overline{c_{15}} - \overline{c_{16}} \\ \hline c_{02} - \overline{c_{17}} - \overline{c_{16}} \\ \hline c_{02} - \overline{c_{17}} - \overline{c_{18}} \\ \hline c_{02} - \overline{c_{17}} - \overline{c_{16}} \\ \hline \end{array}$	$ \begin{array}{r} 127 \\ 71 \\ 129 \\ 119 \\ 66 \\ 98 \\ 120 \\ \end{array} $	$\begin{array}{c} -0.000 \\ -0.00$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
C(16) - C(17) - C(18) C(16) - C(17) - C(30)	118 122	C(22) - C(2)	3)-C(28) 121

C(18) - C(17) - C(30)

118

(c) Interm	nolecular conta	ucts (Å);	limits	00	< 3.30
$O \cdots C < 3.4$	$0, C \cdots C < 3.6$	30			
$O(3) \cdots O(3)$	(7 ¹) 3.18	0	(8) · · · C	(16 ¹ V)	3.29
$O(4) \cdots O(4)$	(5 ¹ V) 3.02	0	(8) · · · C	(20 v)	3.32
$O(4) \cdots O(4)$	(611) 3.18	O	(9) · · · C	(24 ^v)	3.29
$O(4) \cdots O(4)$	(7 ¹) 3.16	C	$(10) \cdots 0$	Ď(7 ¹)	3.25
$O(5) \cdots O(5)$	(4 ¹¹¹) 3.02	C	$(11) \cdots 0$	D(71)	3.20
$O(5) \cdots O(6)$	(8111) 3.27	C	$(12) \cdots ($	D(8111)	3.34
$O(6) \cdots O(6)$	(411) 3.18	C	$16 \cdots 0$	D(8111)	3.29
$O(7) \cdots O(7)$	(3 ¹) 3.18	C	$(20) \cdots ($	D(8♥) ́	3.32
$O(7) \cdots O(7)$	(4 ¹) 3.16	Ci	$(20) \cdots 0$	$C(22^{\circ})$	3.56
$O(7) \cdots O(7)$	(10^{1}) 3.25	CÌ	$(21) \cdots 0$	C(22V)	3.44
$O(7) \cdots C($	11 ¹) 3.20	CÌ	$(22) \cdot \cdot \cdot 0$	C(20V)	3.56
$O(8) \cdots O($	$(5^{1}V)$ 3.27	CČ	$(22) \cdot \cdot \cdot C$	C(21V)	3.44
$O(8) \cdots C($	12 ¹ Ý) 3.34	C($24) \cdots 0$	D(9V)	3.29
* The R	oman numeral	superscript	ts refer	to the f	ollowing

equivalent positions: I = x, -y, -z; II = x, 1 = y, -z;III -1 + x, y, z; IV = 1 + x, y, z; V = -x, 1 - y, 1 - z.

involving the carbonyl groups resemble those for $[Co_{4}-(CO)_{10}(C_2H_5CCC_2H_5)]$.⁶ In both cases the average Co-C distance for the terminal ligands is short and the same asymmetry is shown by the bridging carbonyl, much greater than in (1; R = H). For the title compound,

the asymmetry, $(D_2 - D_1)/D_2$ (0.11), and θ (144°) [see (2)] fit the curve for normally asymmetric carbonyl bridges.⁷ If a metal (terminal) carbonyl fragment can be represented as (3a), then the bonding at the bridging carbonyl in the title compound is better represented as (3b) than as (3c); since the bond Co(2)-C(14) (1.79 Å) is comparable in length with the other Co-C (terminal carbonyl) bonds, while the distance Co(1)-C(14) (1.99 Å)

TABLE 3

Means of selected valency parameters. Figures in parentheses are means of previously measured values

(0	I)	Bond	lengths	(Å)	1
· · ·	-,			·/	

(a) Dond lengths (A)		
Co-Co	2.48 (2.45) * (2.52	4) b (2.46) c
Co-C (terminal carbonyl)	1.72 (1.81) * (1.80) ['] (1.73) [']
C-O (terminal carbonyl)	1.15 (1.15) * (1.17) ^b (1.18) ^c
Co-C (sp^2) σ bond	2.00 (2.01) c	
μ bond	2.04 (2.08) d (2.10)) •
π -allyl system	$2.05(2.09)^{d}(2.04)$	f(2.08)
C—С (π-allyl system)	1.42 (1.43) d (1.41)) ^f (1.40)
(b) Mean estimated standard(i) Bond lengths (Å)	deviations	
CoCo		0.01
Co-C, O-C, C-C [O(8) to Carbonyl groups, benzen	c C(22) inclusive] e ring, and bonds	0.03
to C(29) and C(30)	, i i i i i i i i i i i i i i i i i i i	0.04
(ii) Bond angles (°)		

Co-Co-C	1.4	C-Co-C	2.2
Co-C-C	2.4	Co-C-O (carbonyl)	3.6
Light atoms	(as ab	ove) 3.1 Benzene rin	g 4.5

^a Ref. 5. ^b Ref. 6. ^c Ref. 7. ^d L. Porri, B. Vitalli, and M. Zocchi, *Chem. Comm.*, 1969, 276. ^c G. Allegra, F. L. Guidice, G. Natta, U. Giannini, G. Fagherazzi, and P. Pino, *Chem. Comm.*, 1967, 1263. ^f O. S. Mills and G. Robinson, *Proc. Chem. Soc.*, 1964, 187.

is similar to that for a Co-C(alkene) bond. Co(1) is linked by a single bond to C(15) and, at C(18) and C(19), to the π electrons of a double bond. Table 4 shows C(11) and C(15) mutually *trans*. If these are taken as axial, and the other ligands chosen are C(10), and the

TABLE 4

Stereographic projections of the bond vectors about the cobalt atoms a

Vector	Radius	Azimuth	
(a) From Co(1)			
C(15)	0	0	Dot
C(18)	92	0	Dot
C(19)	98	39	Dot
M(18–19) ^b	95	19	Dot
C(10)	100	148	Dot
Cò(2)	49	- 74	Dot
C(14)	96	-105	Dot
$M(2-14)^{b}$	66	- 90	Dot
C(11)	7	-77	Ring
(b) From Co(2)			
C(12)	0	0	Dot
C(13)	83	0	Ring
C(14)	85	99	Ring
C(15)	94	166	Ring
C(16)	80	-127	Ring
C(17)	37	-105	Ring
$\dot{Co}(1)$	51	150	Ring
M(15-16) b	86	-147	Ring
M(16-17) b	56	-118	Ring

^a The limiting radius = 100; vectors ending in the northern hemisphere or on the equator are labelled Dot, those ending in the southern hemisphere, Ring. ^b M indicates the midpoint of the bond between the atoms indicated.

midpoints of the bonds Co(2)-C(14), and of C(18)-C(19), the co-ordination approaches trigonal bipyramidal with vectors displaced towards C(15). Co(2) is bonded to the major ligand at C(15), C(16), and C(17), which form a π -allyl system. The mean Co-C distance (2.04 Å) to two cobalt atoms, and bonded at the site matching C(20) to a saturated carbon at the 17-position of a steroid, in digitoxigenin,^{8a} and in $\Delta^{8,14}$ -anhydrodigitoxigenin.^{8b} If the values for the steroid derivatives

TABLE 5

Bond	lengths	(Å)	within	2-oxo-2,	, 5- dihy	drofuran	systems
	-						

Bond	1 itle			
corresponding to	compound ($[1; \mathbf{R} = \mathbf{H})$	D ª	A ^b
O(8)-C(22)	1.26	1.23	1.178	1.202
O(9) - C(19)	1.47	1.40	1.451	1.438
O(9) - C(22)	1.36	1.42	1.391	1.365
C(19) - C(20)	1.44	1.42	1.484	1.499
C(20) - C(21)	1.37	1.37	1.358	1.317
C(21) - C(22)	1.38	1.44	1.463	1.457
a Digitovigon	in (rof Qa)	6 A 8. 14 Aml	udrodiaito	vigonin (ro

^a Digitoxigenin (ref. 8*a*). ^b $\Delta^{8,14}$ -Anhydrodigitoxigenin (ref. 8*b*).

are taken as standard, then both cobalt compounds have a common set of deviations; bonds corresponding to O(8)-C(22) and C(20)-C(21) are lengthened while those corresponding to C(19)-C(20) and C(21)-C(22)

are shortened. The two cobalt compounds differ; in the title compound the distance O(9)-C(19) is relatively long, while in (1; R = H) it is noticeably short. The pattern can be rationalized by assuming that cobalt

FIGURE 3 The unit-cell contents, viewed down the *a* axis

is similar to that found in other systems, and the variation in the Co-C distances is unexceptional. None of the sites of the π -allyl system, nor the midpoints of their bonds, is *trans* to any of the carbonyl groups.

The title compound apart, a dihydrofuranone ring occurs in (1; R = H) linked at the site matching C(19)

is a net electron donor with oxygen the recipient. In the title compound electron-release occurs through a bridge-bond into the π system, resulting in relatively large changes in the lengths of the conjugated bonds; in (1; R = H) the release occurs along σ bonds into the σ system, shortening particularly the bond 1980

O(9)-C(19), and the heterocyclic π system then acts as a weak acceptor. In the title compound, unlike the three analogues, the five-membered heterocyclic ring is not planar.^{5,8}

The effect of co-ordination to cobalt at C(18) and C(19) distorts the alkene from its ideal geometry. If a

TABLE 6

Mean planes, and deviations (Å) of atoms from mean planes in square brackets *

Plane (1): O(8), O(9), C(19)-(23)

 $\begin{bmatrix} O(8) & -0.02, O(9) & -0.02, C(19) & 0.02, C(20) & -0.02, C(21) & 0.00, \\ C(22) & 0.05, & C(23) & 0.05 \end{bmatrix}$

Plane (2): C(21), C(23)-(28)

 $[C(21) - 0.07, C(23) - 0.01, C(24) \ 0.00, C(25) \ 0.01, C(26) \ 0.00, C(27) - 0.01, C(28) \ 0.01]$

* Italicized atoms were not used to locate the mean plane.

reference plane is chosen through Co(1), C(18), and C(19), then the dihedral angles between this plane, and the planes through C(18), C(19), and their substituents are: for C(17), 98°; for O(9), 100°; and for C(20), 110°; that is, all substituents are displaced away from the cobalt.⁹

The atoms of the phenyl group are coplanar within experimental error; C(21) lies 0.07 Å out of the plane. The best plane through the phenyl group is inclined at 32° to the plane through C(20), C(21), and C(22).

Figure 3 shows the contents of the unit cell. Relatively, the closest intermolecular contacts are $O \cdots O$;

there are only four $C \cdots C$ contacts less than 3.6 Å. This open packing results in high thermal parameters for the atoms of the phenyl group, and correspondingly large standard deviations in their bond parameters.

I thank Drs. P. A. Elder and G. R. Knox, and Professor P. L. Pauson for supplying the compound, and for helpful discussions; and Dr. M. Elder and his staff at the S.R.C. Microdensitometer Laboratory for scanning the films, and supplying a list of structure factors corrected for absorption. Subsequent calculations were performed on the ICL 1904 at the University of Strathclyde, using programs of the SCXR series written by the author.

[8/1688 Received, 25th September, 1978]

REFERENCES

¹ P. A. Elder, D. J. S. Guthrie, J. A. D. Jeffreys, G. R. Knox, J. Kollmeier, P. L. Pauson, D. A. Symon, and W. E. Watts, J. Organometallic Chem., 1976, 120, C13.

² 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, pp. 73, 77, and 149.

³ J. A. D. Jeffreys and C. Metters, *J.C.S. Dalton*, 1976, 1624.
 ⁴ O. S. Mills and G. Robinson, *Inorg. Chim. Acta*, 1967, 1, 61.

⁵ G. G. Sumner, H. P. Klug, and L. E. Alexander, *Acta Cryst.*, 1964, **17**, 732.

⁶ L. F. Dahl and D. L. Smith, J. Amer. Chem. Soc., 1962, 84, 2450.

⁷ R. J. Klingler, W. M. Butler, and M. D. Curtis, J. Amer., Chem. Soc., 1978, **100**, 5034.

⁸ I. L. Karle and J. Karle, *Acta Cryst.*, (a) 1969, **B25**, 434; (b) 1970, **B26**, 207.

⁹ See for example, S. D. Ittel, and J. A. Ibers, Adv. Organometallic Chem., 1976, 14, 33.