Crystal and Molecular Structures of Dimorpholino-tri- and -di-selane

By Olav Foss • and Vitalijus Janickis, Department of Chemistry, University of Bergen, Bergen, Norway

Crystals of the title compound Se₃(NC₄H₈O)₂ (1) are orthorhombic, space group *Pbcn* (no. 60) with a = 5.445(1), b = 9.473(2), c = 25.408(2) Å, and Z = 4. Crystals of Se₂(NC₄H₈O)₂ (2) are monoclinic, space group $P2_1/c$ (no. 14) with a = 8.871(1), b = 5.716(1), c = 23.820(3) Å, $\beta = 98.59(1)^\circ$, and Z = 4. The structures have been determined by X-ray diffraction from Mo- K_{α} diffractometer data and refined by full-matrix least squares to R 0.035 and 0.035 for 899 and 2 017 observed reflections respectively. In (1) the molecules lie across crystallographic two-fold axes. The N-Se-Se-N chains occur in the *trans* form, with N-Se 1.841(5), Se-Se 2.352(1) Å, N-Se-Se 105.2(2), Se-Se-Se 101.7(1)^\circ, and NSeSe-SeSe 97.1°. Intermolecular Se** Se contacts of 3.404(2) Å occur across the two-fold axes. The N-Se-Se-N chains in (2) have N-Se 1.846(4) and 1.852(4), Se-Se 2.346(1) Å, N-Se-Se 109.0(1) and 109.2(1)^\circ, and NSeSe-SeSeN 94.7°. The shortest intermolecular Se** Se contact in (2) is 3.588(1) Å. In both compounds the morpholine rings occur in the chair form, with N-Se equatorial.

WE recently found that black selenium powder, when heated with piperidine or morpholine in the presence of Pb₃O₄, reacts to give diaminoselanes.¹ In the case of piperidine, only the tetraselane was obtained, whereas with morpholine the tri- and di-selane also crystallized. The crystal structures of the two tetraselanes have been reported,¹ and we describe here the structures of the triand di-selane, Se₃(NC₄H₈O)₂ and Se₂(NC₄H₈O)₂. A preliminary account has appeared.¹ⁿ In the sulphur series, the crystal structures of dimorpholino- and dipiperidino-disulphane^{2.3} and dimorpholinotetrasulphane⁴ have been reported, but no structure of a diaminotrisulphane.

EXPERIMENTAL

The synthesis of dimorpholino-tri- and -di-selane has been described.¹ The triselane crystallizes as rhomb-shaped plates $\{001\}$ bounded by $\{110\}$, sometimes elongated along the *a* axis, and with a tendency to cleavage along the *c* plane. The diselane crystallizes as prisms, extended along the *b* axis and bounded by $\{100\}$ and $\{001\}$. Preliminary

FIGURE 1 The structure of dimorpholinotriselane as seen along the *a* axis

unit-cell and space-group data were derived from oscillation and Weissenberg photographs taken with $\text{Cu}-K_{\alpha}$ radiation. The crystals are less stable than those of dimorpholinoand dipiperidino-tetraselane,¹ and the crystals used for X-ray data collection were coated with epoxy-glue; the intensities of the reference reflections (three for each crystal, measured at intervals of 50 reflections) then showed no change. Data collection and treatment were as previously described ¹ (Siemens AED diffractometer, niobium-filtered Mo- K_{α} radiation, $\lambda = 0.7107$ Å). Reflections with $I > 3\sigma(I)$ were regarded as observed and were used in the solution and refinement of the structures. Unit-cell dimensions were based on the 20 values of the Mo- $K_{\alpha(1)}$ peaks, $\lambda = 0.709$ 26 Å, of *ca.* 15 reflections in the 40 < 20 < 50° range. Calculations were made by use of the 'X-Ray '72' programs,⁵ and refinements were by full-matrix least squares, the sum minimized being $\Sigma w \Delta^2(F)$ with $w = 1/\sigma^2(F)$. Atomic scattering factors were from ref. 6 (from ref. 7 for H) with anomalous dispersion ⁸ for Se included. Anisotropic temperature factors were used for all atoms except hydrogen. Hydrogen atoms were placed geometrically by use of the 'X-Ray '72' BONDAT subroutine, at C-H 0.95 Å as for the tetraselanes,¹ and were

FIGURE 2 The structure of dimorpholinodiselane as seen along the b axis

given equal isotropic temperature factors; their parameters (positional and thermal) were not refined.

Crystal Data.—(1), $C_8H_{16}N_2O_2Se_3$ M = 409.1, Orthorhombic, space group *Pbcn* (no. 60), a = 5.445(1), b = 9.473(2), c = 25.408(2) Å, U = 1 310.4 Å³, Z = 4, $D_c = 2.07$ g cm⁻², F(000) = 784, $\mu(Mo-K_{\alpha}) = 90.4$ cm⁻¹, 899 observed unique reflections within $2\theta = 60^{\circ}$. The crystal used was an elongated plate with cross-section 0.252×0.028 mm; absorption corrections ranged from 1.287 to 6.044.

(2), $C_8H_{16}N_2O_2Se_2$, M = 330.1, Monoclinic, space group $P2_1/c$ (no. 14), a = 8.871(1), b = 5.716(1), c = 23.820(3) Å, $\beta = 98.59(1)^\circ$, U = 1.194.3 Å³, Z = 4, $D_c = 1.84$ g cm⁻³, F(000) = 648, $\mu(Mo-K_{\alpha}) = 66.4$ cm⁻¹, 2.017 observed unique reflections within $2\theta = 56^\circ$. The crystal used was $0.084 \times 0.492 \times 0.200$ mm; absorption corrections ranged from 1.721 to 4.049.

The structures were solved by direct and Fourier methods.

The 'X-Ray '72' SINGEN and PHASE sub-programs gave the signs of 286 reflections for (1) and 421 reflections for (2) and the E maps gave the positions of the Se atoms. The N, C, and O atoms were located from the subsequent Fourier maps. The refinements converged at R = 0.035and 0.035, R' = 0.028 and 0.040, $\sigma_1 = [\Sigma w \Delta^2(F)/(n-m)]^{\frac{1}{2}}$ = 1.57 and 1.41, for (1) and (2) respectively. The largest shift-to-error ratio in the last cycle was 0.004 4 for (1) and 0.005 4 for (2), and the largest peaks and holes in the $\Delta(F)$ map based on the final parameters were 1.4 and $-1.0 \text{ e} \text{ Å}^{-3}$ for (1) and 0.9 and -0.9 e Å⁻³ for (2). Final co-ordinates for non-hydrogen atoms are in Table 1. Lists of structure factors, thermal parameters, and hydrogen co-ordinates are in Supplementary Publication No. SUP 22697 (30 pp.).*

RESULTS AND DISCUSSION

Molecular dimensional data are in Tables 2 and 3, and views of the structures are in Figures 1-4.

The N-Se-Se-Se-N and N-Se-Se-N Chains .-- The dimorpholinotriselane molecules lie across crystallographic two-fold axes and thus occur as trans rotamers 9

TABLE 1

Fractional atomic co-ordinates with estimated standard deviations in parentheses

Atom	10 ⁴ x	10 ⁴ y	$10^{5}z$			
(a) $\operatorname{Se}_3(\operatorname{NC}_4H_8O)_2$						
Se(1)	$2\ 354.2(11)$	814.7(7)	29 406(2)			
Se(2)	5 000	$2\ 382.4(8)$	25 000			
N	3 596(8)	673(4)	$36\ 126(17)$			
C(1)	$6\ 112(12)$	181(6)	36 397(24)			
C(2)	6 805(13)	-39(6)	42 165(24)			
O`´	6 529(9)	$1\ 215(4)$	45 102(17)			
C(4)	4 040(14)	1 658(6)	44 882(24)			
C(5)	3 276(11)	1 961(6)	39 273(21)			
(b) $\operatorname{Se}_{2}(\operatorname{NC}_{4}\operatorname{H}_{8}\operatorname{O})_{2}$						
Se(1)	-1 193.6(5)	938.5(8)	$16\ 120(2)$			
Se(2)	999.4(5)	2817.0(9)	20724(2)			
N(1)	-1928(4)	2 574(6)	$9\ 602(13)$			
C(1)	-1 102(5)	2 265(8)	4 784(17)			
C(2)	-2043(6)	3 382(10)	-414(18)			
O(1)	-2297(4)	5 789(7)	433(14)			
C(4)	<u> </u>	6 084(9)	5 164(20)			
C(5)	-2208(5)	5 049(8)	10 484(18)			
N(2)	2 707(4)	1 432(6)	18 531(14)			
C(6)	2 860(5)	1 801(9)	$12\ 534(18)$			
C(7)	4 392(6)	874(11)	$11\ 570(22)$			
O(2)	4 569(4)	-1528(7)	$12\ 924(15)$			
C(9)	4 421(7)	-1890(10)	18 672(22)			
C(10)	2 887(6)	$-1029(9)^{2}$	19 945(20)			

in the crystals. So do the molecules in one of the two X-Se-Se-Se-X structures reported earlier, Se₃(PEt₂- Se_{2} ,¹⁰ whereas in the other, $Se_{3}(CN)_{2}$,^{11,12} the molecules have mirror-plane symmetry and the cis form. From isomorphism with $Te[S(ts)_2]$ (ts = toluene-*p*-sulphonyl) of known structure, 13 Se₃(ts)₂ 14 has two-fold axis symmetry and the trans form. The Se-Se bond lengths in $Se_3(PEt_2Se)_2$ and $Se_3(CN)_2$ are ^{10,12} 2.352(2) and 2.334(1) Å respectively, the bond angles at the central Se atom are 103.9(2) and 103.0(1)°, and the SeSeSe-SeSeX dihedral angles are 92.5 and 93.2°. These are close to the values in $Se_3(NC_4H_8O)_2$.

The dimorpholinodiselane molecules lie in general positions in the crystals but have approximate two-fold axis symmetry. The Se-Se bond length, 2.346(1) Å,

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

629

TABLE 2

Distances (Å) and angles (°) with estimated standard deviations in parentheses

(a) $Se_3(NC_4H_8O)_2$

i) Bond lengths		lengths	Bond	i)
-----------------	--	---------	------	----

., .			
Se(1)- $Se(2)$	2.352(1)	C(2)-O	1.411(7)
Se(1) - N	1.841(5)	O-C(4)	1.420(9)
N-C(1)	1.449(8)	C(4) - C(5)	1.512(9)
C(1) - C(2)	1.528(9)	C(5)-N	1.469(7)
(ii) Bond angles			
N-Se(1)-Se(2)	105.2(2)	N-C(1)-C(2) 108.9(5)
$Se(1) - Se(2) - Se(1')^{a}$	101.7(1)	C(1) - C(2) - C(2)	-0 111.5(5)
Se(1) - N - C(1)	114.5(4)	C(2)-O-C((4) 109.2(5)
Se(1) - N - C(5)	113.6(4)	O-C(4)-C((5) 110.8(6)
C(1) - N - C(5)	110.7(5)	C(4)-C(5)-	-O 108.8(5)

Dihedral angle ^b at Se(1)-Se(2) 97.1.

(b) $Se_2(NC_4H_8O)_2$

(i) Bond lengths			
Se(1)- $Se(2)$	2.346(1)	Se(2) - N(2)	1.852(4)
Se(1) - N(1)	1.846(4)	N(2) - C(6)	1.470(6)
N(1) - C(1)	1.462(6)	C(6) - C(7)	1.508(7)
C(1) - C(2)	1.526(6)	C(7) - O(2)	1.414(8)
C(2) - O(1)	1.413(7)	O(2) - C(9)	1.410(7)
O(1)-C(4)	1.425(7)	C(9) - C(10)	1.520(8)
C(4) - C(5)	1.507(7)	C(10) - N(2)	1.450(7)
C(5)-N(1)	1.457(6)		
(ii) Bond angles			
N(1)-Se(1)-Se(2)	109.0(1)	N(2) - Se(2)	e(1) = 109.2(1)
Se(1) - N(1) - C(1)	116.4(3)	Se(2) - N(2) - C	(6) 114.3 (3)
Se(1) - N(1) - C(5)	114.6(3)	Se(2) - N(2) - C(2)	(10) 114.6(3)
C(1) - N(1) - C(5)	110.3(4)	C(6) - N(2) - C(1)	10) 110.0(4)
N(1) - C(1) - C(2)	108.0(4)	N(2)-C(6)-C(2)	7) 108.3(4)
C(1) - C(2) - O(1)	111.8(4)	C(6) - C(7) - O(2)	(2) 112.2(5)
C(2) - O(1) - C(4)	109.6(4)	C(7)-O(2)-C(9	9) 109.9(5)
O(1) - C(4) - C(5)	111.3(4)	O(2) - C(9) - C(1)	10) 111.2(5)
C(4) - C(5) - N(1)	109.8(4)	C(9)-C(10)-N	(2) 109.8(5)
Diheo	dral angle ^b at	Se(1)-Se(2) 94.7	

 $\star \epsilon(1')$ across molecular two-fold axis. ^b Zero for planar cis.

compares with 2.352(1) Å in the triselane. No X-ray structures are available for other tri- and di-selanes with the same terminal groups. The crystals of the diselane are not isomorphous with those of dimorpholinodisulphane² or dipiperidinodisulphane,³ but the molecular structures are equivalent. The S-S bond lengths in

TABLE 3

Least-squares planes of the carbon atoms of the morpholino-groups, with equations of the planes in direct space

(a) $Se_3(NC_4H_8O)_2$

3.8911x + 6.5846y - 1.9744z = 1.7843

Distances from plane: Se(2) 1.236, Se(1) -0.912, N 0.655, C(1) -0.005, C(2) 0.006, O 0.666, C(4) -0.007, C(5) 0.006 Å; angles with plane C(1)-N-C(5) 52.2, C(2)-O-C(4) 54.4, N-Se(1)-Se(2) 84.0°; angle of normal to plane with two-fold axis 46.0°

(b) $Se_2(NC_4H_8O)_2$

(i) 6.8487x + 3.6085y - 4.4812z = -0.1562

Distances from plane: Se(2) 0.924, Se(1) -1.045, N(1) -0.666, C(1) 0.004, C(2) -0.004, O(1) 0.653, C(4) 0.004, C(5) -0.004 Å; angles with plane C(1)-N(1)-C(5) 53.0, C(2)-O(1)-C(4) 53.0, N(1)-Se(1)-Se(2) 79.1°

 $(ii) \ 3.2268x + 3.7445y + 14.3032z = 3.3944$

Distances from plane: Se(1) -1.123, Se(2) **0.9**17, N(2 0.666, C(6) -0.005, C(7) 0.005, O(2) -0.644, C(9) -0.005C(10) 0.005 Å; angles with plane C(6)-N(2)-C(10) 52.7 C(7)-O(2)-C(9) 52.6, N(2) -Se(2)-Se(1) 86.9°

the disulphanes ^{2,3} are 2.069(1) and 2.067(4) Å; compared with Se-Se and S-S bond lengths in different forms of cyclo-octaselenium ¹⁵ and cyclo-octasulphur ¹⁶ (overall averages, 2.335 and 2.045 Å), the bonds in the diaminodiselane and diaminodisulphanes are long, especially so in the disulphanes.

The Se-N bonds in the tri- and di-selane have the same lengths within error limits. The weighted average of the three independent values, and the two in dimorpholino- and dipiperidino-tetraselane,¹⁶ is 1.843(2) Å.

Conformation of the Morpholinoseleno-groups.-The morpholino-groups occur in the chair form, with N-Se equatorial. The bonds at the nitrogen atom are distorted pyramidal, slightly flattened, the average bond angle at nitrogen being 112.9° in the triselane and 113.3° in the diselane (in dimorpholino- and dipiperidinotetraselane, 1b 113.8°). The N and Se(1) atoms lie on the same side, and Se(2) on the other side, of the leastsquares plane of the carbon atoms, cf. Table 3, and the N-Se(1)-Se(2) plane makes an angle close to 90° with the least-squares plane, as in the tetraselanes.¹⁶ The rotational positions of the nitrogen lone pair and Se(2)relative to the N-Se(1) bond are thus approximately planar trans. This is also the preferred conformation of the aminothio group,¹⁷ and occurs in dimorpholino- and dipiperidino-disulphane^{2,3} and dimorpholinotetrasulphane.4

Molecular Packing.—In dimorpholinotriselane, the two-fold rotation axes of the space group run parallel to the *b* crystal axis, at x = 0 and $\frac{1}{2}$, $z = \frac{1}{4}$ and $\frac{3}{4}$; their spacings $\frac{1}{2}$ along *a* and $\frac{c}{2}$ along *c* are 2.72 and 12.70 Å respectively. The four molecules of the unit cell lie across the two-fold axes, with the central atom Se(2) on the axes, and with $0 \cdots 0$ 10.35 Å at an angle of 9.3° with the *c* axis. No bonds extend across the *c* plane at z = 0 and $\frac{1}{2}$, and layers of thickness $\frac{c}{2}$ are held together through $H \cdots H$ and $H \cdots O$ van der Waals contacts. This accounts for the thin {001} plate growth and the cleavage along the *c* plane.

Across the *a* plane at x = 0 and $\frac{1}{2}$, intermolecular $Se(1) \cdots Se(1)$ contacts of 3.404(2) Å, generated by the two-fold axes, occur in directions which make angles of 152.4° with the Se(1)-N bonds and angles of 98.5° with the Se(1)-Se(2) bonds. This results in infinite helical $-Se(2)-Se(1) \cdot \cdot \cdot Se(1)$ - chains running through the crystal parallel to the *a* axis, at *y* and $\frac{1}{2} + y$ at $z = \frac{1}{4}$. and $\frac{1}{2} - y$ and 1 - y at $z = \frac{3}{4}$ (see Figure 3). The $Se(1) \cdot \cdot \cdot Se(1)$ contacts are *ca*. 1 Å longer than the Se(2)-Se(1) bonds, but the angle at Se(1) is in the normal range, and so are the dihedral angles along the helix, 97.0° at Se(2)-Se(1) and 100.7° at Se(1) \cdots Se(1). The senses of screw of adjacent helixes alternate. The helix has three atoms per turn, as in trigonal selenium, and the pitch, *i.e.* the distance along the axis after one turn, is a = 5.446 Å; in trigonal selenium, the three-fold screw axis is 4.958 Å.¹⁸ The angles in the triangle seen when looking along the helix are 74.0° at the central atom and 53.0° at the terminal atoms of the triselane group. The picture is that of a helix of trigonal selenium broken at each turn, the triselane fragments being rotated slightly about the two-fold axis and moved slightly apart to give space for the morpholino-groups. The nearly linear $N-Se(1) \cdot \cdot \cdot Se(1)-N$ sequences are indicative of four-centre four-electron interactions at the broken bonds.

The Se(1) \cdots Se(1) atoms of a helix each lie 3.670(1) Å from the Se(2) atom of a helix $\frac{b}{2}$ removed, located on the two-fold axis across which Se(1) \cdots Se(1) extends.

FIGURE 3 Two dimorpholinotriselane molecules, at x and 1 + x, as seen along the two-fold axes (thermal ellipsoids drawn to enclose 50% probabilities). The infinite $-\text{Se-Se} \cdots \text{Se-helix}$ (four per unit cell) running parallel to the a axis is indicated

This makes the environment of Se(2) distorted *cis* square-planar: Se(1)-Se(2) \cdots Se(1) 156.7°, Se(1) \cdots Se(2) \cdots Se(1) 55.3°, and the angle between the Se(1) \cdots Se(2) \cdots Se(1) and Se(1)-Se(2)-Se(1) planes, intersecting in the two-fold axis, is 3.2°. A tendency of bivalent selenium toward square-planar four-co-ordination is evident in numerous crystals, *e.g.* in Se₃(CN)₂,^{11,12} Se₃(PEt₂Se)₂,¹⁰ and K₂[Se₄(CN)₃]₂·H₂O.^{12,19} These contacts, in the present case, lead to infinite -Se(2) \cdots Se(1)-chains, crossing at Se(2) and parallel to [110] and [I10], *i.e.* to the boundary faces of the rhomb-shaped plates.

In dimorpholinodiselane the shortest intermolecular

FIGURE 4 The dimorpholinodiselane molecule (thermal ellipsoids as in Figure 3)

Se \cdots Se contacts are generated by the two-fold screw axes, and are 3.588(1) A between Se(1) and Se(2) atoms. They give rise to helixes along the screw axes, with two diselane groups per turn, and pitch b = 5.716 Å. Se(2) \cdots Se(2) contacts of 4.067(1) Å occur within the helixes.

There is no intermolecular $N \cdots Se$ contact within 4.0 Å in either compound.

We thank the Royal Norwegian Ministry of Foreign Affairs for a Norwegian Government Scholarship (to V. J.), and Dr. Alan Foust for assistance with the computer work.

[8/2179 Received, 19th December, 1978]

REFERENCES

¹ O. Foss and V. Janickis, (a) J.C.S. Chem. Comm., 1977, 833; (b) J.C.S. Dallon, 1980, 620.
 ² S. C. Nyburg and F. H. Pickard, J. Cryst. Mol. Structure,

1973, 3, 343.

³ P. C. Minshall and G. M. Sheldrick, Acta Cryst., 1977, B33, 160.

4 O. Foss and V. Janickis, following paper.
 ⁶ The 'X-Ray System,' Technical Report TR-192, The Computer Science Center, University of Maryland, June 1972.

⁶ D. T. Cromer and J. B. Mann, *Acta Cryst.*, 1968, **A24**, 321. ⁷ R. F. Stewart, E. R. Davidson, and W. T. Simpson, *J. Chem.*

 Phys., 1965, 42, 3175.
 ⁸ D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.

 O. Foss, Adv. Inorg. Chem. Radiochem., 1960, 2, 237.
 S. Husebye and G. Helland-Madsen, Acta Chem. Scand., 1969, 23, 1398.

¹¹ O. Aksnes and O. Foss, Acta Chem. Scand., 1954, 8, 2649; O. Ansnes and O. Poss, Alta Chem. Scana., 1994, 8, 2049;
O. Foss, in 'Selected Topics in Structure Chemistry,' eds. P. Andersen, O. Bastiansen, and S. Furberg, Universitetsforlaget, Oslo, 1967, pp. 145—173; W. S. McDonald and L. D. Pettit, J. Chem. Soc. (A), 1970, 2044.
¹² S. Hauge, Ph.D. Thesis, University of Bergen, 1977.
¹³ O. Forge and P. Chem. Science, 1975.

O. Foss and P. Øyum, Acta Chem. Scand., 1955, 9, 1014.
 O. Foss, Acta Chem. Scand., 1952, 6, 521.

¹⁵ P. Cherin and P. Unger, *Acta Cryst.*, 1972, **B28**, 313; R. E. Marsh, L. Pauling, and J. D. McCullough, *ibid.*, 1953, **6**, 71; O.

 Foss and V. Janickis, preceding paper.
 ¹⁶ P. Coppens, Y. W. Yang, R. H. Blessing, W. F. Cooper, and K. Larsen, J. Amer. Chem. Soc., 1977, 99, 760; L. K. Templeton, D. H. Templeton, and A. Zalkin, Inorg. Chem., 1976, 15, 1999;

Y. Watanabe, Acta Cryst., 1974, **B30**, 1396. ¹⁷ W. R. Jackson, T. G. Kee, and R. Spratt, Tetrahedron Letters, 1973, 3581 and refs. therein.

¹⁸ J. Donohue, 'The Structure of the Elements,' Wiley, New York, 1974, p. 370.

¹⁹ S. Hauge, Acta Chem. Scand., 1975, **A29**, 771.