Crystal and Molecular Structure of Dimorpholinotetrasulphane

By Olav Foss * and Vitalijus Janickis, Department of Chemistry, University of Bergen, Bergen, Norway

The tetrasulphane $\mathrm{S}_{4}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$ crystallizes in the tetragonal space group $/ 4_{1} / a$ (no. 88) with $a=b=12.812(1)$, $c=16.733(2) \AA$, and $Z=8$. The structure has been determined by X-ray diffraction from Mo- K_{α} diffractometer data and refined by full-matrix least squares to $R 0.045$ for 948 observed reflections. The molecules lie across crystallographic two-fold axes. The $\mathrm{N}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{N}$ chains occur in the trans-trans form, with $\mathrm{N}-\mathrm{S} 1.668$ (3), $\mathrm{S}-\mathrm{S}$ (terminal) 2.061 (2), S-S (central) $2.078(3) A, N-S-S 109.1(2), S-S-S 105.8(1)^{\circ}$, NSS-SSS 90.3, and SSS-SSS 79.9°. The morpholine groups occur in the chair form, with $N-S$ equatorial. The $S-S$ bonds alternate only slightly in length along the chain, like the $\mathrm{Se}-\mathrm{Se}$ bonds in the isomorphous tetraselane analogue.

Crystal structures of three acyclic tetrasulphanes X-S-S-S-S-X are known, or four if caesium hexasulphide ${ }^{1}\left(\mathrm{X}=\mathrm{S}^{-}\right)$is included. The three are the hexathionates trans- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]_{2}\left[\mathrm{~S}_{6} \mathrm{O}_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}^{2} \quad$ (en $=$ ethylenediamine), $\mathrm{K}_{2}\left[\mathrm{Ba}\left(\mathrm{S}_{6} \mathrm{O}_{6}\right)_{2}\right]^{3}\left(\mathrm{X}=\mathrm{SO}_{3}{ }^{-}\right)$, and dibenzylideneaminotetrasulphane ${ }^{4} \quad\left(\mathrm{X}=\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)$. Abrahams and Grison ${ }^{1 a}$ in their structure analysis of caesium hexasulphide noted an alternation of S-S bond lengths along the chain, such an effect is also manifest in the three other structures. In dibenzylideneaminotetrasulphane, where the terminal sulphur atoms are N-bonded, the effect is large: S-S 2.020(4), 2.083(4), and 2.033(4) $\AA .{ }^{4}$

We recently determined the crystal structures of dimorpholino- and dipiperidino-tetraselane ${ }^{5}$ ($\mathrm{X}-\mathrm{Se}^{-}$ $\mathrm{Se}-\mathrm{Se}^{-} \mathrm{Se}-\mathrm{X} ; \mathrm{X}=\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}$ or $\mathrm{NC}_{5} \mathrm{H}_{10}$) and there found smaller, although still significant, alternations of bond lengths: $\mathrm{Se}-\mathrm{Se} 2.336(2), 2.356(2), 2.336(2)$, and 2.327(2), $2.347(2), 2.327(2) \AA$. In order to compare more directly a tetraselane and a tetrasulphane (with the same terminal group), and noting that crystals of dimorpholinotetrasulphane were described ${ }^{6}$ as octahedra and were probably therefore isomorphous with crystals of the tetraselanes, we prepared dimorpholinotetrasulphane and carried out a structure analysis.

EXPERIMENTAL

The compound $\mathrm{S}_{4}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$ was first prepared by Goebell ${ }^{6}$ from the dichlorosulphane and morpholine. We obtained it from sulphur (8 g), $\mathrm{PbO}(12 \mathrm{~g}$), and morpholine $\left(25 \mathrm{~cm}^{3}\right)$, by heating the mixture for 30 min , filtering, and evaporating the filtrate to dryness in a stream of air. The residue was treated with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered off. On evaporation, the filtrate left a crystalline mass from which bipyramids of the tetrasulphane were picked out.
X-Ray data were collected on a Siemens AED diffractometer, as described earlier, ${ }^{5}$ using niobium-filtered MoK_{α} radiation ($\lambda=0.7107 \AA$) and were treated as before. ${ }^{5}$ Three reference reflections, measured at intervals of 50 reflections, indicated no deterioration of the crystal. Unitcell dimensions $\left[\mathrm{Mo}-K_{\alpha(1)}\right.$ peaks, $\left.\lambda=0.70926 \AA\right]$ were based on 14 reflections with $2 \theta=40-46^{\circ}$. Calculations were made by use of the ' X-Ray ' 72 ' programs,' with atomic scattering factors taken from ref. 8 (from ref. 9 for H) and with anomalous dispersion ${ }^{\mathbf{1 0}}$ for S included. Refinement was by full-matrix least squares, the sum minimized being $\Sigma w \Delta^{2}(F)$ with $w=1 / \sigma^{2}(F)$. Reflections with
$I>3 \sigma(I)$ were regarded as observed and were used in the refinement.

Crystal Data. $-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}, \quad M=300.5$, Tetragonal, space group $I 4_{1} / a$ (no. 88), $a=b=12.812(1), c=16.733(2)$ $\AA, U=27469 \AA^{3}, Z=8, D_{\mathrm{c}}=1.45 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=$ $1264, \mu\left(\right.$ Mo $\left.-K_{\alpha}\right)=6.6 \mathrm{~cm}^{-1}, 948$ observed unique reflections within $2 \theta=56^{\circ}$. Absorption corrections ranged from 1.125 to 1.141 .

The refinement began from the positional parameters of the corresponding atoms in dimorpholinotetraselane. ${ }^{5}$ With anisotropic thermal parameters, R became 0.058 . At this point the hydrogen atoms were located from a $\Delta(F)$ map and their parameters (positional and isotropic thermal) were refined in the last cycles together with the parameters of the other atoms. The final R was $0.045, R^{\prime}=0.060$, and $\sigma_{1}=\left[\Sigma w \Delta^{2}(F) /(n-m)\right]^{\frac{1}{2}}=0.95$. The largest shift-to-error ratio in the last cycle was 0.004 , and the largest peaks and holes in the $\Delta(F)$ map based on the final parameters were 0.4 and -0.3 e \AA^{-3}. Final co-ordinates for non-hydrogen atoms are in Table 1. Observed and cal-

Table 1

Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{S}_{4}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$ with estimated standard deviations in parentheses. Origin at a centre of symmetry

Atom	x	y	z
$\mathrm{~S}(1)$	$928.0(8)$	$1201.1(7)$	$543.2(6)$
$\mathrm{S}(2)$	$-42.2(7)$	$1690.2(8)$	$-365.0(7)$
N	$2125(2)$	$1016(2)$	$178(2)$
$\mathrm{C}(1)$	$2274(4)$	$132(4)$	$-361(3)$
$\mathrm{C}(2)$	$3420(4)$	$-55(5)$	$-476(4)$
O	$3916(3)$	$842(4)$	$-789(3)$
$\mathrm{C}(4)$	$3789(4)$	$1695(6)$	$-256(5)$
$\mathrm{C}(5)$	$2664(3)$	$1952(4)$	$-102(4)$

culated structure factors, thermal parameters, and hydrogen co-ordinates are in Supplementary Publication No. SUP 22698 (14 pp.).*

RESULTS AND DISCUSSION

Molecular and Crystal Structure.-The molecules lie across crystallographic two-fold axes (see Figure). Dimensional data based on the atomic co-ordinates of Table 1 are in Table 2. The conformations of the $\mathrm{N}^{-} \mathrm{S}^{-}$ S-S-S-N chains, the morpholino-groups, and the molecules as a whole are as for the tetraselane molecules in the isomorphous crystals of dimorpholino- and di-piperidino-tetraselane. ${ }^{5}$
\dagger For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

The intermolecular $\mathrm{S} \cdot \mathrm{S}$ contacts generated by the four-fold inversion centres, cf. ref. 5, are $\mathrm{S}(\mathbf{1}) \cdots \mathrm{S}(\mathbf{1})$ 3.737, $\mathrm{S}(1)-\mathrm{S}(2) 4.208$ and $4.796, \mathrm{~S}(2) \cdots \mathrm{S}(2) 5.601 \AA$, and those generated by the symmetry centres are $S(1) \cdots$ $\mathrm{S}(1)$ 4.293, $\mathrm{S}(1) \cdots \mathrm{S}(2)$ 3.886, and $\mathrm{S}(2) \cdots \mathrm{S}(2) 4.501$

Table 2
Distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{S}_{4}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$ with estimated standard deviations in parentheses ${ }^{a}$

(a) Bond lengths		(b) Bond angles	
S(1)-S(2)	2.061(2)	N-S(1)-S(2)	109.1(1)
$\mathrm{S}(2)-\mathrm{S}\left(2^{\prime}\right)^{\text {b }}$	$2.078(2)$	$\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{S}\left(\mathbf{2}^{\prime}\right)$	105.8(1)
$\mathrm{S}(1)-\mathrm{N}$	1.668(2)	$\mathrm{S}(1)-\mathrm{N}-\mathrm{C}(1)$	$117.2(3)$
$\mathrm{N}-\mathrm{C}(1)$	$1.459(6)$	$\mathrm{S}(1)-\mathrm{N}-\mathrm{C}(5)$	$115.8(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.501 (8)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	112.1(4)
$\mathrm{C}(2)-\mathrm{O}$	$1.414(8)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	109.4(5)
$\mathrm{O}-\mathrm{C}(4)$	1.420(9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}$	110.9(5)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.500(7)$	$\mathrm{C}(2)-\mathrm{O}-\mathrm{C}(4)$	110.0(5)
$\mathrm{C}(5)-\mathrm{N}$	1.462(6)	$\mathrm{O}-\mathrm{C}(4)-\mathrm{C}(5)$	112.7(5)
		$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}$	109.2(5)
(c) Dihedral angles ${ }^{\text {c }}$			
$\mathrm{S}(1)-\mathrm{S}(2)$	90.3	$\mathrm{S}(2)-\mathrm{S}\left(2^{\prime}\right)$	73.3

(d) Least-squares plane ${ }^{d}$

Distances from plane: $S(2)-0.741, S(1) 1.001, N 0.624$, $\mathrm{C}(1)-0.012, \mathrm{C}(2) 0.012, \mathrm{O}-0.651, \mathrm{C}(4)-0.013, \mathrm{C}(5)$ $0.012 \AA$: angles with plane $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5) 50.0, \mathrm{C}(2)-\mathrm{O}-\mathrm{C}(4)$ 53.1, $\mathrm{N}-\mathrm{S}(1)-\mathrm{S}(2) 87.7^{\circ}$; angle of normal to plane with twofold axis 13.0°
${ }^{a}$ For distances and angles involving hydrogen, the average values (with average deviations) are: $\mathrm{C}-\mathrm{H} \quad 0.962(55) ~ \AA$, $\mathrm{H}-\mathrm{C}-\mathrm{H} \quad 109.6(3.9), \quad \mathrm{C}-\mathrm{C}-\mathrm{H} \quad 109.0(2.9), \quad \mathrm{N}-\mathrm{C}-\mathrm{H} \quad 108.4(1.7)$, $\mathrm{O}-\mathrm{C}-\mathrm{H} \quad 109.9(7.0)^{\circ} .{ }^{b} \mathrm{~S}(2)-\mathrm{S}\left(2^{\prime}\right)$ across molecular two-fold axis. e At the indicated bond. Zero for planar cis. ${ }^{d}$ Of the carbon atoms of the morpholino-group. The equation of the plane in direct space is $1.4396 x-2.4936 y+16.3053 z=$ -0.2816 .
A. All but the longest one lie well within the attractive range of the $\mathrm{S} \cdots \mathrm{S}$ van der Waals potential curve; ${ }^{11}$ for $r=5.601 \AA$, the function gives $V=-0.086 \mathrm{kcal}^{*} \mathrm{~mol}^{-1}$.

Diaminotetra-sulphane and-selane Chains.-Comparing alternations of $\mathrm{S}-\mathrm{S}$ or $\mathrm{Se}-\mathrm{Se}$ bond lengths along the chain, for acyclic tetra-sulphanes or -selanes containing N-bonded terminal S or Se , it is seen that for dimorpholinotetrasulphane the alternation is of the same

Dimorpholinotetrasulphane as seen along the two-fold axis (thermal ellipsoids drawn to enclose 50% probabilities)
magnitude as for dimorpholino- and dipiperidinotetraselane, the central S-S bond being 0.017(4) \AA longer than the terminal bonds, against $0.020(3) \AA$ for the Se^{-} Se bonds in the tetraselanes. ${ }^{5}$ The more pronounced alternation in $\mathrm{S}_{4}\left(\mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{4}{ }^{4} \mathrm{~S}-\mathrm{S} 2.020(4), 2.083(4)$, and $2.033(4) \AA$, may then be taken as being an effect of the nature of the terminal group, it being imino instead of amino. The compound $\mathrm{S}_{4}\left(\mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)_{2}$ is a cis-cis

[^0]rotamer in the crystals, whereas $\mathrm{S}_{4}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$ is a transtrans rotamer. It seems unlikely that rotameric form should influence bond lengths, other factors such as dihedral angles (their numerical values) being equal. The dihedral angles are 89.4,73.5, and 85.7° in $\mathrm{S}_{4}(\mathrm{~N}=$ $\left.\mathrm{CHC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{4,12}$ and 90.3, 73.3, and 90.3° in $\mathrm{S}_{4}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$. The only tetrasulphane derivative that has been studied in both rotameric forms is the hexathionate ion; the trans-trans form occurs in trans- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]_{2}\left[\mathrm{~S}_{6} \mathrm{O}_{6}\right] \cdot$ $\mathrm{H}_{2} \mathrm{O}^{2}$ and the cis-cis form in $\mathrm{K}_{2}\left[\mathrm{Ba}\left(\mathrm{S}_{6} \mathrm{O}_{6}\right)_{2}\right]^{3}$ The lengths of the $\mathrm{S}-\mathrm{S}$ bonds of the tetrasulphane chain in the two forms differ slightly, being 2.018(3), 2.069(3), and 2.018(3) \AA in the trans-trans rotamer and 2.042(2), 2.056(2), and 2.039(2) \AA in the cis-cis rotamer, as do the dihedral angles, 85.7, 71.4, and 85.7° in the former and $109.4,89.0$, and 106.3° in the latter. Different ionic lattice forces also operate on the sulphur chains through the sulphonate groups. The reasons for alternations of bond lengths along sulphur chains, and factors affecting S-S bond lengths, have been discussed by many authors, ${ }^{1,13}$ more recently by Marøy ${ }^{14}$ and Steudel. ${ }^{15}$ The evidence available so far concerning the lengths of $\mathrm{Se}-\mathrm{Se}$ bonds indicates a picture as varied for selenium as for sulphur. For example, the triselenide ion in $\mathrm{K}_{2} \mathrm{Se}_{3}{ }^{16}$ has $\mathrm{Se}-\mathrm{Se} 2.383(2) \AA$, and in the diselenotetrathionate ion in two dimorphs of trans- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]_{2}-$ $\left[\mathrm{Se}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O},{ }^{17} \mathrm{Se}-\mathrm{Se} 2.293(1)$ and $2.305(2) \AA$.
We thank the Royal Norwegian Ministry of Foreign Affairs for a Norwegian Government Scholarship (to V. J.), and Dr. Alan Foust for assistance with the computer work.
[8/2180 Received, 19th December, 1978]

REFERENCES

${ }^{1}$ (a) S. C. Abrahams and E. Grison, Acta Cryst., 1953, 6, 206 ; (b) A. Hordvik and E. Sletten, Acta Chem. Scand., 1968, 22, 3029. ${ }^{2}$ O. Foss and K. Maroy, Acta Chem. Scand., 1965, 19, 2219; K. Marøy, ibid., 1973, 27, 1705.
${ }^{3}$ O. Foss and K. Johnson, Acta Chem. Scand., 1965, 19, 2207 ; K. Marøy, ibid., 1973, 27, 1684.
${ }^{4}$ J. Barrick, C. Calvo, and F. P. Olsen, Canad. J. Chem., 1973, 51, 3691.
${ }^{5}$ O. Foss and V. Janickis, J.C.S. Dalton, in the press.
6 J. Goebell, Ph.D. Thesis, University of Cologne, 1963, pp. 34-48.
${ }^{7}$ The ' X-Ray System,' Technical Report TR-192, The Computer Science Center, University of Maryland, June 1972.
${ }^{8}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{9}$ R. F. Stewart, E. R. Davison, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{10}^{10}$ D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.
${ }_{11}$ R. P. Rinaldi and G. S. Pawley, J. Phys. (C), 1975, 8, 599.
12 J. Barrick, C. Calvo, and F. P. Olsen, Canad. J. Chem., 1973, 51, 3697.
${ }_{13}$ O. Foss and O. Tjomsland, Acta Chem. Scand., 1958, 12, 1810; A. Hordvik, ibid., 1966, 20, 1885; E. Schefter, J. Chem. Soc. (B), 1970, 903; B. R. David and I. Bernal, J. Mol. Structure, 1972, 2, 135; D. B. Boyd, J. Amer. Chem. Soc., 1972, 94, 8799; Theor. Chim. Acta, 1973, 30, 137; L. J. Sæthre, Acta Chem. Scand., 1975, A29, 558; B. Kelly and P. Woodward, J.C.S. Dalton, 1976, 1314.
${ }_{14}$ K. Marøy, Ph.D. Thesis, University of Bergen, 1975.
15 R. Steudel, Angew. Chem., 1975, 87, 683; R. Steudel and F. Schuster, J. Mol. Structure, 1978, 44, 143.
${ }_{17}^{16}$ P. Böttcher, Z. anorg. Chem., 1977, 432, 107.
17 A. Foust, V. Janickis, and K. Marøy, Inorg. Chem., in the press.

[^0]: \dagger Throughout this paper: $1 \mathrm{cal}=4.184 \mathrm{~J}$.

