A Proton Magnetic Resonance Study of Ligand Exchange on the Hexakis-(1,1,3,3-tetramethylurea)scandium(III) Ion and its *NN*-Dimethylacetamide Analogue

By Dino L. Pisaniello and Stephen F. Lincoln,* Department of Physical and Inorganic Chemistry, University of Adelaide, South Australia 5001

Proton n.m.r. spectroscopic studies show that the rate law for tetramethylurea (tmu) exchange on the hexakis-(tetramethylurea)scandium(III) ion is: rate = $6k_1[Sc(tmu)_8^{3+}]$ where, typically, k_1 (300 K) = 0.26 ± 0.03 s⁻¹, $\Delta H_1^r = 91.2 \pm 2.3$ kJ mol⁻¹, and $\Delta S_1^r = 47.8 \pm 6.7$ J K⁻¹ mol⁻¹ in CD₃NO₂ diluent, while k_1 (300 K) = 1.08 ± 0.05 s⁻¹, $\Delta H_1^r = 68.6 \pm 1.3$ kJ mol⁻¹, and $\Delta S_1^r = -15.7 \pm 3.8$ J K⁻¹ mol⁻¹ in CD₃CN diluent. In contrast, the rate law for ligand exchange on the hexakis(*NN*-dimethylacetamide)scandium(III) ion is: rate = $6(k_1 + k_2[dma])[Sc(dma)_8^{3+}]$ in CD₃NO₂ and CD₃CN diluents. For the nitromethane system, k_1 (300 K) = 4.6 ± 0.3 s⁻¹, $\Delta H_1^r = 30.3 \pm 2.0$ kJ mol⁻¹, and $\Delta S_1^r = -132 \pm 6$ J K⁻¹ mol⁻¹ and k_2 (300 K) = 112 \pm 3 dm³ mol⁻¹ s⁻¹, $\Delta H_2^r = 26.0 \pm 0.6$ kJ mol⁻¹, and $\Delta S_2^r = -119 \pm 2$ J K⁻¹ mol⁻¹. Similar parameters characterize the acetor intribe solutions. Ligand exchange in solutions of either [Sc(dmf)_6][ClO_4]₃ or [Sc(dmso)_6][ClO_4]₃ lies in the fast-exchange limit of the n.m.r. time scale. The mechanistic implications of these data are discussed and comparisons are made with other tripositively charged metal complex systems.

RECENT studies ¹⁻³ indicate that the $[ScL_6]^{3+}$ species exhibits a greater degree of flexibility in the mode of ligand exchange than appears to be the case for other $[ML_6]^{3+}$ ions. Thus for $[ScL_6]^{3+}$, where L = trimethyl phosphate ² (tmp), the dominant exchange path is dissociative ⁴ (D) in CD₃CN diluent, but associative ⁴ (A) in CD₃NO₂ diluent. When L = dimethyl methylphosphonate ³ (dmmp) the A mechanism is also dominant in CD₃NO₂ diluent but in CD₃CN both A and D mechanisms are operative. In general there is a paucity of $[ClO_4]_3$ have been characterized in the literature.⁶ All preparative and handling procedures were carried out in a dry-nitrogen-flushed glove-box. It is interesting to note that complexes (3) and (4) are quite hygroscopic, (2) absorbs atmospheric moisture over a period of days, while (1) is air stable. The ligands tmu, dma, dmf, and dmso were purified by previously reported methods,⁷ CD₃NO₂, CD₃CN, and CD₂Cl₂ by distillation, and all liquid reagents were dried over Linde 4A molecular sieves. Solutions consisting of complex, ligand, and diluent were prepared by weight in 2 or 5 cm volumetric flasks and portions of each solution

TABLE 1Elemental analyses (%)

	Lionical al	1019000 (70)		
Complex	Sc	С	н	N or S
(1) $[Sc(tmu)_6][ClO_4]_3$	requires: 4.30	34.65	7.00	16.15
	found: 4.35	34.25	6.50	15.8
(2) $[Sc(dma)_{a}][ClO_{a}]_{a}$	requires: 5.20	33.3	6.30	9.70
	found: 5.20	32.95	5.95	9.65
(3) $[Sc(dmf)_{a}][ClO_{a}]_{a}$	requires: 5.75	27.65	5.40	10.75
	found: 5.75	27.6	5.45	10.35
(4) $[Sc(dmso)_{a}][ClO_{a}]_{a}$	requires: 5.55	17.75	4.45	23.7
	found: 5.60	17.6	4.55	23.9

data concerning both the mechanism of ligand exchange on scandium(III) species and the effects upon the mechanism of variation in the environment external to the first co-ordination sphere.

In this paper, ligand-exchange studies are extended to $[ScL_6]^{3+}$ where L is either tetramethylurea (tmu) or NN-dimethylacetamide (dma) in CD₃CN and CD₃NO₂ diluents. The former species is demonstrated to undergo ligand exchange through a D mechanism in both diluents whereas for the latter species both A and D mechanisms appear to operate simultaneously in both diluents. In addition, ligand exchange on scandium(III) in solutions of $[ScL_6][ClO_4]_3$ where L is either NN-dimethylformamide (dmf) or dimethyl sulphoxide (dmso) is shown to be in the fast-exchange limit of the n.m.r. time scale.

EXPERIMENTAL

The four perchlorate complexes whose analytical data are presented in Table 1 were prepared by previously described 2,5 methods and with the exception of $[Sc(tmu)_6]$ -

degassed and sealed under vacuum in n.m.r. tubes (outside diameter 5 mm).

Proton n.m.r. spectra were run at 90 MHz on a Bruker HX-90-E spectrometer operating in the pulsed freeprecession (p.f.p.) mode using an internal ²H lock. Computer-averaged spectra were stored as 1K data blocks (1 024 points per spectrum) on a magnetic disk and subsequently subjected to a complete lineshape analysis ⁸ using the BNC-12 minicomputer of the spectrometer. The spectrometer temperature-control unit (B-ST 100/700), which was calibrated with a copper-constantan thermocouple, provided a temperature control of better than ± 0.3 K.

RESULTS AND DISCUSSION

Solutions of $[Sc(dma)_6][ClO_4]_3$ and $[Sc(tmu)_6][ClO_4]_3$ and their respective free ligands in CD_3NO_2 and CD_3CN exhibit co-ordinated ligand resonances downfield from those of the free ligands under conditions of slow exchange. A comparison of the integrated areas of the resonances arising from the co-ordinated and free ligands in the 18 solutions whose compositions are given in Table 2 shows that $[Sc(dma)_6]^{3+}$ and $[Sc(tmu)_6]^{3+}$ are the predominant scandium(III) species in the relevant solutions. In the tmu systems singlet resonances were observed for both co-ordinated and free tmu [the separation varies somewhat with concentration and temperature; for example, 17.1 (250)—17.9 Hz (290 K) in solution (ii) and 5.9 (250)—7.9 Hz (310 K) in solution (vii)] in the region of the freezing point of the solutions and this observation is consistent with rotation about the C-N bonds in tmu being in the fast-exchange limit of the n.m.r. time scale at these temperatures (225 K for CD₃CN, 245 K for CD₃NO₉). The barrier to internal field components of the N-methyl doublets of coordinated and free dma respectively are almost coincident. This pattern was observed consistently for solutions (xv)—(xviii).

Complete lineshape analysis ⁸ of the ¹H spectra at selected temperatures yielded the mean site lifetimes of a single co-ordinated ligand, τ_c . Typical experimental spectra and best-fit calculated lineshapes for the $[Sc(dma)_6]^{3+}$ -dma-CD₃CN system are depicted in Figure 1 along with corresponding τ_c values. The observed first-order rate constant is related to τ_c through equation (1) where x_c and x_F are the mol fractions of co-ordinated

				-			
	[ScL ₆ ³⁺] ^a	[L] »	[diluent]				
		mol dm ⁻⁸			k _{ex} (350 K) ^d	$\Delta H^{\ddagger \bullet}$	ΔS^{*}
Solution		[tmu]		Ne	S ⁻¹	kJ mol ⁻¹	JKIMOII
(i)	0.124	€ 0.682	ן 14.9	5.9 ± 0.1	34.2 ± 1.5	99.1 ± 1.0	$66.2~\pm~2.8$
(ii)	0.072 4	0.535	15.7	6.0 ± 0.2	33.5 ± 1.6	101 ± 1	70.7 ± 3.1
(iii)	0.053 4	0.294	15.8	5.9 ± 0.1	35.6 ± 1.5	$92.7~\pm~1.0$	48.4 ± 2.8
(iv)	0.012 3	0.090 7	$17.6 (CD_3NO_2)$	6.0 ± 0.1	45.5 ± 2.8	105 ± 2	84.7 ± 4.7
(v)	0.002 49	0.018 4	17.6	6.1 ± 0.1	57.4 \pm 3.1	94.0 ± 1.4	56.1 ± 4.1
(vi)	0.001 45 > L = tmu	{ 0.010 8	17.7)	5.8 ± 0.2	55.9 \pm 5.7	91.2 ± 2.3	47.8 ± 6.7
<i>,</i>	0.000 5	0.966	17 9	50 L 09	291 1 1 9	905 1 07	167 1 99
(V11)	0.038 5	0.200	17.3	5.9 ± 0.2	$\begin{array}{c} 33.1 \pm 1.4 \\ 62.1 \pm 2.6 \end{array}$	$\frac{60.5 \pm 0.7}{70.7 \pm 1.6}$	10.7 ± 2.2
(viii)	0.013 8	0.073 2	17.4 500 301	5.0 ± 0.2	641 ± 20	10.7 ± 1.0	-157 ± 38
(1X)	0.007 42 }	[0.051.5	17.4)	0.0 ± 0.2	04.1 ± 5.0	00.0 ± 1.0	-10.1 ± 0.0
(\mathbf{x})	0.039.51	(0.357	17 0)	6.0 ± 0.1			
(\mathbf{x})	0.041 5	0.256	17 1	61 ± 01			
(XI) (XII)	0.019.8	0.109	17.5 CD-NO.	59 ± 02			
	0.010 3	0.100	17.5	59 ± 02			
(xiii)	$0.0071 \downarrow I - dma$	0.0000	18.0	60 ± 0.2			
(AIV)	0.0071 $L = una$	0.0000	1010	0.0 1 0.1			
(xv)	0.156 7	0.7896	15.0)	6.0 + 0.2			
(xvi)	0.050 5	0.255	16.2 CD ₃ CN	5.9 + 0.1			
(xvii)	0.0324	0.163	17.9	5.8 + 0.2			
(xviii)	0.019 5	0.098 1	18.0	5.9 + 0.1			
(44.1.444)	0.02005	(

^a Added as [ScL₆][ClO₄]₃. ^b Added as L. ^c The mean number of ligands per scandium(III) ion as determined from a comparison of the integrated areas of the resonances of the co-ordinated and free ligands. ^d Taken from the linear regression of the plot of experimental $\ln(\tau_c T)$ against 1/T. The quoted errors represent one standard deviation. ^c Obtained from a linear regression of $\ln(\tau_c T)$ against 1/T. The quoted errors represent one standard deviation.

rotation in free tmu⁹ has been estimated to be 25.5 kJ mol⁻¹ with an approximate coalescence temperature (100 MHz) of 123 K. An increase in barrier height upon coordination to UO22+ has been observed 10 but measurements in that study were made at temperatures well below those achievable for the $[Sc(tmu)_6]^{3+}$ solutions investigated in this study. In the $[Sc(dma)_6]^{3+}$ solutions (x)—(xiv) quantitative determinations of the species in solution were based upon the acetyl ¹H resonances of co-ordinated and free dma [separated typically by 30 Hz, a shift which exhibits a negligible temperature dependence, in solution (xi)]. In CD₃CN solutions the residual resonances due to proton impurity arising from the diluent are in the vicinity of the ¹H acetyl resonances, thus precluding determinations based upon the latter resonances in all but the most concentrated solution (xv). Measurements were then based on the N-methyl resonances for solutions (xvi)-(xviii), these being void of effects due to rotation about the C-N bond 11 below 340 K. It is seen in Figure 1 that the high- and low-

and free ligand (L) respectively and τ_F is the mean lifetime of a single ligand in the free state.

Two different types of kinetic behaviour for ligand exchange at the scandium(III) centre were observed in

$$k_{\rm ex} = \tau_{\rm c}^{-1} = x_{\rm F} / \tau_{\rm F} x_{\rm C} = {\rm exchange \ rate} / 6[{\rm ScL_6^{3+}}]$$
 (1)

this study. The first type which characterizes the $[Sc(tmu)_6]^{3+}$ species is now described. The k_{ex} data for ligand exchange on $[Sc(tmu)_6]^{3+}$ in CD_3NO_2 [solutions (i)—(vi) in Table 2] show only a small variation with [tmu] consistent with the rate of the dominant ligand-exchange process being independent of free-ligand concentration, [tmu]. This is characteristic of a dissociative $(D)^4$ exchange mechanism in which the rate-determining step is the formation of the reactive intermediate $[Sc(tmu)_5]^{3+}$. This mechanism is typified by a rate equation identical to that in (1) and $k_{ex} = k_1$, the rate constant for the unimolecular rate-determining step. {A close inspection of the data for solutions (i)—(vi) reveals that k_{ex} exhibits a systematic 1.8-fold increase

TABLE 2

Solution compositions an	d kinetic	parameters	for [[ScL ₆] ³⁺	systems
--------------------------	-----------	------------	-------	-----------------------------------	---------

over a 63-fold decrease in [tmu]. It has been previously shown ^{2,3} that major changes in the environment of $[ScL_6]^{3+}$ can produce large variations in the ligandexchange kinetics and it therefore seems probable that the variation in k_{ex} observed for $[Sc(tmu)_6]^{3+}$ reflects to some extent the relatively minor changes which occur in

FIGURE 1 Proton n.m.r. (90-MHz) spectra characterizing ligand exchange on $[Sc(dma)_6]^{3+}$ in a solution in which $[Sc(dma)_6^{3+}]$, [dma], and $[CD_3CN]$ were respectively 0.0324, 0.163, and 17.9 mol dm⁻³. The experimental spectra and the corresponding temperatures (K) appear to the left of the figure and the bestfit calculated lineshapes and the corresponding $\tau_c(ms)$ values appear to the right. The NMe₂ doublet of co-ordinated NNdimethylacetamide is at low field

this environment as the concentration of the exchanging species is altered. These effects are discussed in more detail later.} If the postulated intermediate $[Sc(tmu)_5]^{3+}$ was insufficiently stable for a short, but independent, existence the observed exchange kinetics could be alternatively explained by the dissociative interchange mechanism $(I_{\rm p})^4$ in which the exchange process occurs through an 'encounter complex' {in such a complex a tmu molecule resides in the second co-ordination sphere of $[Sc(tmu)_{6}]^{3+}$. Ligand exchange then occurs through a process for which the major energetic component is the weakening of one scandium(III)-tetramethylurea bond to form the incipient $[Sc(tmu)_5]^{3+}$ moiety. At this point the leaving ligand and the entering ligand (already in the second co-ordination sphere) 'interchange' positions, such that $[Sc(tmu)_5]^{3+}$ has no independent existence, and this is followed by relaxation back to the ground state. $[Sc(tmu)_{6}]^{3+}$. To reproduce the observed kinetics it is necessary that practically all of the $[Sc(tmu)_{6}]^{3+}$ units exist in the 'encounter complex' form in solutions (i)—(vi) implying a high degree of preferential occupation of the second co-ordination sphere by tmu, for which there is no experimental evidence. On balance, therefore, it seems probable that a D mechanism is operating.

Studies of the tmu exchange process in CD₃CN diluent

were confined to a relatively small concentration range [solutions (vii)—(ix)] as a consequence of the limited solubility of [Sc(tmu)₆][ClO₄]₃ in CD₃CN and the appearance of small extraneous ¹H resonances in the region of interest at low concentrations and temperature due, perhaps, to scandium(III) species of different co-ordination number or co-ordination of acetonitrile to scandium(III). {In solution (ix) the extraneous signal area was less than 2% of the main signal of $[Sc(tmu)_6]^{3+}$. Nevertheless, the dominant path for ligand exchange upon [Sc(tmu)₆]³⁺ appears to be independent of [tmu] which is consistent with a D mechanism. The variation of k_{ex} is attributed largely to the environmental effects mentioned above. A comparison of ΔH^{\ddagger} and ΔS^{\ddagger} values for solutions (i)-(ix) suggests that a major environmental modification has occurred on going from CD₃NO₂ as diluent to CD₃CN whilst still maintaining a dissociative mechanism over the concentration ranges reported. For the purposes of comparison with other systems later it is considered that the ΔH^{\ddagger} and ΔS^{\ddagger} values obtained from the more dilute solutions in each series are most characteristic of the ligand-exchange process in each diluent. Accordingly, the data for solutions (vi) and (ix) are quoted in Table 3.

The second type of kinetic behaviour is that characterizing exchange on $[Sc(dma)_6]^{3+}$ in CD_3NO_2 and CD_3CN for which k_{ex} is given by equation (2). The k_{ex} data

$$k_{\rm ex} = k_1 + k_2 [\rm dma] \tag{2}$$

plotted in Figure 2 were interpolated from linearregression analyses of $\ln \tau_c$ versus 1/T for solutions (x)— (xiv) of Table 2. These k_{ex} data were then subjected to a

FIGURE 2 Plots of interpolated k_{ex} values for ligand exchange on $[Sc(dma)_{el}]^{3+}$ in CD_3NO_2 diluent. T = 340 (O), 330 (\bigoplus), 320 (\triangle), 310 (\blacktriangle), and 300 K (\square). The solid lines represent the linear-regression lines (*i.e.* for $k_{ex} = k_1 + k_2$ [dma])

further linear-regression analysis according to equation (2) to obtain the k_1 and k_2 values from which the corresponding ΔH^{\ddagger} and ΔS^{\ddagger} values were derived. The data obtained in CD₃CN diluent were similarly treated. {If the small environmental effects upon $k_{\rm ex}$ observed for the [Sc(tmu)₆]³⁺ systems are also present in the [Sc(dma)₆]³⁺ systems, it is unlikely that the derived k_1 values will be significantly affected as they are essentially derived by

extrapolation to infinite dilution. The derived k_2 values may incorporate small environmental effects but, as a consequence of the strong dependence of k_{ex} upon [dma], the corresponding ΔH^{\ddagger} and ΔS^{\ddagger} values in Table 3 should refer predominantly to the second-order process characterized by k_2 .} The observation of two ligandexchange paths suggests similar energies for the interperatures examined. As the slow-exchange limit was not reached it was not possible to assign a value of n in the species $[Sc(dmf)_n]^{3+}$ or its dimethyl sulphoxide analogue. It therefore appears that the increased lability of these species may arise as a consequence of either an increase in co-ordination number to seven in the ground state, as has been suggested for the aqueous

Та	BLE	3
-		•

Parameters for exchange of unidentate oxygen-donor ligands on [ML₆]³⁺ species

		Assigned exchange	k ₁ (300 K)	k2(300 K)	ΔH^{\ddagger}	ΔS^{\ddagger}	
Ion	Diluent	mechanism	s ⁻¹	dm ³ mol ⁻¹ s ⁻¹	kJ mol ⁻¹	J K ⁻¹ mol ⁻¹	Ref.
[Sc(tmu) ₆] ³⁺	CD ₃ NO ₂	D	0.26 ± 0.03		91.2 ± 2.3	47.8 ± 6.7	а
	CD ₃ CN	D	$1.08 \stackrel{-}{\pm} 0.05$		68.6 ± 1.3	-15.7 ± 3.8	а
[Sc(dma) ₆] ³⁺	CD_3NO_2	D	$4.6~\pm~0.3$		30.3 ± 2.0	-132 ± 6	а
	CD_3NO_2	A		112 \pm 3	$26.0~\pm~0.6$	-119 ± 2	a
	CD ₃ CN	D	6.7 ± 4.2		$28.3~\pm~5.5$	-135 ± 26	a
	CD ₃ CN	A		199 ± 19	29.0 ± 1.0	-104 ± 4	a
[Sc(tmp) ₆] ³⁺	CD_3NO_2	A		$51.3~\pm~1.8$	$26.0~\pm~0.9$	-126 ± 3	2
	CD3CN	D_{i}	65.7 ± 2.5		29.8 ± 0.4	-111 ± 2	2
[Sc(dmmp) ₆] ³⁺	CD_3NO_2	A		$13.7~\pm~0.5$	$29.7~\pm~1.1$	-124 ± 3	3
	CD_3CN	D	$3.2~\pm~0.2$		43.5 ± 1.8	-90.3 ± 5.4	3
	CD3CN	A		14.8 ± 0.4	$24.4~\pm~1.1$	-141 ± 3	3
[Al(tmp) ₆] ³⁺	CD ₃ NO ₂	D	0.45		98.3	76.1	24, 25
[Al(dmmp) ₆] ³⁺	CD ₃ NO ₂	D	5.1		79.5	33.0	24, 25
$[Al(OH_2)_6]^{3+}$		D	0.18		113	117	28
[Ga(tmp) ₆] ³⁺	CD ₃ NO ₂	D	6.3		87.9	63.2	24, 25
[Ga(OH ₂) ₈] ³⁺	_	A	2 500	(45.5) ^b	26.4	-92 (-125) ^b	28
[In(tmp) ₆] ³⁺	CD ₃ NO ₂	A		7.9	35.6	-109.2	24,25
	4 This monly	A Coloulated for	am tha data in na	f 99 often annum		r	

^a This work. ^b Calculated from the data in ref. 28 after assuming $[H_2O] = 55$ mol dm⁻³.

mediates $[Sc(dma)_5]^{3+}$ and $[Sc(dma)_7]^{3+}$ arising from D and A mechanisms respectively. It could be argued that the k_2 term in equation (2) arises from an I_p mechanism under the limiting condition in which [encounter complex] $\leq [Sc(dma)_{6}^{3+}]$ such that $k_{2} = k'K$, where k' is the rate constant for the interchange process and Kis the equilibrium constant for the formation of the encounter complex. An inspection of Table 3 and Figure 2 indicates that if an $I_{\rm D}$ mechanism were operative it would be necessary for $k' > 10k_1$ which seems implausible since the primary energetic step in both the Dand $I_{\rm p}$ mechanisms is fission of the metal-ligand bond.* As six-,¹² seven-,¹³ eight-,¹⁴ and nine-co-ordinate ¹⁵ scandium(III) species are well documented and demonstrate the ability of scandium(III) to increase its coordination number above six, it seems more plausible to assign the k_2 term to an A mechanism.[†]

Solutions of $[Sc(dmf)_6][ClO_4]_3$ and dmf in CD_2Cl_2 exhibit environmentally averaged dmf resonances down to 180 K and solutions of $[Sc(dmso)_6][ClO_4]_3$ and dmso in CD_3NO_2 have only one dmso resonance at 245 K. The chemical shift between co-ordinated and free resonances should be >10 Hz in each case on the basis of shift measurements of complex and ligand in isolation. This requires k_{ex} to be greater than 40 s⁻¹ at the lowest temsystem, 17-19 or a markedly greater value for k_2 than has been measured for scandium(III) species to date.

The kinetic parameters and mechanisms for ligand exchange on the $[ScL_6]^{3+}$ systems studied in detail so far (L = tmp, dmmp, tmu, or dma) are presented in Table 3. Molecular models suggest that steric crowding decreases in the sequence L = tmu > tmp > dmmp > dma. The dominance of the k_1 term and the D mechan-

[†] An alternative mechanism may be postulated in which the diluent, X, enters the first co-ordination sphere to produce the highly reactive species $[ScL_{6}X]^{3+}$ and $[ScL_{5}X]^{3+}$ (which are consequently present in low concentration) according to the scheme below in which k_{x} characterizes the rate-determining

$$[\operatorname{ScL}_{\boldsymbol{\delta}}]^{3+} + X \Longrightarrow [\operatorname{ScL}_{\boldsymbol{\delta}}X]^{3+} \xleftarrow{\kappa_x} [\operatorname{ScL}_{\boldsymbol{\delta}}X]^{3+} + L$$

step for the exhange of L. Operation of this ligand-exchange path, in parallel with the k_2 path for which an A mechanism has previously been proposed, would produce the k_1 term of equation Such a mechanism is analogous to that proposed for ligand (2) substitution on square-planar platinum(11) species.¹⁶ However such a mechanism seems unnecessarily complicated for the scandium(III) systems for which the k_1 term only is observed, and is not operative when the k_2 term is observed alone. Whereas in the platinum(11) systems the simultaneous operation of D and Amechanisms would require the generation of reactive intermediate species of co-ordination number three and five respectively, the analogous co-ordination numbers of five and seven required for the scandium(III) species represent a less drastic variation in co-ordination number. Whilst there appears to be no definite report of a five-co-ordinate ground-state scandium(III) species in solution, the observation of $[Sc(trop)_3]$ and $[Sc(trop)_4]^-$ (where trop is the anion of 2-hydroxycyclohepta-2,4,6-trien-1-one, $C_{1}H_{5}O_{2}$ species ^{12,14} in the solid state demonstrates the ability of scandium(III) to vary its co-ordination number by two in the presence of a given ligand as a consequence of environmental changes.

^{*} If [encounter complex] $\leq [\operatorname{Sc}(\operatorname{dma})_{\mathfrak{s}}^{\mathfrak{s}+}]$ and $K[\operatorname{dma}] \leq 1$ for all the solutions studied, then for a solution with $[\operatorname{dma}] = 0.5$ mol dm⁻³, $K \leq 2$ dm³ mol⁻¹. At 300 K (Table 3), k_2/k_1 ($= k'K/k_1$) ca. 24 in CD₃NO₈ solutions and ca. 30 in CD₃CN solutions which means that $k'/k_1 > 10$.

ism in both CD₃NO₂ and CD₃CN for [Sc(tmu)₆]³⁺ is consistent with steric crowding stabilizing the $[Sc(tmu)_5]^{3+}$ intermediate over the [Sc(tmu)₇]³⁺ intermediate. In contrast, in less sterically crowded [Sc(dma)₈]³⁺ systems, [Sc(dma)₇]³⁺ is evidently of similar stability to [Sc- $(dma)_{5}$ ³⁺ and furthermore provides the dominant exchange path at high [dma] values. These trends may also be discerned in the data for the $[Sc(tmp)_{6}]^{3+}$ and $[Sc(dmmp)_{\beta}]^{3+}$ systems, but it is clear that the nature of the diluent is also important in determining the exchange mechanism. The constancy of the co-ordination number of scandium(III) over wide concentration ranges together with the non-appearance of resonances arising from coordinated diluent ^{2,3} (except possibly in the $[Sc(tmu)_{f}]^{3+}$ tmu-CD₃CN system at low [tmu]} indicate that it is improbable that the effect of either diluent upon the exchange mechanism is a consequence of diluent entering the first co-ordination sphere (unless the mechanism discussed in the footnote operates). As the dielectric constants of CH₃NO₂ and CH₃CN are very similar it appears unlikely that a bulk environmental effect is instrumental in favouring one exchange mechanism over another and consequently it would seem that specific interactions between the first and second co-ordination spheres are of importance. The maximum difference between the interactions of CD₃NO₂ and CD₃CN with the spherical array of methyl groups presented by the first co-ordination sphere of all four $[ScL_6]^{3+}$ species arises if the NO₂ and CN groups of these diluents are oriented towards the scandium(III) centre. The electrostriction of the first and second co-ordination spheres may well cause the stereochemistry of the NO₂ and CN groups to be critical in determining the orientation of the methyl groups at the surface of the first co-ordination sphere and therefore the relative energies of $[ScL_6]^{3+}$ and the $[ScL_5]^{3+}$ and $[ScL_7]^{3+}$ intermediate or transition-state species. When the degree of steric crowding in the primary co-ordination sphere is high or low the tendency for a change in mechanism should not depend critically on a change in the diluent but nevertheless some disparity may be expected in activation parameters. In intermediate cases of steric crowding, which [Sc(tmp)₆]³⁺ and [Sc(dmmp)₆]³⁺ evidently are, a change in diluent may cause a change from a D to an A mechanism. On the basis of the limited data available it appears that the CD_3NO_2 diluent favours the A mechanism to a greater extent than does CD₃CN. The possible contributions to the observed ligand-exchange activation parameters of modification of the environment external to the first coordination sphere have been discussed elsewhere.²⁰⁻²²

A comparison of the mechanistic characteristics of ligand exchange of $[ScL_6]^{3+}$ with those of some other $[ML_6]^{3+}$ species may be made through the data in Table 3. Such a comparison also requires a reference to the appropriate ionic radii²³ (Å) which are: Sc³⁺, 0.68 (0.81); Al^{3+} , 0.45 (0.50); Ga^{3+} , 0.60 (0.62); and In^{3+} , 0.81 (0.81) where the Goldschmidt and Pauling radii appear in that order. Ligand exchange in the $[AlL_6]^{3+}$ systems ²⁴⁻²⁶ in Table 3 (and also when L =

dmf,²⁶ dmso,²⁷ or dimethyl hydrogenphosphite ²⁴) apparently proceeds through a D mechanism which may be attributed to the small ionic radius of Al3+ and the concomitant steric crowding in $[AlL_6]^{3+}$. [It should, however, be noted that ligand exchange on the tetrakis-(hexamethylphosphoramide)aluminium(III) ion is characterized by an A mechanism.²⁴] In the case of $[Ga(OH_2)_6]^{3+}$ an A mechanism appears to operate for water exchange,^{28,29} whereas in the case of $[Ga(tmp)_6]^{3+}$ a D mechanism operates.³⁰ Evidently, the larger ionic radius of Ga³⁺ compared to Al³⁺ causes the relative sizes of ligands to become important in determining mechanism. A further increase in ionic radius results in ligand exchange upon [In(tmp)₆]³⁺,³⁰ and probably upon $[In(OH_2)_6]^{3+}$ also,²⁹ proceeding via an A mechanism. It thus appears from the data in Table 3 that at least three factors control the mechanism of ligand exchange on these $[ML_6]^{3+}$ species: (i) ionic radius of M^{3+} , (ii) the size of L, and (iii) the environment external to the first coordination sphere. In view of the similarity in ionic radii of Sc^{3+} , Ga^{3+} , and In^{3+} and the apparent ability of Ga^{3+} to undergo mechanistic change with the nature of L, it would be of interest to investigate the mechanistic characteristics of $[GaL_6]^{3+}$ and $[InL_6]^{3+}$ as the nature of L and the diluent are varied.

This research was supported by the Australian Research Grants Committee. We thank Dr. H. Diebler for informative discussions.

[9/798 Received, 22nd May, 1979]

REFERENCES

¹ D. L. Pisaniello and S. F. Lincoln, J.C.S. Chem. Comm., 1978, 1047.

² D. L. Pisaniello and S. F. Lincoln, J.C.S. Dalton, 1979, 1473. ³ D. L. Pisaniello and S. F. Lincoln, Inorg. Chim. Acta, 1979,

36, 85.
⁴ C. H. Langford and H. B. Gray in 'Ligand Substitution Processes,' W. A. Benjamin, New York, 1966.
⁵ N. M. Karayannis, C. Owens, L. L. Pytlewski, and M. M.

Labes, J. Inorg. Nuclear Chem., 1969, 81, 2059. ⁶ G. A. Melson and R. W. Stotz, Co-ordination Chem. Rev.,

1971, 7, 133.

7 D. D. Perrin, D. R. Perrin, and W. L. F. Armarego in ' Purification of Laboratory Chemicals,' Pergamon, Oxford, 1966.

S. F. Lincoln, Progr. Reaction Kinetics, 1977, 9, 1

 P. Stilbs and M. E. Moseley, J. Magn. Reson., 1978, 31, 55.
 G. J. Honan, S. F. Lincoln, and E. H. Williams, J.C.S. Dalton, 1979, 320.

¹¹ P. A. Temussi, T. Tancredi, and F. Quadrifoglio, J. Phys. Chem., 1969, 73, 4227.

¹² T. J. Anderson, M. A. Neuman, and G. A. Melson, Inorg. Chem., 1974, **13**, 158.

¹³ D. D. McRitchie, R. C. Palenk, and G. J. Palenk, Inorg. Chim. Acta, 1976, 20, L27.

¹⁴ T. J. Anderson, M. A. Neuman, and G. A. Melson, Inorg. Chem., 1974, 13, 1884. ¹⁵ C. C. Addison, A. J. Greenwood, M. L. Haley, and N. Logan,

J.C.S. Chem. Comm., 1978, 580. ¹⁶ R. G. Wilkins in 'The Study of Kinetics and Mechanism of

Reactions of Transition Metal Complexes,' Allyn and Bacon,

Boston, 1974. ¹⁷ G. Geier, Ber. Bunsengesellschaft Phys. Chem., 1965, **69**, 617. ¹⁸ H. Diebler, M. Eigen, G. Ilgenfritz, G. Maas, and R. Winkler, *Pure Appl. Chem.*, 1969, 20, 93.
¹⁹ A. Bonsen, W. Knoche, W. Berger, K. Giese, and S. Petrucci, *Ber. Bunsengesellschaft Phys. Chem.*, 1978, 82, 678.
²⁰ D. L. Pisaniello and S. F. Lincoln, *Austral. J. Chem.*, 1979, 32,

715.

²¹ E. F. Caldin and H. P. Bennetto, J. Solution Chem., 1973, 2,

- ²¹ E. F. Caldin and H. P. Bennetto, J. Solution Chem., 1973, 2, 217.
 ²² P. Fischer, H. Hoffmann, and G. Platz, Ber. Bunsengesell-schaft Phys. Chem., 1972, 76, 1060.
 ²³ F. A. Cotton and G. Wilkinson in 'Advanced Inorganic Chemistry,' 3rd edn., Interscience, New York, 1972.
 ²⁴ J.J. Delpuech, M. R. Khaddar, A. A. Peguy, and P. R. Rubini, J. Amer. Chem. Soc., 1975, 97, 3373.
 ²⁵ L. S. Frankel and E. R. Danielson, Inorg. Chem., 1972, 11, 1964.
- 1964.
- 26 W. G. Movius and N. A. Matwiyoff, Inorg. Chem., 1967, 6,
- 847.
 847.
 ²⁷ S. Thomas and W. L. Reynolds, *Inorg. Chem.*, 1970, 9, 78.
 ²⁸ D. Fiat and R. E. Connick, *J. Amer. Chem. Soc.*, 1968, 90, 608. 29
- J. Miceli and J. Stuehr, J. Amer. Chem. Soc., 1968, 90, 6967.
 L. Rodehüser, P. R. Rubini, and J-J. Delpuech, Inorg. Chem., 1977, **16**, 2837.

[©] Copyright 1980 by The Chemical Society