Ionic–Covalent Equilibria in Boron Trihalide Adducts. The $BF_2(hmpa)_2^+$ Cation

By J. Stephen Hartman • and Peter Stilbs, Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada

The reaction 2 hmpa·BF₃ \implies BF₂(hmpa)₂⁺ + BF₄⁻ occurs spontaneously in the hexamethylphosphoramide (hmpa)–BF₃ system. The degree of ionization for the above reaction is 0.13 in CDCl₃ solution at 27 °C. Factors favouring the relatively rare ionic form of boron trifluoride adducts are discussed.

DONOR-ACCEPTOR adducts between Lewis acids such as BF_3 and $SbCl_5$ and simple organic Lewis bases (D) are usually covalent with 1 : 1 stoicheiometry. However we have shown that in BF_3 adducts of tetramethylurea, tetramethylthiourea, and tetramethylselenourea there is an equilibrium between ionic and covalent forms of the adduct ^{1,2} [see equation (1)] which can be complicated by

$$2 \text{ D} \cdot \text{BF}_3 \Longrightarrow \text{D}_2 \text{BF}_2^+ + \text{BF}_4^- \qquad (1)$$

reaction of BF_4^- with an excess of BF_3^2 [see equation (2)].

$$BF_4^- + BF_3 \Longrightarrow B_2F_7^- \tag{2}$$

Ureas also form ionic adducts with $SbCl_5^3$ [equation (3)].

$$2 \text{ D} \cdot \text{SbCl}_5 \Longrightarrow \text{D}_2 \text{SbCl}_4^+ + \text{SbCl}_6^- \qquad (3)$$

Since ionic BF₃ adducts do not form spontaneously with most classes of simple donors, it would appear that particular structural features of the donor are necessary in order for the ionic form to become competitive. Since hexamethylphosphoramide [hmpa, $(Me_2N)_3P=O$] has features similar to tetramethylurea [*i.e.*, a grouping of the type $(Me_2N)_n$...E...O (E = C or P)], the hmpa system was investigated in search of a further example of equilibrium (1). Previous n.m.r. studies of the hmpa-BF₃ system have noted its complexity without clarifying its behaviour.^{4,5}

RESULTS

The hmpa·BF₃ System in the Presence of an Excess of hmpa.—At 27 °C in CDCl₃ solution the main ¹⁹F n.m.r. resonance, assigned to $hmpa \cdot BF_3$, is a fairly sharp doublet [chemical shift -148.5 p.p.m. from CFCl₃, $J(^{19}\text{F} ^{31}P) = 8.0$ Hz], both of the peaks also showing a splitting due to a ¹⁰B-¹¹B isotope shift ⁶ of ca. 0.06 p.p.m., but with no splittings due to ¹¹B-¹⁹F coupling. A resonance at -154.5 p.p.m. shows a 1-Hz coupling to ¹¹B as well as the ¹⁰B-¹¹B isotope shift, and is assigned to $BF_4^{-.7}$ A small broad quartet at lower field $[-141.8 \text{ p.p.m.}, J(^{11}\text{B}^{-19}\text{F}) =$ 12 Hz] has the characteristic signal shape of a nucleus with spin $\frac{1}{2}$ coupled to ¹¹B which is undergoing quadrupole relaxation at an intermediate rate; 8 no coupling to phosphorus is detectable. This signal is assigned to $BF_2(hmpa)_2^+$, by analogy with other oxygen-donor $D_2BF_2^+$ species $[BF_2(tmu)_2^+, -146.0 \text{ p.p.m.}, J(^{11}B^{-19}F)] = 12.4 \text{ Hz}; BF_2(dma)_2^+, -144.2 \text{ p.p.m.} (tmu = tetra$ methylurea and dma = dimethylacetamide)].¹ The relative peak areas were constant within experimental error up to BF_3 : hmpa ratios of 1:1 and were hmpa· BF_3 : $BF_2(hmpa)_2^+$: $BF_4^- = 17.4:1:2.5.$

A further very small ¹⁹F peak (<1% of the total ¹⁹F peak area) at -151.3 p.p.m. is apparently due to an impurity; its relative size differs in different samples but tends to increase with an increasing excess of donor.

The results agree fairly well with equation (1) if the degree of ionization is 0.13, although the BF_4^- peak is always somewhat greater than twice the size of the $BF_2(hmpa)_2^+$ peak. Contamination by traces of acidic impurities or water, with resulting BF_4^- formation, sometimes accounts for such discrepancies⁹ but here it is excluded by the ¹H n.m.r. evidence described below. Formation of traces of $[BF(hmpa)_3][BF_4]_2$, in a further stage of donor-for-fluorine redistribution, is one possible cause. The ion BF(hmpa)₃²⁺ would give a ¹⁹F absorption only 0.125 times as intense as the two $BF_4^$ counter ions it requires, and the combination of very low intensity and broadening of the expected 1:1:1:1quartet due to quadrupole relaxation of boron would make such a species difficult to detect by ¹⁹F n.m.r. There is precedent for the existence of D_3BX^{2+} species where X is a heavier halogen.¹⁰ A thorough but unsuccessful search was made for the ¹⁹F resonance of this ion, which by application of pairwise interaction parameters ¹¹ should have a chemical shift of ca. -132 p.p.m. and an ¹¹B-¹⁹F coupling constant of ca. 26 Hz. Our inability to detect this signal does not prove the absence of the proposed species, which is still a possible explanation of the discrepancy of peak areas.

Boron-11 n.m.r. results are consistent with equation (1). While at 30 °C only a single resonance was observed, at -60 °C this was resolved into a large broad resonance [-19.9 p.p.m. from external B(OMe)₃; ω_1 33 Hz; hmpa·BF₃] and a superimposed small sharper resonance $(-19.5 \text{ p.p.m.}; \omega_1 5 \text{ Hz}; \text{BF}_4^-)$. Small chemical-shift differences and the breadth of the peaks prevents resolution of the BF₂(hmpa)₂⁺ resonance, which presumably is also broad and underlies the hmpa·BF₃ peak. Assuming this, relative peak areas give a degree of ionization which is consistent with that determined by ¹⁹F n.m.r. spectra.

At 27 °C separate ¹H 1:1 doublets are obtained for free donor [δ 2.66, ³J(HP) = 9.6 Hz] and the 1:1 adduct [δ 2.73, ³J(HP) = 10.0 Hz]. The adduct peaks are significantly broader than the free-hmpa peaks (peak width at half height *ca.* 0.6 Hz compared to *ca.* 0.3 Hz), indicating unresolved coupling to boron.

No separate ¹H signals are observed for $BF_2(hmpa)_2^+$, but the relative size of the signals ascribed to an excess of donor is larger than expected for free donor alone, and it appears that free hmpa and hmpa in the cation give a combined signal due to rapid exchange. This is consistent with the lack of splitting due to $^{19}F^{-31}P$ coupling in the ^{19}F n.m.r. spectrum of the cation, and is analogous to previous results for the hmpa·SbCl₅ and tetramethylurea·SbCl₅ adducts.³ The degree of ionization can be estimated from the size deviation using equation (9) of ref. 3, which averaged over ten samples gives a value of 0.12 ± 0.04 , in good agreement with the ^{19}F results. This corresponds to an equilibrium constant of 2×10^{-2} for autoionization [equation (1)].

Acidic impurities or water in systems such as hmpa-BF₃ give rise to ¹H signals at δ 7—16,¹² and in some samples a trace-impurity low-field ¹H peak, somewhat broadened and of varying size and chemical shift, could be detected after accumulation of 100 scans. However, there was no correlation between the size of this peak and the presence of ions as indicated by ¹⁹F spectra, and it seems that acidic impurities can be ruled out as a cause of the behaviour observed.

The hmpa·BF₃ System in the Presence of an Excess of BF₃.—Solubility problems severely limited this study, suggesting that an ionic species predominates under conditions of an excess of BF₃. Dilute solutions (≤ 0.3 mol dm⁻³) in a CDCl₃-CH₂Cl₂ solvent mixture could be studied down to -95 °C, but these solutions were metastable and deposited crystals on prolonged standing at -78 °C. Once formed, the crystals remained insoluble at ambient temperature. They are extremely sensitive to moisture and have not been studied further.

Ambient-temperature ¹⁹F n.m.r. spectra of freshly prepared solutions containing an excess of BF₃ showed a separate BF₂(hmpa)₂⁺ resonance of similar size to that observed in samples containing an excess of hmpa. All of the remaining fluorides (hmpa·BF₃, BF₄⁻, and BF₃) gave a single averaged resonance at *ca.* -145 p.p.m., which shifted somewhat to lower field with an increasing excess of BF₃. At -95 °C this peak separated into (*i*) an hmpa·BF₃ peak (-147.0 p.p.m.) still broadened by chemical exchange so that ¹⁹F-³¹P coupling was not visible, and (*ii*) a peak at *ca.* -145.8 p.p.m. assigned to B₂F₇⁻.^{13,*}

Under conditions of an excess of BF_3 only one ¹H doublet, having the same chemical shift as the 1:1 adduct doublet observed in solutions containing an excess of hmpa, is present. In contrast to the hmpa-SbCl₅ system ³ the doublet does not shift downfield with an increasing excess of Lewis acid.

DISCUSSION

Previous n.m.r. studies of the hmpa-BF₃ system can be reinterpreted in terms of equilibria (1) and (2). Elegant *et al.*⁴ noted two ¹⁹F absorptions but missed the broadened lower-field quartet of BF₂(hmpa)₂⁺, so that the BF₄⁻ resonance was not correctly assigned. Hill ⁵

correctly identified the hmpa-BF3 and $\mathrm{BF}_4^{-19}\mathrm{F}$ resonances and detected two forms of adducted hmpa by ¹H n.m.r., using acetonitrile as solvent. From this he proposed ionization scheme (1). However, he too missed the $BF_2(hmpa)_2^+$ ¹⁹F resonance, and he incorrectly attributed the formation of ionic species to the presence of water in the system. Gutmann and Imhof¹⁵ have discussed autoionization of BF₃ adducts of various phosphoryl donors on the basis of conductance and n.m.r. data, but apparently did not attempt to observe the ions directly by ¹⁹F n.m.r. They considered the ionic excess-of-BF₃ form of the adduct to involve a threeco-ordinate boron cation $R_3PO \cdot BF_2^+$. We exclude this on the basis of various evidence, including the characteristic ¹⁹F and ¹¹B chemical-shift ranges of trigonal and tetrahedral boron species, as discussed in our previous work.1,2

More recently, Vidal and Ryschkewitsch¹⁶ observed weak co-ordination of further BF₃ to the 1:1 hmpa·BF₃ adduct, and considered nitrogen donation to a second BF_3 to be a possibility. They also reported that the stronger Lewis acid BCl₃ did not interact with hmpa beyond 1:1 proportions. This seems inconsistent with nitrogen donation, which should be equally effective with BCl_3 , but is consistent with equations (1) and (2). The $B_2F_7^-$ ion is a well known species, stable at low temperatures but dissociated at ambient temperature,^{13,14,17} whereas the analogous $B_2Cl_7^-$ ion has never been detected. Even if hmpa·BCl₃ is in equilibrium with the ionic form of the adduct, the apparent non-existence of $B_2Cl_7^-$ allows no means for further uptake of BCl_3 , other than nitrogen donation. Incidentally, a previous report of nitrogen donation in ureas, quoted by Vidal and Ryschkewitsch as precedent for nitrogen donation in the hmpa-BF₃ system,¹⁶ is in error.⁹

Thus previous studies of the hmpa-BF₃ system are consistent with equilibria (1) and (2) and with hmpa donating only through oxygen, its accepted site of coordination.¹⁸ However, in contrast to the tetramethylthiourea-BF₃ system in which analogous equilibria have been established and are rapid,² an excess of BF₃ does not cause an immediate shift of equilibrium (1) to the right by removal of BF₄⁻ to form B₂F₇⁻. The hmpa solutions with an excess of BF₃ are metastable; the conversion to the less soluble ionic species appears to be slow. Oxygen donor-BF₃ bonds are in general less rapidly broken than sulphur donor-BF₃ bonds ^{2,19} and this might slow down the covalent-to-ionic shift.

The ionic-covalent equilibrium (1) is not general but does occur in BF₃ adducts of ureas, thioureas, selenoureas, and dialkylamides as well as hmpa, all of which contain a grouping of the type $R_2N \dots E \dots X \rightarrow BF_3$ (E = C or P; X = O, S, or Se). This grouping has the ability to delocalize the positive charge formed on the donor atom on adduct formation, shifting it further from the boron atom, and this probably makes the attack of a second donor molecule at boron less unfavourable. The greater equilibrium constant for equation (1) when the donor is hmpa rather than tetramethylurea (0.02 vs. 0.003) is

^{*} The $B_2F_7^-$ ion is known to be dissociated to BF_4^- and BF_3 at ambient temperature but not at -95 °C (ref. 14). Above -140 °C only a single averaged ¹⁹F resonance can be observed for $B_2F_7^- + BF_3$, or for $B_2F_7^- + BF_4^-$ (ref. 13).

consistent with the greater positive charge delocalization possible in hmpa, with its three rather than two NMe, groups.

However, steric effects should also be important, as in the better known case of symmetrical vs. unsymmetrical cleavage of diborane on adduct formation. For example, on reaction with B_2H_6 , NH_3 (with low steric hindrance) forms primarily the ionic adduct $(H_3N)_2BH_2^+ \cdot BH_4^$ while the hindered NMe₃ forms only the covalent adduct Me₃N·BH₃.²⁰ The hmpa group co-ordinated to boron could be considered a neohexyl analogue, and the terminal carbon of the neohexyl group has low steric hindrance. However Me₃N co-ordinated to boron could be

neopentyl

considered a neopentyl analogue, and the terminal carbon of the neopentyl group has high steric hindrance.²¹ This could explain the spontaneous formation of D₉BF₉⁺ species with donors such as hmpa but the absence of analogous species with simpler donors such as the tertiary amines.

The adducts $[D_2BF_2][BF_4]$ can also be favoured when chelation provides an additional driving force,²² but interestingly, ethylenediamine and tetramethylethylenediamine do not form such species.23 A number of neutral BF₂ chelates are also known.²⁴ However, the class of non-chelated $D_2BF_2^+$ ions is still very restricted. We are presently investigating further examples, which appear to form as by-products in certain mixed boron trihalide adduct systems.²⁵

EXPERIMENTAL

Purification of BF₃ has been described previously.¹ Hexamethylphosphoramide (Eastman Kodak) was vacuum distilled twice and dried over Lindé 4A molecular sieves; a high-gain ¹H spectrum of the purified compound showed no impurities. Deuteriochloroform (Merck, Sharp & Dohme) was transferred to, and stored in, a vacuum-line bulb after discarding the initial cut. Samples included the n.m.r. reference compounds $SiMe_4$, $CFCl_3$, and C_6F_6 and were prepared and sealed in flamed-out 5-mm medium-wall tubes by standard vacuum-line techniques. The hmpa was not transferred in vacuo but was added with a Hamilton syringe. The range of BF_a : hmpa ratios studied was 0.2: 1-1.5: 1.

Nuclear magnetic resonance spectra were recorded on a Bruker WP-60 Fourier-transform n.m.r. spectrometer operating at 60 MHz (¹H), 56.4 MHz (¹⁹F), and 19.25 MHz (¹¹B). Chemical shifts are given in p.p.m. to low field of the reference compound (1H, internal SiMe₄; 11B, external trimethoxyboron; ¹⁹F, internal CFCl₃). For ¹⁹F spectra, internal C_6F_6 was used as a secondary reference, with a chemical shift of -162.9 p.p.m. from internal CFCl₂ at 27 °C. When signal averaging was required 30° pulses were used, and a sufficient delay (10 s) was introduced between pulses to allow the spin system to return to thermal equilibrium so that distortions of relative peak areas would not occur. The transformed spectra contained 4K data points. Integration of spectra was performed digitally by computer. Broad-band proton-decoupled ¹³C and ³¹P spectra were obtained but because of a very small ¹³C complexation shift (<0.1 p.p.m.), and broad ³¹P signals ($\omega_{\frac{1}{2}} = 10$ —30 Hz), these gave no useful information.

We thank the National Research Council of Canada for support and Mr. Brian D. McGarvey for technical assistance.

[9/1079 Received, 10th July, 1979]

REFERENCES

¹ J. S. Hartman and G. J. Schrobilgen, Inorg. Chem., 1974, 13,

874. ² J. S. Hartman, G. J. Schrobilgen, and P. Stilbs, *Canad. J.* Chem., 1976, 54, 1121. ³ P. Stilbs and G. Olofsson, Acta Chem. Scand., 1974, A28, 647.

⁴ L. Elegant, M. Azzaro, R. Mánkowski-Favelier, and G. Mavel, Org. Magn. Reson., 1969, 1, 471.

⁵ J. C. Hill, Ph.D. Thesis, University of Illinois, 1968 (Diss. Abs., 1969-1970, 30B, 103).

R. J. Gillespie and J. S. Hartman, Canad. J. Chem., 1967, 45, 859; H. Batiz-Hernandez and R. A. Bernheim, Progr. N.M.R. Spectroscopy, 1968, 3, 63.

⁷ R. J. Gillespie, J. S. Hartman, and M. Parekh, *Canad. J. Chem.*, 1968, **46**, 1601; J. S. Hartman and G. J. Schrobilgen, *Inorg. Chem.*, 1972, **11**, 940.

J. Bacon, R. J. Gillespie, and J. W. Quail, Canad. J. Chem.,

1963, **41**, 3063. • J. S. Hartman and G. J. Schrobilgen, *Canad. J. Chem.*, 1972,

50, 713. ¹⁰ G. E. Ryschkewitsch, in 'Boron Hydride Chemistry,' ed. Acceleration Press New York, 1975, ch. 6.

 J. S. Hartman and J. M. Miller, *Inorg. Chem.*, 1974, 13, 1467.
 Q. Appleton, L. Bernander, and G. Olofsson, *Tetrahedron*, 1971, 27, 5921.

 J. S. Hartman and P. Stilbs, J.C.S. Chem. Comm., 1975, 566.
 S. Brownstein and J. Paasivirta, Canad. J. Chem., 1965, 43, 1645.

 ¹⁵ V. Gutmann and J. Imhof, *Inorg. Chim. Acta*, 1970, 4, 171.
 ¹⁶ J. L. Vidal and G. E. Ryschkewitsch, J. Inorg. Nuclear Chem., 1976, **38**, 1937.

¹⁷ J. J. Harris, Inorg. Chem., 1966, 5, 1627.

 ¹⁸ H. Normant, Angew. Chem. Internat. Edn., 1967, 6, 1046;
 W. G. DeBolster and W. L. Groeneveld, Rec. Trav. chim., 1972, **91**, 171.

¹⁹ M. J. Bula and J. S. Hartman, J.C.S. Dalton, 1973, 1047;

M. J. Bula, J. S. Hartman, and C. V. Raman, *ibid.*, 1974, 725.
²⁰ H. D. Johnson and S. G. Shore, *Fortschr. Chem. Forsch.*, 1970, 15, 87; E. Mayer, *Inorg. Chem.*, 1972, 11, 866.
²¹ E. C. Gould, 'Mechanism and Structure in Organic Chem. istry,' Holt, Rinehart and Winston, New York, 1959, pp. 274-

277.²² N. Wiberg and J. W. Buchler, *Chem. Ber.*, 1963, **96**, 3000; D. D. Axtell, A. C. Campbell, P. C. Keller, and J. V. Rund, *J.*

Coord. Chem., 1976, 5, 129.

²³ H. C. Brown, B. Singaram, and J. R. Schwier, Inorg. Chem., 1979, 18, 51; H. C. Brown and B. Singaram, ibid., 1979, 18, 53.

²⁴ N. M. D. Brown and D. Bladon, J. Chem. Soc. (A), 1969, 526; A. Trestianu, H. Niculescu-Majewska, I. Bally, A. Barabás, and A. T. Balaban, *Tetrahedron*, 1968, 24, 2499; N. N. Shapetko,
 L. N. Kurkovskaya, V. G. Medvedeva, A. P. Skoldinov, and
 L. K. Vasyanina, J. Struct. Chem., 1969, 10, 936; F. Umland,
 E. Hohaus, and K. Brodte, Chem. Ber., 1973, 106, 2427; J.-P. Tuchagues, P. Castan, G. Commenges, and J.-P. Laurent, Synth.

 React. Inorg. Metal-Org. Chem., 1975, 5, 279.
 ²⁰ J. S. Hartman and J. M. Miller, Adv. Inorg. Chem. Radio-chem., 1978, 21, 147; J. S. Hartman and B. D. McGarvey, Inorg. Chim. Acta, 1980, 44, L39.