Rhodium(1) Complexes of 8-Methyl-, 8-Ethyl-, and 8-Isopropyl-quinolines and Related 2-Substituted Derivatives

By Antony J. Deeming and lan P. Rothwell, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ

Abstract

The complexes [$\left.\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$ have been prepared from [$\left.\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]$ on adding unidentate L (8 -methyl-, -ethyl-, or -isopropyl-quinoline) or bidentate L (1,10 -phenanthroline or quinoline2 -carboxaldehyde- \boldsymbol{N}-methylimine). 8-Alkyl-substitution of the latter ligand gives the complexes [Rh(CO)$\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$ as isomers with uni- and bi-dentate L respectively with relative stabilities of the unidentate form depending on the 8 -substituent in the order $\mathrm{Pr}^{\mathrm{l}}>\mathrm{Et}>\mathrm{Me}$. Unidentate L is also favoured by replacing PPh_{3} by $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$, but bidentate co-ordination is found using AsPh_{3} or $\mathrm{PMe}_{2} \mathrm{Ph}$. Equilibrium constants for chlorobridge cleavage of $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ by 8 -substituted and 2,8 -disubstituted quinolines are reduced by increasing the size of the 8 -substituent and even more by further introduction of a 2 -methyl group. The contributions of distortions in the co-ordination to these changes in equilibrium constants are discussed.

Co-ordination through the nitrogen atom in 8 -substituted quinolines requires that the 8 -substituent be close to the metal atom. This has, of course, enabled the anion derived from 8-hydroxyquinoline to be used as a powerful bidentate ligand, while in the present work we have tried to establish the consequences of the 8 substituent being a Me, Et, or Pr^{i} group. Even though palladation of the 8 -Me group of 8 -methylquinoline readily occurs with $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]^{\mathbf{1}}$ or with palladium(II) acetate, ${ }^{2}$ we have already shown that under suitable conditions unmetallated complexes of 8-methylquinoline and related ligands ${ }^{\mathbf{3 , 4}}$ may be prepared. An X-ray diffraction study of a closely related benzo $[h]$ quinoline (bquin) complex has given a $\mathrm{Pd} \cdots \mathrm{H}(\mathbf{1 0})$ distance of $2.09 \AA^{3}$ as short as any metal-hydrogen non-bonding interaction known. The use of bidentate ligands based on 8 -substituted quinolines has also shown that the 8 -substituent-metal interaction can dominate the nature of the complexes obtained. ${ }^{5}$ In this paper we describe two closely related series of compounds, $\left[\mathrm{RhCl}(\mathrm{CO})_{\mathbf{2}} \mathrm{L}\right]$ and $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$, where L is a ligand based on quinoline. By variously substituting the 2 - and the 8 -positions of quinoline we have established some of the factors affecting the stability of the carbonyl complexes with respect to ligand dissociation and formation of $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right]$ and for the PPh_{3} complexes we have shown that steric interactions are extremely important in determining whether potentially bidentate ligands achieve this mode of co-ordination.

RESULTS AND DISCUSSION

The ligands used in this work and their abbreviations are shown below and the syntheses of those that are new are described in the Experimental section. The two series of rhodium(I) complexes will be described separately.

Complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$.-It has been shown that when chloride is displaced from [$\mathrm{RhCl}-$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right]$ in the absence of other co-ordinating ions or molecules the cation $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}$is formed in which a phenyl group of one PPh_{3} ligand occupies the vacant co-ordination site. ${ }^{6}$ In the presence of co-ordinating
solvents the site is occupied by a solvent molecule. Similarly, treatment of $\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with Ag $\left[\mathrm{ClO}_{4}\right]$ in acetone leads to $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]-$ $\left[\mathrm{ClO}_{4}\right]$ which may be isolated as yellow needles. ${ }^{7}$ The AsPh_{3} analogue was isolated similarly but the $\mathrm{PMe}_{2} \mathrm{Ph}$

$R=H$ (quin)
$R=M e(8 \mathrm{Me}-q u i n)$
$R=E t \quad(8 E t-q u i n)$
$R=\operatorname{Pr}^{i}\left(8 \mathrm{Pr}^{i}-q u i n\right)$

bquin
都

$2 \mathrm{CH}_{2} \mathrm{OH}_{3} 8 \mathrm{Me}-$ quin
$R=H \quad(q a)$ $R=M e(m q a)$ $R=E t$ (eqa) $R=\operatorname{Pr}^{i}(i q a)$

$$
\begin{aligned}
& R=H \quad(2 M e-q u i n) \\
& R=M e \quad\left(2,8 M e_{2}-\text { quin }\right) \\
& R=E t \quad(2 M e, 8 E t-q u i n) \\
& R=P_{r}^{i} \quad\left(2 M e, 8 P_{r}^{i}-q u i n\right)
\end{aligned}
$$

$$
R=\operatorname{Pr}^{\prime}(i q a)
$$

phen

$4 \mathrm{Me}-\mathrm{ba}$
and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ complexes were only obtained as oils. For each acetone-co-ordinated complex, $v(\mathrm{CO})$ for the carbonyl ligand occurs $c a .40 \mathrm{~cm}^{-1}$ to higher wavenumbers than for the neutral precursor although the
absolute values of $\nu(\mathrm{CO})$ are lower for the more basic phosphines.

These acetone complexes are useful precursors for substituted quinoline complexes; for example, various complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$ (Table 1) were
spectra and good correlations could be made between those fully characterised and those only observed in solution.

Unidentate ligands each gave a single isomeric product with a single symmetrical $v(\mathrm{CO})$ absorption close to that

Table 1
Infrared and analytical data for complexes $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{L}_{2}^{\prime} \mathrm{L}^{\mathrm{L}}\right]\left[\mathrm{ClO}_{4}\right]$ where L^{\prime} is $\mathrm{PPh}_{3}, \mathrm{AsPh}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}$, or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ and L is a nitrogen-donor ligand or acetone. Solvent is $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless indicated otherwise

${ }^{a}$ Relative intensities are given in parentheses. ${ }^{b} \Delta[\nu(\mathrm{CO})]=[\nu(\mathrm{CO})(\mathrm{L}=N$-donor ligand $)-\nu(\mathrm{CO}) \quad(\mathrm{L}=$ acetone $)] .{ }^{c}$ Calculated figures are given in parentheses. Compounds for which analytical data were not obtained were prepared in solution by addition of the appropriate ligand to the acetone complexes, but were not isolated. ${ }^{d}$ Solvent is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$. © Formulated as $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{L}_{2}^{\prime} \mathrm{L}\right]\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{CHCl}_{3}$. ${ }^{f}$ Formulated as $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{L}_{2}^{\prime} \mathrm{L}^{\mathrm{L}}\right]\left[\mathrm{ClO}_{4}\right] \cdot 2 \mathrm{CHCl}_{3}$.
obtained by acetone displacement. All the nitrogen ligands used as indicated in Table 1 displaced acetone to give solutions with simple $v(\mathrm{CO})$ spectra around 2000 cm^{-1}. A good number of these were isolated, fully characterised, and analysed. Those for which no analytical data are given were either not isolated or gave oils, so that the formulations of these are less reliable. Nevertheless all gave excellent quality i.r. and n.m.r.
of the acetone complex and within the range 2005-2 012 cm^{-1}. Either an imine nitrogen atom (for $4 \mathrm{Me}-\mathrm{ba}$) or a quinoline nitrogen atom (for 8 Me -, 8 Et -, or $8 \mathrm{Pr}^{\mathrm{i}}$-quin, or bquin) is co-ordinated and we take $v(\mathrm{CO})$ in this range to be characteristic of unidentate co-ordination. With other phosphines or arsines different wavenumber ranges were relevant, but in each case $\Delta[v(\mathrm{CO})]$ values, defined as $[v(\mathrm{CO})(\mathrm{L}=$ nitrogen-based ligand $)-v(\mathrm{CO})$
($\mathrm{L}=$ acetone)], in the range -1 to $+7 \mathrm{~cm}^{-1}$ are found for unidentate co-ordination.

This knowledge was used when corresponding complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$ where L is a good bidentate (phen or qa) or a possible bidentate (mqa, eqa, or iqa) were examined. 1,10 -Phenanthroline (phen) and qa give related five-co-ordinate complexes with $\Delta[v-$ (CO)] -62 and $-60 \mathrm{~cm}^{-1}$ respectively; the build-up of negative charge at the metal atom relative to the situation where unidentate ligands are used may account for these large negative values. Proton n.m.r. spectra confirmed bidentate co-ordination. There is no evidence for loss of PPh_{3} from these complexes to give squareplanar complexes with bidentate L. Although there is no special significance in the above results, very different behaviour is found when the 8-position of qa is substituted by alkyl groups and with mqa, eqa, and iqa rapidly interconverting four- and five-co-ordinate isomers are observed. The Figure shows $v(C O)$ spectra for $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]$ where $\mathrm{L}=\mathrm{mqa}$, eqa, or iqa in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or acetone solution. In each case two $v(\mathrm{CO})$ absorptions are observed, one with a $\Delta[v(\mathrm{CO})]$ range of $4-6 \mathrm{~cm}^{-1}$, the other with a range of -12 to $-21 \mathrm{~cm}^{-1}$ and we ascribe these to isomers (A) and (B) with uni- and bi-dentate co-ordination respectively. With $\mathrm{L}=4$-methylbenzaldehyde- N-methylimine (4 Me ba), $\Delta[\nu(\mathrm{CO})]=5 \mathrm{~cm}^{-1}$, very close to the lower wavenumber absorption for the mqa, eqa, and iqa isomers (A).

$\nu(\mathrm{CO})$ spectra for complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right] . \quad \mathrm{L}=$ mqa in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(a)$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}(b)$, eqa in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c)$ and $\mathrm{CH}_{3}-$ $\mathrm{COCH}_{3}(d)$, and iqa in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(e)$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}(f)$
$v(\mathrm{CO})$ for isomers (B) depends rather more on the nature of the 8 -substituent as might be expected for bidentate co-ordination. As can be seen in the Figure, the proportion of isomer (B) decreases in the order mqa $>$ eqa $>$ iqa as expected for increasingly unfavourable interactions between the 8 -substituent and the metal atom. Isomers (A) and (B) are in rapid equilibrium since ${ }^{1} \mathrm{H}$ n.m.r. spectra in all cases show only single sets of averaged resonances. Close Rh to H contacts in the sixth site of these five-co-ordinate species are destabilising as are such interactions in a fifth 'axial' site of
square-planar d^{8} complexes. The greater favourability of isomer (A) when $L=$ iqa compared with $L=$ mqa or eqa is apparent from colour differences as well as from $v(\mathrm{CO})$ spectra (Figure). Isomers (A) are yellow but (B) red. Thus solutions of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{iqa})\right]$ $\left[\mathrm{ClO}_{4}\right]$ are orange [predominantly (A)] but deposit pale yellow crystals [totally (A)], whereas both crystals [totally (B)] and solutions [predominantly (B)] of the mqa and eqa complexes are deep red.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]$ $\left[\mathrm{ClO}_{4}\right](\mathrm{L}=$ mqa, eqa, or iqa), even at the lowest temperatures recorded $\left(-60{ }^{\circ} \mathrm{C}\right)$, are time-averaged over

(B)
(A)

Isomers in equilibrium. $\underset{\mathbf{L}^{\prime}}{=}=\mathrm{PPh}_{\mathbf{8}}, \mathrm{AsPh}_{\mathbf{3}}, \mathrm{PMe}_{\mathbf{2}} \mathrm{Ph}$, or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{s}$
isomers (A) and (B), but for $L=$ iqa we observed a shift in the equilibrium from isomer (A) towards (B) at reduced temperatures (Table 2). For isomer (B) (as judged by the complexes where $L=$ mqa or eqa where this predominates) the H^{3} signal is at an anomalously high field and obscured by other signals in the region δ 7.1-7.6. This is attributed to shielding effects of the phenyl rings of the cis- PPh_{3} ligands. In contrast, the H^{3} signal for $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{iqa})\right]\left[\mathrm{ClO}_{4}\right]$ is isochronous at $20{ }^{\circ} \mathrm{C}$ with the H^{4} signal, giving a combined singlet at $\delta 8.12$. In isomer (A) the H^{3} signal is shifted downfield as a result of paramagnetic anisotropic effects of the square-planar geometry of rhodium and this more than compensates for any upfield shift due to neighbouring phenyl groups. As the spectrum of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{iqa})\right]\left[\mathrm{ClO}_{4}\right]$ is recorded at increasingly lower temperatures, the H^{3} signal moves upfield as the contribution made by isomer (B) increases: the H^{4} signal does not shift with temperature. At $-60{ }^{\circ} \mathrm{C}$ the spectrum in the range $\delta 7-9$ is similar to those for $L=$ mqa or eqa. Similarly, as the temperature is lowered the $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ signal is shifted downfield with an increased influence of the paramagnetic anisotropy (deshielding effect) as this hydrogen atom spends more time close to the rhodium atom as the contribution from isomer (B) increases.

The proportions of isomers (A) and (B) are changed considerably on replacing PPh_{3} in $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}\right]$ $\left[\mathrm{ClO}_{4}\right]\left(\mathrm{L}=\right.$ mqa, eqa, or iqa) by AsPh_{3} or other tertiary phosphines, with isomer (B) being favoured as steric
crowding at rhodium is reduced. The ligands $\mathrm{PMe}_{2} \mathrm{Ph}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ are both more basic than PPh_{3} with $v(\mathrm{CO})$ for the complexes $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{L}_{2}^{\prime}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]$ occurring 12 and $27 \mathrm{~cm}^{-1}$ respectively lower than for $\mathrm{L}=$ PPh_{3}. It must be for steric reasons therefore that replacement of PPh_{3} (Tolman's cone angle of 145°) by $\mathrm{PMe}_{2} \mathrm{Ph}$ (cone angle $\mathbf{1 2 2}^{\circ}$) leads exclusively to isomers
described ${ }^{5}$ and, since these are less crowded than the PPh_{3} complexes above, only five-co-ordinate complexes corresponding with isomer (B) are formed. The values of K in these cases were too large to be measured in the same way as the values given in Table 3. For the unidentate ligands given in Table 3, reaction (1) is a rapid equilibrium and ${ }^{1} \mathrm{H}$ n.m.r. spectra at $27^{\circ} \mathrm{C}$ show

Table 2

Proton n.m.r. data for complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{EPh}_{3}\right)_{2} \mathrm{~L}\right]\left[\mathrm{ClO}_{4}\right]\left(\mathrm{E}=\mathrm{P}\right.$ or As) ${ }^{\text {a }}$								
			Chemical shifts (δ)					
E	L	Solvent	H^{2}	H^{4}	H^{3}	8-R	$\mathrm{NCH}_{3}{ }^{\text {b }}$	Others
P	8 Me -quin	CDCl_{3}	8.96 (dd)	7.91 (dd)	6.81 (dd)	3.39 (s)		6.9-7.6
	8Et-quin	CDCl_{3}	8.95 (dd)	7.93 (dd)	6.78 (dd)	$4.17 \text { (q), }$		6.9--7.6
						$1.14(t)$		
	$8 \mathrm{Pr}^{\text {1 }}$-quin	CDCl_{3}	8.99 (dd)	7.89 (dd)	6.83 (dd)	$\begin{aligned} & 5.88(\mathrm{~m}), \\ & 0.97 \text { (d) } \end{aligned}$		6.9-7.6
	bquin	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	9.05 (dd)	7.91 (dd)	6.98 (dd)			$\begin{aligned} & 6.9-7.6 ; \\ & \mathrm{H}^{10} \\ & 11.18(\mathrm{~m}) \end{aligned}$
	qa	CDCl_{3}		8.15 (d)	7.08 (d)	9.00 (m)	3.34 (s)	7.1-7.7
	mqa	CDCl_{3}		8.10 (d)		2.75 (s)	3.16 (s)	7.1-7.7
	eqa	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$		8.14 (d)	c	$\begin{aligned} & 3.60(\mathrm{q}), \\ & 1.00(\mathrm{t}) \end{aligned}$	3.04 (s)	7.1-7.7
	iqa	$\mathrm{CDCl}_{3}{ }^{\text {a }}$		8.12 (s)	8.12 (s)	$\begin{aligned} & 4.88 \text { (sp), } \\ & 1.04 \text { (d) } \end{aligned}$	3.04 (s)	7.1-7.7
	iqa	$\mathrm{CDCl}_{3}{ }^{\text { }}$		8.15 (d)	c	$\begin{aligned} & 5.30(\mathrm{~m}), \\ & 1.00(\mathrm{~d}) \end{aligned}$	3.10 (s)	7.1-7.7
	4Me-ba	CDCl_{3}		8.20 (d)			2.86 (s)	7.1-7.7; 4 Me , 2.32 (s)
As	phen mqa	$\mathrm{CD}_{2} \mathrm{Cl}_{2}{ }^{\text {che }}$	9.12 (dd)	8.16 (dd) 8.08 (d)				$7.0-7.8$ $6.9 — 7.7$
	iqa	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$		8.08 (d)		$\begin{aligned} & 2.89(\mathrm{~s}) \\ & 5.35(\mathrm{~m}), \end{aligned}$	$\begin{aligned} & 3.20(\mathrm{~s}) \\ & 3.15(\mathrm{~s}) \end{aligned}$	6.9-7.7

${ }^{a}$ Recorded on a Varian HA100 spectrometer at $27{ }^{\circ} \mathrm{C}$ unless stated otherwise. ${ }^{b}$ Singlets slightly broadened due to coupling to $\mathrm{MeN}=\mathrm{CH}$. ${ }^{\circ}$ Expected doublet upfield of $\delta 7.1$ and obscured by other signals. ${ }^{d}$ Recorded at $20{ }^{\circ} \mathrm{C}$. ${ }^{e}$ Recorded at $-60{ }^{\circ} \mathrm{C}$. ${ }^{f}$ Recorded at $20^{\circ} \mathrm{C}$ but the phen ligand still appears symmetrical at $-85^{\circ} \mathrm{C}$.
(B), except for a trace of isomer (A) when the 8 -substituent is as large as Pri. Only isomers (A) are obtained where $\mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ (cone angle 170°) (see Table 1). The AsPh_{3} complexes also form isomers (B) predominantly; longer $\mathrm{Rh}-\mathrm{As}$ and $\mathrm{As}-\mathrm{C}$ bonds give less sterically crowded complexes. The complex $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)_{2^{-}}\right.$ (iqa) $]\left[\mathrm{ClO}_{4}\right]$ gives red crystals, in contrast with the yellow crystals of the corresponding PPh_{3} salt, consistent with their different structures

Complexes $\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right]$.-Chloro-bridge cleavage of $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ is an easy route to a range of complexes of type $c i s-\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right]\left[\right.$ reaction (1)]; $\left[\mathrm{RhCl}(\mathrm{CO})_{2}(\mathrm{py})\right]$ ($\mathrm{py}=$ pyridine) was originally prepared by this route. ${ }^{8}$ No CO is displaced by amine ligands as in corresponding

reactions with tertiary phosphines or isocyanides. ${ }^{9,10}$ Measured equilibrium constants K for reaction (1) were used to assess the co-ordinating properties of a range of 8 - and 2,8 -substituted quinolines (see Experimental section for method of measuring K). For $\mathrm{L}=\mathrm{mqa}$, eqa, or iqa, the complexes $\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right]$ have been
only broad averaged signals for the co-ordinated and free ligands. Indeed in order to use ${ }^{1} \mathrm{H}$ n.m.r. spectra to determine K, low temperatures ($-25^{\circ} \mathrm{C}$) were required to obtain separate signals which could be integrated.

Table 3
Infrared data for complexes cis- $\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right]$ in cyclohexane and equilibrium constants for reaction (1) at $-25.0 \pm$ $0.5{ }^{\circ} \mathrm{C}$ measured in CDCl_{3}

Since the values of $v(\mathrm{CO})$ (Table 3) are almost independent of the 2 - and 8 -substituents, we believe that variations of K are largely due to steric effects. With the 8 -substituted ligands, 8 Me -, 8 Et -, and 8 Pr -quin, there is a steady decrease in K on increasing the size of the 8 -substituent and a similar variation of K with varying size of the 8 -substituent is also found when the
ligand is additionally 2 Me -substituted. For the 2,8 substituted quinolines the absolute values of K are lower than for the 8 -substituted ones with the 2 Me -substituent reducing K by a factor of $c a .200-600$, which is a larger effect than changing the 8 -substituent from Me to Et or from Et to Pr^{i}. In a similar chloro-bridge-splitting
the Rh atom from above the co-ordination plane. The order of downfield shifts on co-ordination for geometrically related hydrogen atoms is $8-\mathrm{Me}_{2} \mathrm{CH}$-quin $>\mathrm{H}^{10}-$ (bquin) $>8-\mathrm{MeCH}_{2}$-quin $>8-\mathrm{CH}_{3}$-quin; the greater shifts are associated with protons spending more time closer to the rhodium atoms. Thus the $\mathrm{Me}_{2} \mathrm{CH}$ proton

Table 4
Proton n.m.r. and analytical data for complexes $\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right]$ and free ligands L

[^0]reaction with palladium(II) there was essentially no change in K on going from py to $2 \mathrm{Me}-\mathrm{py}{ }^{3}$ and the very large effect of the 2 -substituent in this case is because the 8 -substituent and the metal atom are already considerably compressed. For a bquin palladium complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\left(\mathrm{OH}_{2}\right)\right.$ (bquin) $]\left[\mathrm{ClO}_{4}\right]$, we have shown that there is a tilt as in (C) and similar tilts are to be expected in 8 -substituted quin complexes. We conclude that the ability to relieve metal-8-substituent repulsions in this way is adversely affected by introducing a 2 methyl group.

(C)

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the complexes $\left[\mathrm{RhCl}(\mathrm{CO})_{\mathbf{2}} \mathrm{L}\right]$ (Table 4) are as expected with large downfield shifts on co-ordination for those hydrogen atoms approaching
is fixed conformationally close to the rhodium whereas the increased conformational flexibilities for the Etand Me-substituted ligands mean that the shifts are

averaged over different conformations, with a particular proton only experiencing a large downfield shift in perhaps one of these. Chiral configurations as in (D) for $\left[\mathrm{RhCl}(\mathrm{CO})_{2}(8 \mathrm{Et}\right.$-quin $\left.)\right]$ are also found with $8 \mathrm{Pr}^{\mathrm{i}}$-quin, $2 \mathrm{Me}, 8 \mathrm{Et}-q u i n$, and $2 \mathrm{Me}, 8 \mathrm{Pr}^{\mathrm{i}}$-quin. Thus the $\mathrm{CH}_{2} \mathrm{CH}_{3}$ signals in $\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right] \quad(\mathrm{L}=8 \mathrm{Et}$-quin or $2 \mathrm{Me}, 8 \mathrm{Et}$ quin) appear as a pair of sextets, due to four-line coincidences in a $1: 3: \mathbf{3}: 1$ quartet of AB quartets. The
non-equivalences of the $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ protons in these complexes indicate that the molecules are chiral and that the bulk of the ligand remains on one side of the co-ordination plane and does not rapidly (at $-25{ }^{\circ} \mathrm{C}$) interchange between the two sides of the coordination plane which would result in site exchange of the protons. This does occur at higher temperatures by reaction (1) but not by rotation about the $\mathrm{Rh}-\mathrm{N}$ bond. Whereas various conformations resulting from rotation about the $8 \mathrm{Et}-\mathrm{C}$ bond are possible, that shown in (D) most likely predominates. Whatever conformations occur, on an average H^{B} will occupy a site above CO and H^{A} above Cl . The chemical-shift separation between the H^{A} and H^{B} signals is 0.40 p.p.m. ($\mathrm{L}=8 \mathrm{Et}$ quin) and 0.70 p.p.m. ($\mathrm{L}=2 \mathrm{Me}, 8 \mathrm{Et}$-quin); H^{B} is in a deshielded region with respect to the anisotropic CO group and hence its signal is further downfield than that of H^{A}.

EXPERIMENTAL

Ligand Syntheses.-8-Methylquinoline (Koch-Light) and benzo[h]quinoline (Aldrich) were obtained commercially. 8 -Ethyl- and 8 -isopropyl-quinoline were synthesised by Skraup syntheses from 2-ethyl- and 2 -isopropyl-aniline respectively using $\mathrm{As}_{2} \mathrm{O}_{5}$ as oxidant. The ligands 2 Me -quin, $2,8 \mathrm{Me}_{2}$-quin, $2 \mathrm{Me}, 8 \mathrm{Et}$-quin, and $2 \mathrm{Me}, 8 \operatorname{Pr}^{\mathrm{i}}$-quin were similarly prepared from the appropriate 2 -substituted anilines using acetaldehyde instead of glycerol in the Skraup synthesis. The compound $2 \mathrm{CH}_{2} \mathrm{OH}, 8 \mathrm{Me}$-quin was synthesised by adding a suspension of sodium tetrahydroborate (0.2 g) in isopropyl alcohol ($20 \mathrm{~cm}^{3}$) to a solution of 8 -methylquinoline-2-carboxyaldehyde ${ }^{5}(0.5 \mathrm{~g})$ in diethyl ether $\left(2 \mathrm{~cm}^{3}\right)$. After 10 min , water was added and the product ($0.48 \mathrm{~g}, \mathbf{9 6} \%$) was extracted with chloroform and obtained as colourless crystals (Found: C, 75.85; H, $6.4 ; \mathrm{N}, 7.95 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$ requires $\mathrm{C}, 76.25 ; \mathrm{H}, 6.4$; N , 8.1%). The syntheses of qa, mqa, eqa, and iqa have been described. ${ }^{5}$

Complex Syntheses.- $\left[\mathrm{Rl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]$ $\left[\mathrm{ClO}_{4}\right]$. Silver perchlorate (0.6 g) in acetone solution (5 $\left.\mathrm{cm}^{3}\right)$ was added to a suspension of $\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(2.0 \mathrm{~g})$ in acetone $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 5 min and the solvent was removed from the deep yellow solution, after the AgCl had been filtered off, until the volume had been reduced to $10 \mathrm{~cm}^{3}$. Addition of diethyl ether gave the product as fine yellow needles ($2.16 \mathrm{~g}, 93 \%$). The salt $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]$ was obtained similarly as chunky orange-yellow crystals (87%), but the corresponding $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ complexes were only obtained as oils. Infrared spectra of these oils were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but they were not obtained analytically pure.
$\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(8 \mathrm{Me}-\mathrm{quin})\right]\left[\mathrm{ClO}_{4}\right]$ and related salts. $8 \mathrm{Me}-$ quin ($0.1 \mathrm{~g}, 1.4 \mathrm{~mol}$ per mol Rh) in chloroform ($5 \mathrm{~cm}^{3}$) was added to a solution of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]$ $(0.41 \mathrm{~g})$. Addition of diethyl ether gave the product as yellow needles ($0.39 \mathrm{~g}, 87 \%$). Sometimes small amounts of CHCl_{3} were occluded in these crystals but could be removed by extended vacuum treatment. The corresponding complexes of 8 Et -quin, $8 \mathrm{Pr}^{\mathrm{i}}$-quin, and 4 Me -ba were obtained similarly and in similar yields. Using bquin it was found unnecessary to add diethyl ether as the product
crystallised from chloroform as pale yellow needles of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right.$ (bquin) $]\left[\mathrm{ClO}_{4}\right] \cdot 2 \mathrm{CHCl}_{3}$.
$\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{qa})\right]\left[\mathrm{ClO}_{4}\right] \cdot 2 \mathrm{CHCl}_{3}$. Addition of qa ($0.050 \mathrm{~g}, 1.25 \mathrm{~mol}$ per mol Rh) to a solution of $[\mathrm{Rh}(\mathrm{CO})$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right](0.2 \mathrm{~g})$ in chloroform ($5 \mathrm{~cm}^{3}$) gave the product as white needles $(0.15 \mathrm{~g}, 50 \%)$. A similar treatment with 1,10 -phenanthroline gave orange-yellow microcrystals of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{phen})\right]\left[\mathrm{ClO}_{4}\right](76 \%)$ which did not contain occluded solvent molecules.
$\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{mqa})\right]\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{CHCl}_{3}$. Mqa $(0.050 \mathrm{~g}, 1.1$ mol per mol Rh) was added to a solution of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right](0.2 \mathrm{~g})$ in chloroform ($5 \mathrm{~cm}^{3}$). Careful addition of diethyl ether to the red solution gave the product as deep red crystals ($0.175 \mathrm{~g}, 66 \%$). Eqa gave a similar deep red crystalline product, but in contrast a similar treatment with iqa gave the product [$\left.\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{iqa})\right]$ $\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{CHCl}_{3}$ as pale yellow crystals from an orange solution.
$\left[\mathrm{RhCl}(\mathrm{CO})_{2}(8 \mathrm{Me}\right.$-quin) $)$. An excess of 8 Me -quin (0.5 g) was added to a solution of $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right](0.4 \mathrm{~g})$ in light petroleum (b.p. $40-60^{\circ} \mathrm{C}, 20 \mathrm{~cm}^{3}$) and the solution was cooled to $-15^{\circ} \mathrm{C}$ to give the product as white crystals (0.55 $\mathrm{g}, 80 \%$). Similar yields of the 8 Et -quin, $8 \mathrm{Pr}^{i}$-quin, and $2 \mathrm{Me}-\mathrm{quin}$ complexes were obtained in the same way, all as white crystals, but a similar treatment with bquin gave $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right.$ (bquin)] (48\%) as a grey solid for which recrystallisation was impossible due to instability.

Equilibrium-constant Measurements.-Equilibrium constants for reaction (l) were measured in CDCl_{3} solution at $-25 \pm 0.5{ }^{\circ} \mathrm{C}$. In the cases of 8 Me -quin, 8 Et -quin, and $8 \mathrm{Pr}^{\mathrm{i}}$-quin, samples of the complexes $\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right]$ were weighed into an n.m.r. tube and solvent added to give a pre-calibrated volume of solution. At $-25{ }^{\circ} \mathrm{C}$ separate signals were observed for free and co-ordinated ligand L which were integrated against each other. Hence the concentrations of $\mathrm{L}(a),\left[\mathrm{RhCl}(\mathrm{CO})_{2} \mathrm{~L}\right](b)$, and of $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\right.$ $\left.(\mathrm{CO})_{4}\right]$ (c) could be calculated and used in the expression $K=b^{2} / a^{2} c$. Adequately consistent values were obtained at different concentrations, confirming the validity of the expression. For other complexes it was better to weigh $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ and L into the n.m.r. tube in approximately equimolar quantities and to make up the solutions as before. Because of the difficulty in accurately preparing such concentrated solutions, there are large errors as indicated in Table 3, but nonetheless the trends as discussed are quite valid.

We thank Johnson, Matthey Ltd. for their kind loan of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and the S.R.C. for a studentship (to I. P. R.).
[9/519 Received, 2nd April, 1979]

REFERENCES

${ }^{1}$ G. E. Hartwell, R. V. Lawrence, and M. J. Smas, Chem. Comm., 1970, 912.
${ }_{2}$ A. J. Deeming and I. P. Rothwell, J.C.S. Chem. Comm., 1978, 344.
${ }^{3}$ A. J. Deeming, I. P. Rothwell, M. B. Hursthouse, and L. New, J.C.S. Dalton, 1978, 1490.
${ }^{4}$ A. J. Deeming and I. P. Rothwell, Inorg. Chim. Acta, 1978, 31, 271.
${ }_{5}$ A. J. Deeming, I. P. Rothwell, M. B. Hursthouse, and K. A. Malik, J.C.S. Dalton, 1979, 1899.
${ }^{6}$ Y. W. Yared, S. L. Miles, R. Bau, and C. A. Reed, J. Amer. Chem. Soc., 1977, 99, 7076.
${ }^{7}$ J. Peone and L. Vaska, Angew. Chem. Internat. Edn., 1970, 10, 511.
${ }^{8}$ D. N. Lawson and G. Wilkinson, J. Chem. Soc., 1965, 1900.
${ }^{9}$ A. J. Deeming and P. J. Sharratt, J. Organometallic Chem., 1975, 99, 447.

10 A. J. Deeming, J. Organometallic Chem., 1979, 175, 105.

[^0]: ${ }^{\text {a }}$ Measured in CDCl_{3} at $27^{\circ} \mathrm{C}$ (free ligands) and at $-25^{\circ} \mathrm{C}$ (complexes) on a Varian HAl00 spectrometer; $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{sx}=\mathrm{sextet} ; \mathrm{sp}=$ septet; $\mathrm{br}=$ broad; $\mathrm{m}=$ multiplet. ${ }^{b}$ Calculated values are given in parentheses. ${ }^{\boldsymbol{c}} \mathbf{H}^{\mathbf{1 0}}$ at $\delta \mathbf{1 1 . 0 5}(\mathrm{m})$. ${ }^{d}$ Not recorded.

