Chemistry of Di- and Tri-metal Complexes with Bridging Carbene or Carbyne Ligands. Part 4.¹ Synthesis of *triangulo*-Diplatinum–Chromium and –Tungsten Complexes. Crystal Structure of $[Pt_2W{\mu-C(OMe)-Ph}(CO)_6(PBu^t_2Me)_2]$ [†]

By Terence V. Ashworth, Madeleine Berry, Judith A. K. Howard, Mariano Laguna, and F. Gordon A. Stone,* Department of Inorganic Chemistry, The University, Bristol BS8 1TS

The compounds $[M{C(OMe)Ph}(CO)_5]$ (M = Cr or W) react with bis(ethylene)(trialkylphosphine)platinum complexes [Pt(C₂H₄)₂(PR₃)] [PR₃ = PBu^t₂Me or P(cyclo-C₆H₁₁)₃] to give *triangulo*-trimetal compounds [MPt₂{ μ - $C(OMe)Ph}(CO)_{6}(PR_{3})_{2}]$. With $[Cr{C(OMe)Ph}(CO)_{5}]$, di- and tri-platinum complexes $[Pt_{2}\mu-C(OMe)Ph}-C(OMe)Ph]$. $(CO)_2(PBu_2Me)_2$, and $[Pt_3(\mu-C(OMe)Ph)(\mu-CO)_2(PR_3)_3]$ $[PR_3 = PBu_2Me$ or $P(cyclo-C_6H_{11})_3$, are also produced in the reactions. In the compound $[Pt_2W{\mu-C(OMe)Ph}(CO)_6(PBut_2Me)_2]^{13}C$ n.m.r. studies showed that the μ -C(OMe)Ph group bridged the Pt–Pt bond, and this was confirmed by a single-crystal X-ray diffraction study. Crystals are monoclinic, with space group $P2_1/a$ and Z = 4 in a unit cell of dimensions a = 16.003(5), b = 15.691(7), c = 15.261(9) Å, and $\beta = 93.52(4)^{\circ}$. The structure has been determined by heavy-atom methods from automated diffractometer data for 2.9 \leq 20 \leq 50° and refined to *R* 0.075 (*R*' 0.082) for 3 991 reflections. A triangle of metal atoms has Pt-Pt and Pt-W separations of 2.627(1) and 2.830(2) Å, respectively. The platinumplatinum bond is bridged by the C(OMe) Ph group [C-Pt 2.05(2) Å]. Each platinum atom is co-ordinated by a CO and by a PBut, Me group such that both PBut, Me ligands lie on the same side of the Pt-Pt bond [P-Pt-Pt 149(1)°] and are *cis* to the μ -C(OMe)Ph group, with the two carbonyl ligands semi-bridging across the Pt–W bonds to the formally 16-electron W(CO)₄ group [Pt-C-O 148(3)°]. The ease of transfer of a carbene group from a mononuclear metal carbene complex to platinum is reflected in the reactions of [Mn{C(OMe)Ph}(CO)₂(η -C₅H₅)] with $[Pt(C_2H_4)_2(PR_3)]$ $[PR_3 = PMe_3 \text{ or } PBu_2^tMe]$ from which no compounds with Mn-Pt bonds were isolated. Instead, the products were the triplatinum species $[Pt_3\{\mu-C(OMe)Ph\}_3(PMe_3)_3]$ and $[Pt_3\{\mu-C(OMe)-C(OMe)Ph]_3(PMe_3)_3]$ $Ph_{2}(\mu-CO)(PR_{3})_{3}]$. These triplatinum compounds likely form via initial formation of an intermediate with a $Mn\{\mu-C(OMe)Ph\}Pt$ bridged system, since it was observed that the dimetal compound [(OC)₅Cr{ $\mu-C(OMe)Ph}Pt$ - $(PMe_3)_2$ decomposes at 80 °C in toluene to give $[Pt_3{\mu-C(OMe)Ph}_3(PMe_3)_3]$ and $[Pt_3{\mu-C(OMe)Ph}_2(\mu-CO)-COMe)Ph}_2(\mu-CO)$ (PMe₃)₃]. Bulky phosphine groups seem to favour formation of trimetal compounds since [W{C(OMe)Ph}- $(CO)_{5}$] and $[Pt(C_{2}H_{4})(PBu^{t}_{2}Me)_{2}]$ react to give $[Pt_{2}W{\mu-C(OMe)Ph}(CO)_{6}(PBu^{t}_{2}Me)_{3}]$, rather than $[(OC)_{5}-$

 \dot{W} { μ -C(OMe)Ph} \dot{P} t(PBu^t₂Me)₂]. The spectroscopic properties of the new compounds are reported.

In Part 1² of this series we reported ready reactions between Fischer's ³ mononuclear metal carbene compounds $[M{C(OMe)Ph}(CO)_5]$ [M = Cr, Mo, or W] and platinum complexes $[Pt(C_2H_4)(PR_3)_2]$ (PR₃ = PMe₃ or PMe₂Ph). The products were dimetal species with platinum-chromium, -molybdenum, or -tungsten bonds, the metal-metal bonds being bridged by the carbene group forming 'dimetallacyclopropane' structures. In these reactions the zerovalent platinum compounds $[Pt(C_2H_4)(PR_3)_2]$ act as sources of $Pt(PR_3)_2$ groups which attack the dipolar M-C bonds of the mononuclear metal carbene complexes; subsequent ring closure would then account for the observed products. In this paper we extend these studies, by investigating reactions of Fischer's carbene-metal complexes with the bis(ethylene)platinum compounds $[Pt(C_2H_4)_2(PR_3)]$ $[PR_3 = PBut_2Me$ or $P(cyclo-C_6H_{11})_3]$.⁴ The chemistry of the latter is dominated by displacement of ethylene in reactions and so we have employed these species as sources of ' $Pt(PR_3)$ ' groups in various syntheses.^{5,6} Following the precedent set by the $[Pt(C_2H_4)(PR_3)_2]$ compounds, it was reasonable to expect that the bis(ethylene)(trialkylphosphine)platinum complexes would initially produce, in reactions

with the carbene-metal compounds, species of the type

 $[(OC)_5M{\mu-C(OMe)Ph}Pt(C_2H_4)(PR_3)]$. However, if such compounds formed, loss of ethylene, thereby creating a vacant site on the platinum atom, would probably result in subsequent reaction leading both to further metalmetal bond formation and to ligand migration processes. A preliminary account of some of the work described in this paper has been given.⁷

RESULTS AND DISCUSSION

Reaction of $[Pt(C_2H_4)_2(PBu^t_2Me)]$ with $[W{C(OMe)Ph}-(CO)_5]$ in a 2 : 1 mol ratio at -20 °C in toluene afforded (50%) a red crystalline complex formulated as $[Pt_2W-{C(OMe)Ph}(CO)_6(PBu^t_2Me)_2]$ (1) on the basis of analysis (Table 1) and ¹³C and ³¹P n.m.r. spectroscopy. The ¹³C (¹H-decoupled) n.m.r. spectroscopy. The ¹³C (¹H-decoupled) n.m.r. spectrum showed a resonance at 237 p.p.m. in the region expected for a bridging C(OMe)-Ph ligand between two metal atoms.² Moreover, this signal showed characteristic ¹⁹⁵Pt satellite peaks [J(PtC) 771 Hz] but no ¹³C-¹⁸³W coupling, providing strong evidence that the carbene ligand was bridging the two platinum atoms rather than the Pt-W bonds. The ³¹P (¹H-decoupled) n.m.r. spectrum (Table 2) revealed a pattern indicative of the presence of a P-Pt-Pt-P arrangement.⁶ A singlet was observed with two sets of

 $[\]dagger \mu$ -Methoxyphenylmethylene- μ -tetracarbonyltungstenio-bis-[carbonyl(methyldi-t-butylphosphine)platinum](Pt-Pt).

TABLE 1								
Analytical ^a an	d physical	data	for	the	complexe	s		

					Analysi	s (%)
	Compound	M.p. $(\theta_c/^{\circ}C)$	Colour	$\nu(CO) b/cm^{-1}$	C C	Н
(1)	$[Pt_2W{\mu-C(OMe)Ph}(CO)_6(PBut_2Me)_2]$ ^c	175-180 decomp.	Red	2 032s, 1 940m, 1 922s, 1 914 (sh)	32.3 (32.5)	4.4 (4.3)
(2)	$[Pt_2W{\mu-C(OMe)Ph}(CO)_6{P(C_6H_{11})_3}_2]^d$	192—194	Red	2 028s, 1 940m, 1 924 (sh), 1 916s	42.7 (42.2)	5.7 (5.3)
(3)	$[\mathrm{CrPt}_2\{\mu\text{-}\mathrm{C}(\mathrm{OMe})\mathrm{Ph}\}(\mathrm{CO})_6(\mathrm{PBut}_2\mathrm{Me})_2]$	240—243 decomp.	Red	2 019vs, 1 936s, 1 908vs, 1 876m	36.4 (36.6)	5.0 (4.8)
(4)	$[\mathrm{CrPt}_2\{\mu\text{-}\mathrm{C(OMe)Ph}\}(\mathrm{CO})_{\mathfrak{e}}\{\mathrm{P}(\mathrm{C}_{\mathfrak{6}}\mathrm{H}_{11})_{\mathfrak{3}}\}_2]$	179181	Red	2 016vs, 1 936vs, 1 908vs, 1 860w	46.8 (46.5)	6.0 (5.8)
(5)	$[Pt_2(\mu-C(OMe)Ph)(CO)_2(PBu_2Me)_2]$	193195	Pale yellow	1 990vs, 1 953m	37.6 (37.9)	5.8 (5.7)
(6)	$[Pt_{a}(\mu-COMe)Ph)(\mu-CO)_{2}(PBut_{2}Me)_{a}]$	248—250 decomp.	Yellow	1 816s, 1 776vs	35.7 (35.8)	5.7 (5. 8)
(7)	$\left[Pt_{3}\left[\mu-C\right] OMe\right] Ph\left[\left(\mu-CO\right)_{2}\left[P\left(C_{6}H_{11}\right)_{3}\right]_{3}\right]$	260-262 decomp.	Yellow	1 808vs, 1 757vs	48.7 (48.6)	7.2(6.7)
(8)	$[Pt_{a}\{\mu-C(OMe)Ph\}_{2}(\mu-CO)(PBut_{2}Me)_{a}]$	236	Red	1 797s	39.8 (39.6)	6.1(5.9)
(9)	$[Pt_{3}\{\mu-C(OMe)Ph\}_{2}(\mu-CO)(PMe_{3})_{3}]$	228 decomp.	Orange	1 793s °	29.0 (28.9)	4.2(4.0)
(10)	$[Pt_{3}[\mu-C(OMe)Ph]_{3}(PMe_{3})_{3}]$	238-239	Violeť		33.9 (33.8)	4.7 (4.4)
(11)	$[Pt_{2}W{\mu-C(OMe)Ph}(CO)_{6}(PBu^{t}_{2}Me)_{3}]^{f}$	166 decomp.	Red	1 961vs, 1 889s, 1 869s, 1 800m br	36.8 (36.7)	5.4 (5.4)

^a Calculated values are given in parentheses. ^b In cyclohexane. ^c Mol. wt: Found: 1 150 (benzene). Calc. 1 154. ^d Mol. wt: Found: 1 502 (benzene). Calc. 1 423. ^e Second isomer ν_{max} . 1 785 cm⁻¹. ^f Mol. wt: Found: 1 426 (benzene). Calc. 1 343.

¹⁹⁵Pt satellites arising from molecules with one active ¹⁹⁵Pt nucleus. Molecules with two ¹⁹⁵Pt atoms gave rise to a superimposed AA'XX' spectrum. The observation of only a very small $J(^{183}W^{-31}P)$ coupling indicated that no PBut₂Me ligand was directly bonded to tungsten. Another diplatinumtungsten complex (2), similar to (1), was prepared by treating [W{C(OMe)Ph}(CO)₅] with

	TABLE 2
Phosphoru	us-31 n.m.r. data ^a for the complexes
Compound	δ(p.p.m.) ^b
(1)	-53.7 [J(PP) 68, J(PtP) 3758, 291, I(PtPt) 224] = I(WP) 34]
(2)	-58.8 [J(PP) 62, J(PtP) 3 682, 257,
(3)	-45.4 [J(PP) 67, J(PtP) 3 688, 278, J(PtPt) 2 092]
(4)	-45.8 [$I(PP)$ 61, $I(PtP)$ 3 678, 219]
(5)	-33.1 [$J(PP)$ 101, $J(PtP)$ 3 440, 392, J(PtPt) 2 582]
	$\int J(P^{a}P^{a})$ 69, $J(P^{a}P^{b})$ 56,
(6) ^c	$-86.7 (P^{b}) \int J(Pt^{a}P^{a}) 4 150, \int (Pt^{b}P^{b}) 5 100,$
	$-57.1 (P^{a}) \int (Pt^{o}P^{a}) 276, \int (Pt^{a}P^{a}) 303, I/(Dt^{a}P^{b}) 474$
(7) ^{c, d}	-85.2 (Pb) $J(PaPb) 60, J(PtbPa) 376, J(PtaPb) 485$
	-62.3 (Pa)
(9) r,e	
Isomer A	$-34.7 (Pa) \int_{J(PtaPa)}^{J(PaPa)} 72, J(PaPb) 79, J(PtaPa) 3 999, J(PtbPb) 3 586,$
	$-16.2 \text{ (Pb)} \int (Pt^{b}P^{a}) 406, \ J(Pt^{a}P^{a}) 496, \ J(Pt^{a}P^{b}) 283$
Isomer B	$ (J(P^{a}P^{a}) 73, J(P^{a}P^{b}) 81, J(P^{ta}P^{a}) 4.025, J(P^{tb}P^{b}) 3.551 $
130mer D	$-16.7 (P^{b})$ $I(Pt^{b}P^{a})$ 412. $I(Pt^{a'}P^{a})$ 510.
	$J(Pt^{a}P^{b})$ 284
(10) 11	$\int J(P^{a}P^{a}) 82.4, J(P^{a}P^{b}) 81.8,$
(10) ^{c,a}	$-31.1 (P^{0}) \int (Pt^{8}P^{8}) 3\ 606, \int (Pt^{6}P^{6}) 3\ 659$
	$-30.0 (1^{\circ}) [J(1^{\circ})^{\circ}] 395, J(1^{\circ})^{\circ}] 399, J(1^{\circ})^{\circ}] J(1^{\circ})^{\circ}$
(11) 1	$-57.6 \left[I(PP) 75, I(PtP) 3 725, 303 \right]$
· /	-32.3 [<i>I</i> (WP) 211]

^e Hydrogen-1 decoupled, chemical shifts in p.p.m. to low frequency of 85% H_3PO_4 (external). Spectra measured in [${}^{2}H_1$]chloroform unless otherwise stated. ^b Coupling constants in Hz. ^c Pt atoms are non-equivalent, for labelling Pt^a and Pt^b see structural formula in text. Phosphorus nuclei carry same superscripts as platinums to which they are attached. ^d In [${}^{2}H_{2}$]benzene. ^e In [${}^{2}H_{2}$]dichloromethane. ^f In [${}^{2}H_{3}$]-toluene.

 $[Pt(C_2H_4)_2\{P(cyclo-C_6H_{11})_3\}]$. The ³¹P n.m.r. spectrum of (2) was very similar to that of (1) (Table 2).

The mononuclear chromium carbene complex [Cr- $\{C(OMe)Ph\}(CO)_{5}$] also reacted with the compounds $[Pt(C_{2}H_{4})_{2}(PR_{3})]$ [PR₃ = PBu^t₂Me or P(cyclo-C₆H₁₁)₃] to give chromium diplatinum species (3) and (4) (Tables 1

and 2), but in low yield. These reactions were accompanied by the formation of non-chromium containing diand tri-platinum compounds discussed further below. In the i.r. spectra of (3) and (4), bands at 1 876 and 1 860 cm⁻¹ suggested the presence of semi-bridging CO ligands. The ³¹P n.m.r. spectra of (3) and (4) (Table 2) were similar to those of (1) and (2), indicating that the chromium compounds also contained R_3P -Pt-Pt-PR₃ groups. However, in order to establish firmly the structures of (1)—(4) an X-ray diffraction study was carried out on (1), for which a suitable single crystal was obtainable.

The results of the X-ray diffraction study are summarised in Tables 3—5, and a view of the molecule with the atomic numbering scheme is shown in Figure 1. The *triangulo*-Pt₂W arrangement is immediately apparent. The Pt-Pt separation [2.627(1) Å] is very similar to those found in $[Pt_3(\mu\text{-CNBu}^t)_3(\text{CNBu}^t)_3]$ $[2.632(2) \text{ Å}]^8$ and $[Pt_3(\mu\text{-CO})_3[P(\text{cyclo-C}_6H_{11})_3]_3]$ $[2.654(2) \text{ Å}].^9$ The

C(81)

C(82)

Atomic positional (fractional co-ordinates) parameters with estimated standard deviations in parentheses for complex (1)

Atom	x	у	z
Pt(1)	$0.124\ 75(9)$	0.201 53(7)	$0.336\ 37(6)$
Pt(2)	$0.139 \ 92(9)$	0.196 20(6)	$0.166\ 02(6)$
w`́	0.089 18(10)	0.045 26(7)	$0.249\ 51(8)$
C(1)	0.170(2)	0.292(1)	0.253(1)
O(1)	0.262(1)	0.312(1)	0.268(1)
C(01)	0.321(2)	0.244(2)	0.280(2)
C(11)	0.135(2)	0.371(1)	0.245(2)
C(12)	0.048(3)	0.370(2)	0.233(2)
C(13)	0.000(2)	0.444(2)	0.222(2)
C(14)	0.037(3)	0.524(2)	0.231(2)
C(15)	0.122(3)	0.528(2)	0.243(2)
C(16)	0.170(2)	0.451(2)	0.251(2)
Carbon	d groups	0.101(-)	0.201(2)
C(02)	0 079(3)	0 115(2)	0 107(3)
O(02)	0.072(0)	0.110(2)	0.101(0)
C(02)	0.015(2)	0.100(2) 0.194(2)	0.031(2) 0.374(2)
O(03)	0.045(0)	0.124(2) 0.119(1)	0.374(2) 0.416(1)
C(03)	-0.013(2)	0.112(1)	0.410(1) 0.171(9)
O(21)	0.100(2)	-0.049(2)	0.171(2) 0.117(1)
C(21)	0.107(2)	-0.104(1)	0.117(1) 0.997(9)
C(22)	0.080(2)	-0.043(2)	0.337(2)
O(22)	0.078(2)	0.095(1)	0.392(2)
C(23)		0.035(2)	0.229(2)
O(23)	-0.109(2)	0.026(2)	0.219(2)
C(24)	0.214(4)	0.040(2)	0.265(2)
O(24)	0.285(2)	0.029(2)	0.278(2)
Phosphi	ne ligands		
P(1)	0.163 1(6)	$0.263\ 7(5)$	$0.473 \ 1(5)$
C(3)	0.246(3)	0.343(2)	0.468(2)
C(4)	0.215(3)	0.182(2)	0.550(2)
C(41)	0.287(3)	0.133(3)	0.510(3)
C(42)	0.247(3)	0.222(2)	0.639(2)
C(43)	0.143(3)	0.114(3)	0.576(3)
C(5)	0.067(3)	0.330(2)	0.518(2)
C(51)	0.029(3)	0.385(3)	0.448(3)
C(52)	0.102(3)	0.390(3)	0.595(3)
C(53)	0.105(3)	0.270(3)	0.551(2)
P(2)	0.2010(5)	0.2494(5)	0.041(4)
C(6)	0.275(2)	0.336(2)	0.067(2)
C(7)	0.260(2)	0.163(2)	-0.015(2)
C(71)	0.325(3)	0.130(2)	0.057(2)
C(72)	0.307(3)	0.197(2)	-0.088(2)
C(73)	0.215(3)	0.086(2)	0.039(2)
C(8)	0.131(2)	0.306(2)	-0.043(2)

0.361(2)

0.372(2)

-0.107(2)

0.011(2)

0.180(2)

0.076(3)

C(OMe)Ph group symmetrically bridges the Pt-Pt bond [Pt-C(1) 2.05(2) Å] with the plane of the carbone ligand at 90° to the plane defined by the atoms Pt_2W . The

TABLE 4

Bond lengths and angles for the complex $[Pt_2W{C(OMe)Ph}(CO)_6(PBu_2^tMe)_2]$ (1)

(a) Distances	(Å)		
Pt(1) - Pt(2)	2.627(1)		
Pt(1)–W	2.828(2)	Pt(2)W	2.832(2)
Pt(1)-C(1)	2.07(2)	Pt(2)-C(1)	2.04(2)
Pt(1) - C(03)	1.88(4)	Pt(2)-C(02)	1.86(4)
C(03) = O(03)	1.20(5)	C(02) = C(02)	1.23(0)
C(1) = C(1)	1.36(4)	C(11) - C(12)	1.40(4) 1.39(6)
C(12) - C(13)	1.41(4)	C(13) - C(14)	1.39(4)
C(14) - C(15)	1.36(6)	C(15)-C(16)	1.43(4)
C(16) - C(11)	1.39(4)		
$W \sim C(21)$	1.91(3)	C(21) - O(21)	1.21(4)
W = C(22) W = C(22)	1.93(3)	C(22) = O(22)	1.18(4)
W - C(23) WC(24)	2.00(6)	C(23) = O(23) C(24) = O(24)	1.16(7)
Pt(1) - P(1)	2.350(7)	Pt(2) - P(2)	2.349(7)
P(1) - C(3)	1.82(4)	P(2)-C(6)	$1.83(3)^{-1}$
P(1)-C(4)	1.89(4)	P(2)-C(7)	1.88(3)
C(4) - C(41)	1.54(7)	C(7) - C(71)	1.56(5)
C(4) - C(42) C(4) - C(43)	1.00(0)	C(7) - C(72)	1.48(0)
P(1) - C(5)	2.00(4)	P(2)-C(8)	1.87(3)
C(5) - C(51)	1.48(5)	C(8) - C(81)	1.55(5)
C(5) - C(52)	1.59(6)	C(8) - C(82)	1.62(5)
C(5)-C(53)	1.48(6)	C(8)C(83)	1.51(6)
(b) Angles (°)			
Pt(1)-Pt(2)-W	62.3(2)	Pt(1)-C(1)-Pt(2)	79.5(8)
Pt(2) - W - Pt(1)	55.3(2)	C(1) - Pt(2) - Pt(1)	50.7(7)
W-Pt(1)-Pt(2)	62.4(2)	Pt(2)-Pt(1)-C(1)	49.8(6)
P(1) - Pt(1) - Pt(2)	148.9(2)	P(2) - Pt(2) - Pt(1)	149.3(2)
Pt(1) - C(03) - O(03) Pt(1) - C(03) - W	148(3) 81 4(7)	Pt(2) = C(02) = O(02) Pt(2) = C(02) = W	148(3) 81 1(7)
W-C(21)-O(21)	175(2)	W-C(22)-O(22)	177(3)
W-C(23)-O(23)	177(3)	W-C(24)-O(24)	172(3)
C(21)-W-C(22)	84(1)	C(22) - W - C(23)	86(1)
C(21) - W - C(23)	88(1)	C(22) - W - C(24)	90(1)
C(21) = W = C(24) Pt(1) = C(1) = O(1)	80(1) 115(9)	C(23) - W - C(24) $P_{1}(2) - C(1) - O(1)$	173(1) 117(2)
Pt(1)-C(1)-C(1)	121(2)	Pt(2)-C(1)-C(11)	122(2)
O(1) - C(1) - C(11)	102(2)	(_) _ (_, _ ()	(-)
C(1) - C(11) - C(12)	114(3)	C(1)-C(11)-C(16)	131(3)
C(11) - C(12) - C(13)	123(3)	C(12)-C(13)-C(14)	120(3)
C(13) = C(14) = C(15) C(15) = C(16) = C(11)	118(3)	C(14) - C(15) - C(16) C(16) - C(11) - C(19)	120(3)
$P_{1}^{(10)} - P_{1}^{(10)} - C_{3}^{(11)}$	113(1)	$P_{12} = P_{12} = P$	112(3) 112(1)
Pt(1) - P(1) - C(4)	111(1)	Pt(2) - P(2) - C(7)	111(1)
Pt(1) - P(1) - C(5)	111(1)	Pt(2)-P(2)-C(8)	118(1)
C(3) - P(1) - C(4)	103(2)	C(6) - P(2) - C(7)	107(1)
C(3) = P(1) = C(5) C(4) = P(1) = C(5)	102(1) 117(1)	C(0) - P(2) - C(8) C(7) - P(2) - C(8)	99(1) 109(1)
P(1)-C(4)-C(41)	113(3)	P(2)-C(7)-C(71)	103(1) 104(2)
P(1) - C(4) - C(42)	112(2)	P(2) - C(7) - C(72)	112(2)
P(1)-C(4)-C(43)	107(3)	P(2)-C(7)-C(73)	118(3)
C(41) - C(4) - C(42)	110(3)	C(71) - C(7) - C(72)	107(3)
C(42) - C(4) - C(43)	109(3) 104(3)	C(72) - C(7) - C(73)	113(3)
P(1) - C(5) - C(51)	110(3)	P(2)-C(8)-C(81)	113(3)
P(1)-C(5)-C(52)	109(3)	P(2)-C(8)-C(82)	106(2)
P(1) - C(5) - C(53)	109(3)	P(2)-C(8)-C(83)	111(2)
C(51) - C(5) - C(52) C(51) - C(5) - C(53)	107(3)	C(81) - C(8) - C(82) C(81) - C(8) - C(83)	100(3) 114(3)
C(52)-C(5)-C(53)	110(3)	C(82) - C(8) - C(83)	106(3)

Pt-C(1) separation is the same as that found ² for the

FIGURE 1 Molecular structure of the complex $[Pt_2W\{C(OMe)-Ph\}(CO)_6(PBut_2Me)_2](1)$ showing the atomic numbering scheme, but with the methyl substituent [C(01)] of the OMe group omitted for clarity

bridging C atom in $[(OC)_5 W{\mu-C(OMe)Ph}Pt(PMe_3)_2]$, and within the range generally observed for carbon-platinum σ bonds.¹⁰ The Pt-W bonds [mean 2.830(2) Å] are close to the sum of the covalent radii, and to the metal-metal

bond distance in $[(OC)_5 W^{\dagger} {\mu-C(OMe)Ph}^{\dagger} Pt(PMe_3)_2]$ [2.861(1) Å].²

In addition to being bonded to each other, to the tungsten atom, and the bridging C(OMe)Ph group, the platinum atoms each carry a CO and a $PBut_2Me$ ligand. The Pt-P separations [2.350(7) Å] are at the upper end of the range generally observed.^{10b,c} There is an essentially *trans*-P-Pt-Pt arrangement [P-Pt-Pt

TABLE 5

Equations of least-squares planes for $[Pt_2W{C(OMe)Ph}-(CO)_6(PBut_2Me)_2]$ (1) in the form Ax + By + Cz = D, where x, y, and z are fractional co-ordinates. Distances, (Å) of relevant atoms from the planes are given in square brackets

Plane (i): Pt(1)), Pt(2), V	N			
	15.1	191x - 4	.284y + 1	.487z = 1	1.532	
Plane ((ii): Pt(1), Pt(2),	C(1)			
	14.8	594x - 5	.969y + 1	.486z = 3	1.118	
Plane (iii): C(1), O(1), C	(11)			
	-2.6	567x + 0.	.393y + 1	5.181z =	3.519	
Plane (iv): C(1), O(1), C	(01)			
	-2.8	577x + 0.	442y + 1	5.178z =	3.531	
Plane (v): P(1)	, C(03), I	Pt(1), Pt(2	2), P(2), C	C(02)	
	11.57	0x - 10.	626y + 1	.406z =	-0.247	
[P(1)	0.0, C(0	(3) - 0.02	2, Pt(1) (0.02, Pt(2)) 0.02, P	(2) -0.02,
Diana	(2) (0.01)	W 1.11]	C(19) C	(14) C(15	C(1e)	
Plane (vi): C(I	(1), C(12), (12), (12)	(13), 0	(14), U(19 15 108~), C(10) 2 404	
[C(1)	<u>.</u> 1) _001	C(12)	0.000 + 1.00	(0.1002 - 0.03) = 0.03	C(14) () 02 C(15)
	0.01, C(1	6) 0.0]	0.02, 0(1	5, 0.00	, (11)	,
Plane ((vii): Pt	(1), C(03)	. W			
	10. ′	781x - 7	.064y + 8	3.294z = 2	2.711	
Plane ((viii): Pt	(2), C(02)), W			
	13.3	340x - 7	.368y — I	5.214z = 0	0.445	
Angles	(°) betw	een plane	s:			
0.11	(ii)	(iii)	(iv)	(v)	(vii)	(viii)
(i)	6.5	90.3	90.4	26.8	31.4	29.1
(ii)		90.2	90.3	20.3	28.9	26.6

149.1(2)°], as predicted by the large $^{1}/(PtP)$ value observed in the ³¹P n.m.r. spectrum, discussed earlier. The Pt-C(O) distances [1.87(4) Å] fall within the range (1.74–1.94 Å) found for terminal carbonyl ligands in a variety of mononuclear carbonyl platinum complexes.11-13 However, in compound (1) the angles Pt(1)-C(03)-O(03)and Pt(2)-C(02)-O(02) are markedly bent $[148(3)^{\circ}]$ reflecting semi-bridging of these CO ligands to the tungsten. The latter, with only four terminal CO ligands has formally 16 valence electrons, and interaction with the carbonyls on the platinum atoms would reduce its electron deficiency. The distance between the tungsten atom and C(02) or C(03) averages 2.43(3) Å, which, although greater than the sum of the covalent radii (1.91 Å), can be compared with 2.14 Å found 14 for the W-CPh₂ distance in $[W(CPh_2)(CO)_5]$. The bond distances and angles within the $W(CO)_4$ group are normal (Table 4).

As mentioned earlier, the reactions which gave (3) and (4) led also to the formation of homonuclear di- and tri-

platinum species. Compounds (5) and (6) were isolated from the reaction of [Cr{C(OMe)Ph}(CO)₅] with [Pt- $(C_2H_4)_2(PBu_2^tMe)]$. The ³¹P n.m.r. spectrum of (5) (Table 2) was as expected for a diplatinum molecule containing a R₃P-Pt-Pt-PR₃ system.¹⁵ Unfortunately it was isolated in insufficient quantity for ¹³C n.m.r. studies, but the ¹H spectrum showed the expected signals for the μ -C(OMe)Ph ligand. The latter is probably *cis* to the PBu^t₂Me groups as in compound (1). A complex probably analogous to (5), viz. $[Pt_2{\mu-C(OMe)Ph}(CO)_2 \{P(cyclo-C_6H_{11})_3\}_2]$, was found in trace amounts in the reaction between $[Cr{C(OMe)Ph}(CO)_5]$ and $[Pt(C_2H_4)_2$ - $\{P(cyclo-C_6H_{11})_3\}$]. Evidence for this came from the ³¹P n.m.r. spectrum of (4) which revealed a weak resonance at -28.0 p.p.m., due to an impurity having coupling constants [J(PP) 93; J(PtP) 3 405, 354; and J(PtPt) 2 264 Hz] very similar to those obtained from the spectrum of the analogue (5).

Microanalysis and ³¹P n.m.r. studies established compounds (6) and (7) as triplatinum species. Two signals were observed corresponding to the expected A₂B pattern together with satellite peaks, although the limited solubility of (7) prevent measurements of all the coupling constants. In their i.r. spectra, (6) and (7) showed ν_{max} . (CO) bands (Table 1) as expected for bridging carbonyl ligands. Indeed, we may compare the CO bands in (6) and (7) with those at 1 836 and 1 773 cm⁻¹ observed in the spectrum of $[Pt_3(\mu-CO)_3(PBut_2Ph)_3]$.¹⁶

In view of the formation of compounds (1)—(4) from reactions between $[M\{C(OMe)Ph\}(CO)_5]$ (M = Cr or W) and $[Pt(C_2H_4)_2(PR_3)]$, it was of interest to investigate reactions of the latter species with the mononuclear manganese carbene complex $[Mn\{C(OMe)Ph\}(CO)_2-(\eta-C_5H_5)]$. We have previously shown that the manganese compound reacts with $[Pt(C_2H_4)(PMe_3)_2]$ to give the dimetal complex $[(\eta - C_5 H_5)(OC)_2 Mn \{\mu - C(OMe) Ph\} Pt$ -(PMe₃)₉].¹⁷ Formation of the latter is similar to the synthesis of the compounds $[(OC)_{5}\dot{M}_{\mu}-C(OMe)Ph]\dot{P}t$ - $(PMe_3)_2$ (M = Cr, Mo, or W) from $[M{C(OMe)Ph}(CO)_5]$ and $[Pt(C_2H_4)(PMe_3)_2]$.² If the reaction of $[Mn-C_2H_4](PMe_3)_2$. $\{C(OMe)Ph\}(CO)_2(\eta-C_5H_5)\}$ with $[Pt(C_2H_4)_2(PBu_2^tMe)]$ paralleled those with the chromium or tungsten compounds $[M{C(OMe)Ph}(CO)_{5}]$ (M = Cr or W), then a com- $[MnPt_{2}\{\mu-C(OMe)Ph\}(CO)_{3}(PBu^{t}_{2}Me)_{2}(\eta-C_{5}H_{5})]$ plex might be isolable. However, reaction occurred at room temperature to yield as the only isolable compound the non-manganese containing species (8). The reaction between $[Mn\{C(OMe)Ph\}(CO)_2(\eta - C_5H_5)]$ and $[Pt(C_2H_4)_2 - C_5H_5)]$ (PMe₃)] was next investigated and found to give the tri-

platinum compounds (9) and (10). Chromatography of the product mixture of (9) and (10) on alumina allowed the separation of (9) into two isomers $[\nu_{max}$ (CO) 1 793 and 1 785 cm⁻¹], the ³¹P n.m.r. data for PBu^t₂Me, P(cyclo-C₆H₁₁)₃, or PMe₃] is related to an earlier observation of Fischer and Beck ¹⁹ who have briefly reported that the carbene-molybdenum complex $[Mo\{C(OMe)Ph\}(CO)(NO)(\eta$ -C₅H₅)] reacts with $[Ni(CO)_4]$ to give $[Ni_3[\mu$ -C(OMe)Ph}_3(CO)_3].

The Scheme illustrates possible pathways by which the various di- and tri-metal compounds of structural type A—F might form from $[M{C(OMe)Ph}(CO)_5]$ (M = Cr or W) via an initial adduct $[(OC)_5\overline{M}{\mu-C(OMe)Ph}Pt(C_2H_4)-(PR_3)]$. For manganese, the $M(CO)_5$ group would be replaced by $Mn(CO)_2(\eta-C_5H_5)$.¹⁷ In the case of tungsten, the homonuclear di- or tri-platinum species were not isolated and reaction proceeds to give heteronuclear trimetal compounds (1) and (2) which are of structural type F. For chromium or manganese, the initially formed heteronuclear dimetal adducts $[L_nM{\mu-C(OMe)Ph}Pt(C_2H_4)(PR_3)]$ $[ML_n = Cr(CO)_5$ or

 $Mn(CO)_2(\eta-C_5H_5)$] are evidently unstable, presumably releasing co-ordinatively unsaturated $Cr(CO)_5$ or Mn-

which are summarised in Table 2. Both spectra show a basic A₂B pattern for molecules containing no ¹⁹⁵Pt nuclei, together with a large number of satellite peaks due to the molecules with one, two, or three ¹⁹⁵Pt nuclei. Analysis of these satellite spectra, which also yields values of J(PtPt'), and the results of ${}^{1}H{}^{195}Pt{}$ INDOR spectroscopy, will be presented elsewhere.¹⁸ The two isomers of (9) would arise according to whether the Ph or the OMe substituents on the bridging carbene ligands are on the same or opposite sides of the triangulo-triplatinum rings. The ¹H spectra of (9a) and (9b) showed different τ values for the OMe groups. Without an X-ray crystallographic study on one or other isomer, it is not possible to establish which isomer A or B of Table 2 corresponds to (9a) or (9b). Interestingly, although isomers of the triplatinum compound (10) are possible, only one isomer was isolated in the reaction of [Mn- $\{C(OMe)Ph\}(CO)_2(\eta-C_5H_5)\}$ with $[Pt(C_2H_4)_2(PMe_3)]$, and its ³¹P n.m.r. spectrum (Table 2) was of similar pattern to those of the other triplatinum compounds discussed.

Formation of the triplatinum complexes in the reactions of $[Cr{C(OMe)Ph}(CO)_5]$ or $[Mn{C(OMe)Ph}(CO)_2-(\eta-C_5H_5)]$ with the compounds $[Pt(C_2H_4)_2(PR_3)]$ $[PR_3 =$

 $(CO)_2(\eta - C_5H_5)$ species which could abstract C_2H_4 or CO, both of which are likely to be freely available from the labile reactants involved. We have previously observed² that in $[(OC)_5 W{\mu-C(OMe)Ph}Pt(PMe_3)_2]$ the μ -C(OMe)Ph group lies much closer to the platinum than to the tungsten atom, evidently reflecting a tendency for the carbene ligand to transfer from one metal atom to another. Elimination of ML_n from the initial dimetal adduct would release a species $[Pt{C(OMe)Ph}(C_2H_4) (PR_3)$] (Scheme) which by loss of C_2H_4 and trimerisation would give a compound of type B, viz. (10). The reactants $[Pt(C_2H_4)_2(PR_3)]^4$ are highly reactive towards CO giving the compounds of type A, presumably via an intermediate $[Pt(CO)(C_2H_4)(PR_3)]$.⁶ Although the tricarbonyltriplatinum compounds A were not detected in the present work, reaction of $[Pt(C_2H_4)_2(PMe_3)]$ with

 $\label{eq:constraint} \begin{array}{ll} [(OC)_5Mn-Mn(\dot{C}CH_2CH_2CH_2\dot{O})(CO)_4] & affords, among \\ other compounds, [Pt_3(\mu-CO)_3(PMe_3)_3].^{17} & Combination \\ of [Pt(CO)(C_2H_4)(PR_3)] & with [Pt\{C(OMe)Ph\}(C_2H_4)(PR_3)] \\ could lead in stages to the other structural types C, D, \\ and E isolated in this work. \end{array}$

We have also found that the compound $[(OC)_{5}]$

 $\begin{array}{l} \text{Scheme } M = \text{Cr or } W, \ \text{PR}_3 = \text{PBut}_2 \text{Me or } P(\text{cyclo-}C_6H_{11})_3 \ (i) \ [\text{Pt}(C_2H_4)_2(\text{PR}_3)], \ -C_2H_4; \ (ii) \ +C_2H_4, \ -[M(\text{CO})_5(\text{C}_2H_4)]; \\ (iii) \ -C_2H_4; \ (iv) \ +\text{CO}; \ (v) \ [\text{Pt}(\text{C}_2H_4)(\text{CO})(\text{PR}_3)], \ -C_2H_4; \ (vi) \ [\text{Pt}\{\text{C}(\text{OMe})\text{Ph}\}(\text{C}_2H_4)(\text{PR}_3)], \ -C_2H_4 \end{array}$

 $Cr{\mu-C(OMe)Ph}Pt(PMe_3)_2$ is unstable with respect to the formation of triplatinum compounds. In toluene at 80 °C, the dimetal compound affords complexes (9a), (9b), and (10). The isomer of (10) produced was identical to that formed in the reaction of [Mn{C(OMe)-Ph}(CO)₂(η -C₅H₅)] with [Pt(C₂H₄)₂(PMe₃)], mentioned above. The ¹H n.m.r. spectrum revealed two singlet resonances for the OMe groups of relative intensity 1:2, as expected for a structure in which one of the OMe groups is below the Pt₃ ring and the other two are above. Formation of (10) would arise via trimerisation of the 14electron species [Pt{C(OMe)Ph}(PMe_a)] which might be produced by elimination of $[Cr(CO)_5(PMe_3)]$ from $[(OC)_5 Cr{\mu-C(OMe)Ph} Pt(PMe_3)_2]$. We have previously shown² that the PMe₃ group trans to the carbene ligand in the latter compound is readily substituted, and is evidently labilised by the *trans* influence of the μ -C(OMe)-Ph group. The process would be analogous to the formation of $[Ni_3[\mu-C(OMe)Ph]_3(CO)_3]$, referred to above, which is presumably accompanied by release of $[Mo(CO)_2$ -(NO) $(\eta$ -C₅H₅)]. Formation of (9a) and (9b) in the decom-

position of $[(OC)_5Cr{\mu-C(OMe)Ph}Pt(PMe_3)_2]$ is less readily accounted for, but presumably involves the intermediacy of $[Pt(CO)(PMe_3)]$.

Finally, it should be mentioned that complexes having the triangulo-Pt₂W structure (type F of Scheme) can be synthesized from 14-electron bis(trialkylphosphine)platinum complexes provided bulky PR₃ ligands are involved. Thus $[W{C(OMe)Ph}(CO)_5]$ and $[Pt(PBut_2-Me)_2]^{20}$ react in 1:2 mol ratio in toluene at -60 °C to afford the compound $[Pt_2W{\mu-C(OMe)Ph}(CO)_6(PBut_2-Me)_3]$ (11). Examination of the ³¹P n.m.r. spectrum of

(11) (Table 2) confirmed the presence of the $Bu_2^*MePPt-PtPBu_2^*Me$ group in the structure, and also established that the third PBu_2^*Me ligand present was attached to the tungsten since its resonance at -32.3 p.p.m. showed strong $^{183}W-^{31}P$ coupling (211 Hz). The ¹H n.m.r. spectrum of (11) also showed the presence of three PBu_2^*Me ligands, while a resonance at 251 p.p.m. in the ^{13}C n.m.r. spectrum can be assigned to the contact carbon $Pt(\mu-C)Pt$, but limited solubility prevented detection of $^{195}Pt-^{13}C$ coupling.

The presence in the i.r. spectrum of (11) of CO bands as low as 1 869 and 1 800 cm⁻¹ suggests that the semibridging CO groups present in (1) may have become fully bridging in (11).

Evidently in the formation of (11), bulky PBu^t₂Me groups are displaced from platinum and transferred to

the tungsten. Moreover, the interesting observation was made that recrystallization of (11) from chloroformhexane mixtures resulted in partial conversion into complex (1). These results demonstrate both the lability of the peripheral ligands in these systems and the delicate

balance between the isolation of $[M{\mu-C(OMe)Ph}Pt]$ or $[MPt_2{\mu-C(OMe)Ph}]$ (M = Cr or W) structures from the reactions of the $[Pt(C_2H_4)(PR_3)_2]$ or $[Pt(C_2H_4)_2(PR_3)]$ species with the carbene compounds $[M{C(OMe)Ph}(CO)_5]$.

EXPERIMENTAL

Instrumentation used and experimental techniques employed were as described in Part 1.² Light petroleum refers to that fraction with b.p. 40–60 °C. Hydrogen-1 and ³¹P and ¹³C (¹H-decoupled) n.m.r. spectra were measured at 100, 40.48, and 25.15 MHz respectively. The solvent was [²H₁]-chloroform unless otherwise specified. For ³¹P, chemical shifts are in p.p.m. relative to 85% H₃PO₄ (external) with shifts to low frequency taken as positive. For ¹³C, chemical shifts have positive values to high frequency relative to SiMe₄. The complexes [Pt(C₂H₄)₂(PR₃)] ⁴ and [M{C(OMe)-Ph}(CO)₅] (M = Cr or W) ²¹ were prepared as described previously. Infrared spectra were measured in Nujol, unless otherwise stated. Analytical data for the new compounds are given in Table 1.

Reactions of the Complexes $[Pt(C_2H_4)_2(PR_3)][PR_3 = PMe_3,$ $PBu_{2}^{t}Me \text{ or } P(cyclo-C_{6}H_{11})_{3}]$.—(a) With [W{C(OMe)Ph}- $(CO)_{5}$]. (i) The compound $[Pt(C_{2}H_{4})_{2}(PBu_{2}^{t}Me)] \{1 \text{ mmol},$ prepared from $[Pt(cod)_2]$ (cod = cyclo-octa-1,5-diene) (0.41 g, 1 mmol) in light petroleum saturated with ethylene and treated with PBu^t₂Me (1 mmol)) in toluene (5 cm³) cooled to -20 °C was treated dropwise with a toluene (5 cm³) solution of $[W{C(OMe)Ph}(CO)_{5}]$ (0.22 g, 0.5 mmol) over a 1 h period. The mixture was warmed to room temperature, stirred (0.5 h), and solvent removed in vacuo. The residue was extracted with hexane (15 cm³) and recrystallised from tetrahydrofuran-hexane to give red prisms of $[Pt_2W{\mu-C(OMe)}-$ Ph}(CO)₆(PBu^t₂Me)₂] (1) (0.30 g, 50%); ν_{max} at 2 020s, 1 952s, 1 890s, 1 880s, 1 850(sh), 1 830(sh), 1 580vw, 1 292vw, 1 282w, 1 170m, 1 160m, 1 100(sh), 1 090m, 1 065w, 1 010w, 972m, 880m, 870m, 800w, 750w, 720m, 685m, 632w, 590m, and 565w cm⁻¹. N.m.r.: ¹H, 7 2.2-3.3 (m, 5 H, Ph), 6.36 (s, 3 H, OMe), 8.52 [d, 6 H, MeP, J(PH) 8, J(PtH) 38], 8.67 [d, 18 H, Bu^t, J(PH) 14], and 9.13 [d, 18 H, Bu^t, J(PH) 14 Hz]; ¹⁵C, δ , 237 [Pt(μ -C)Pt, J(PtC) 771], 209 [CO, J(PtC) 161], 150 [C⁽¹⁾(Ph)], 131, 127, 126, 118 (aromatic), 61 [OMe, J(PtC) 38 Hz], 36, 35, 29 (Bu^t), and 3 p.p.m. (PMe).

(ii) A solution of $[W{C(OMe)Ph}(CO)_5]$ (0.11 g, 0.25 mmol) in toluene (10 cm³) was added dropwise (1 h) to a solution of $[Pt(C_2H_4)_2{P(C_6H_{11})_3}]$ (0.26 g, 0.5 mmol) in toluene (5 cm³) at 20 °C. The dark red solution was stirred (1 h), solvent was removed *in vacuo*, and the residue treated with light petroleum (15 cm³). The solvent was then decanted and the red-brown residue washed with light petroleum (3 × 2 cm³), and recrystallized from tetrahydrofuran-hexane to give bright red *prisms* of $[Pt_2W{\mu-C(OMe)Ph}(CO)_6{P(C_6H_{11})_3}_2]$ (2) (0.15 g, 40%); ν_{max} at 2 040s, 1 945m, 1 935m, 1 905s, 1 838m, 1 825(sh), 1 300w, 1 260m, 1 225w, 1 190w, 1 180w, 1 105m, 1 077w, 977m, 918w, 895w, 770w, 735w, 725w, 705w, 600m, 565w, 515w, and 490w cm⁻¹. Hydrogen-1 n.m.r.: τ 2.4—3.2 (m, 5 H, Ph), 6.20 (s, 3 H, OMe), and 7.4—9.3 (m, 66 H,C₆H₁₁).

(b) With $[Cr{C(OMe)Ph}(CO)_5]$. (i) To a toluene solution

(10 cm³) of $[Pt(C_2H_4)_2(PBu_2^tMe)]$ (1 mmol) was added slowly (10 min) the compound $[Cr{C(OMe)Ph}(CO)_5]$ (0.16 g, 0.5 mmol) in toluene (5 cm³). After 1 h solvent was reduced in volume to $ca. 2 \text{ cm}^3$, light petroleum added (5 cm³), and the mixture chromatographed on an alumina column (5 cm). Elution with hexane followed by evaporation of solvent afforded pale yellow crystals of [Pt₂{µ-C(OMe)Ph}(CO)₂- $(PBu_{2}^{t}Me)_{2}^{-}]$ (5) (29 mg, 6%); $\nu_{max.}$ at 1 990vs br, 1 952s, 1 589w, 1 509m, 1 470m, 1 362m, 1 289m, 1 260w, 1 178m br, 1 102s, 1 027w, 1 018m, 970m, 932w, 909w, 895m, 885s, 879s, 812m, 762w, 728m, 702s, 648m, 638s, 599w, 570w, 512w, and 470s cm⁻¹. Hydrogen-1 n.m.r.: τ 2.6–3.4 (m, 5 H, Ph), 6.45 (s, 3 H, OMe), 8.73 [d, 24 H, MeP, Bu^t, J(PH) 13], and 9.08 [d, 18 H, Bu^t, J(PH) 13 Hz]. Further elution with hexane and evaporation of solvent gave bright yellow crystals of $[Pt_3\{\mu-C(OMe)Ph\}(\mu-CO)_2(PBut_2Me)_3]$ (6) (31 mg, 5%); v_{max} at 1 798vs, 1 752vs br, 1 594w, 1 362s, 1 288m, 1 177m br, 1 095s, 1 070s, 1 025m, 1 015m, 994w, 970m, 930w, 880m br, 810m, 760m, 716m, 692m, 639w, 585w, 568w, 528w, 468m, 455w, and 420w cm⁻¹. Hydrogen-1 n.m.r.: 7 2.4-3.2 (m, 5 H, Ph), 6.46 (s, 3 H, OMe), 8.67 [d, 27 H, Bu^t, J(PH) 14], 8.74 [d, 27 H, Bu^t, J(PH) 14], and 9.10 [d, 9 H, MeP, J(PH) 14 Hz].

Elution of the chromatography column with 1 : 9 diethyl ether-light petroleum and evaporation of solvent gave red crystals of $[CrPt_2\{\mu-C(OMe)Ph\}(CO)_6(PBut_2Me)_2]$ (3) (21 mg, 4%); ν_{max} at 2 007vs, 1 916vs br, 1 878vs br, 1 591vw, 1 295w, 1 210w, 1 185m, 1 173(sh), 1 116(sh), 1 108m, 1 076w, 1 031w, 1 018w, 1 000w, 988m, 929w, 888m, 881(sh), 876m, 809w, 766w, 725w, 698m, 676m, 641m, 610m, 566w br, 518w, 456(sh), and 450 cm⁻¹. Hydrogen-1 n.m.r.: τ 2.4—3.2 (m, 5 H, Ph), 6.30 (s, 3 H, OMe), 8.56 [d, 6 H, MeP, J(PH) 9, J(PtH) 42], 8.61 [d, 18 H, But, J(PH) 15], and 9.20 [d, 18 H, But, J(PH) 15 Hz].

(ii) To a solution of $[Pt(C_2H_4)_2\{P(C_6H_{11})_3\}]$ (1 mmol) in toluene (10 cm³) at room temperature was added [Cr- $\{C(OMe)Ph\}(CO)_{5}\}$ (0.156 g, 1 mmol) in toluene (5 cm³). After 1 h, the volume was reduced to $ca. 2 \text{ cm}^3$ and light petroleum (5 cm³) added. The mixture was chromatographed on an alumina column (30 cm). Elution with hexane and evaporation of solvent gave yellow crystals of $[Pt_{3}\{\mu-C(OMe)Ph\}(\mu-CO)_{2}\{P(C_{6}H_{11})_{3}\}_{3}]$ (7) (80 mg, 10%); v_{max} at 1808vs, 1757vs br, 1342w, 1330w, 1306(sh), 1 300w, 1 292w, 1 259m, 1 229w, 1 218w, 1 200w, 1 194w, 1 180m, 1 132m, 1 115(sh), 1 101s, 1 078m, 1 032w, 1 008m, 978s, 920m, 892m br, 855m, 821m, 810w br, 765w, 742m, 700m, 641w, 593m, 532w, 521w, 517w, 482m, 455w, 432w, 421w, and 385w cm⁻¹. Hydrogen-1 n.m.r. ($[^{2}H_{6}]$ benzene): τ 2.0–3.0 (m, 5 H, Ph), 5.99 (s, 3 H, OMe), and 7.9–8.8 (m, 99 H, C₆H₁₁).

Elution of the column with diethyl ether-light petroleum and evaporation of solvent gave red *crystals* of $[CrPt_2-{\{\mu-C(OMe)Ph\}(CO)_6\{P(C_6H_{11})_3\}_2]}$ (4) (175 mg, 25%); ν_{max} at 2 006vs, 1 938vs, 1 895vs br, 1 591vw, 1 326vw, 1 300w, 1 268w, 1 237w, 1 200w, 1 183m, 1 127w, 1 108m, 1 082m, 1 050m br, 1 006m, 968m, 918w, 899w br, 851w br, 817w, 772w, 747w, 705m, 665m, 628w, 598m, 566w, 516w, 490w, 477w, 449w, and 440w cm⁻¹. Hydrogen-1 n.m.r. ([²H₆]benzene): τ 2.3—3.2 (m, 5 H, Ph), 6.15 (s, 3 H, OMe), and 8.2—9.0 (m, 66 H, C₆H₁₁).

(c) With $[Mn\{C(OMe)Ph\}(CO)_2(\eta-C_5H_5)]$. (i) The complex $[Pt(C_2H_4)_2(PMe_3)]$ {1 mmol, prepared from $[Pt(cod)_2]$ (0.41 g, 1 mmol) saturated with ethylene in light petroleum at 0 °C and treated with PMe₃ (1 mmol)} was treated with $[Mn\{C(OMe)Ph\}(CO)_2(\eta-C_5H_5)]$ (0.30 g, 1 mmol) in toluene

(4 cm³). After stirring at room temperature (24 h), solvent was removed in vacuo and the red residue dissolved in toluene and chromatographed on alumina. Elution with 10:1 light petroleum-toluene gave unreacted [Mn{C(OMe)-Ph}(CO)₂(η -C₅H₅)] (40 mg). Elution with 5:1 light petroleum-toluene gave, after evaporation of solvent and recrystallisation from light petroleum, red-violet crystals of $[Pt_{3}{\mu-C(OMe)Ph}_{3}(PMe_{3})_{3}]$ (10) (10 mg, 3%). Elution of the column with 5:1 light petroleum-diethyl ether caused an orange band to move down the column and partially separate. The two fractions were evaporated and the residues recrystallised by adding light petroleum to toluene saturated solutions and cooling (-78 °C). The less soluble fraction gave orange red crystals of one isomer (A, Table 2) of $[Pt_{3}{\mu-C(OMe)Ph}_{2}(\mu-CO)(PMe_{3})_{3}]$ (9) (80 mg, 22%); ν_{max} at 3 072vw br, 3 042vw br, 1 783s br, 1 585w, 1 479m, 1 426m, 1 418m, 1 300m, 1 282m, 1 258w, 1 219m, 1 179m, 1 164w, 1150w, 1098(sh), 1090s, 1071m, 1025w, 996w, 984m, 964s, 952s, 885m, 848(sh), 843w, 815(sh), 798w br, 771(sh), 766m, 732m, 726(sh), 702m, 695m, 675m, 641m, 583s, and 475w br cm⁻¹. Hydrogen-1 n.m.r.: τ 2.10-3.02 (m, 10 H, Ph), 6.07 (s, 6 H, OMe), and 8.44-9.22 (m, 27 H, MeP).

The other fraction from the column gave orange crystals of the more soluble second isomer (B, Table 2) of $[Pt_{3^-}{\{\mu-C(OMe)Ph\}_2(\mu-CO)(PMe_3)_3}]$ (9) (90 mg, 25%); ν_{max} at 3 075vw br, 3 054vw br, 1 786s, 1 585w br, 1 480m, 1 441m, 1 422m br, 1 302w, 1 284m, 1 261w br, 1 223w, 1 216(sh), 1 181m, 1 169m, 1 154vw, 1 108s br, 1 082m br, 1 075m, 1 028w, 1 000w, 977m, 970s br, 955s br, 880m, 802w br, 767(sh), 763m, 741m br, 700(sh), 695m br, 676m, 672(sh), 648vw, 640w, 588s, and 472w br cm⁻¹. Hydrogen-1 n.m.r. ([²H₆]acetone): τ 2.15—3.00 (m, 10 H, Ph), 6.24 (s, 6 H, OMe), and 8.25—9.25 (m, 27 H, MeP).

(*ii*) The compound $[Mn\{C(OMe)Ph\}(CO)_2(\eta-C_5H_5)]$ (0.148g, 0.5 mmol) in toluene (2 cm³) was added to $[Pt(C_2H_4)_2-(PBut_2Me)]$ (1 mmol) in light petroleum (40 cm³) at 0 °C. The solution was stirred for 24 h, solvent was removed *in vacuo*, and the residue was dissolved in toluene and chromatographed on alumina. Elution with 20 : 1 light petroleum-toluene, followed by evaporation and recrystallisation from light petroleum, gave red *crystals* of $[Pt_3\{\mu-C(OMe)Ph\}_2^-(\mu-CO)(PBut_2Me)_3]$ (8) (20 mg); ν_{max} at 3 077vw br, 3 052vw br, 1 793s, 1 586w, 1 364m, 1 298w br, 1 287w, 1 258w, 1 177m br, 1 167m, 1 091m, 1 073m, 1 026(sh), 1 018w, 974w, 957m, 888m, 877(sh), 874m, 865(sh), 812m, 804(sh), 766m, 762(sh), 715(sh), 711w, 699m, 635w, 593w, 568w, 470w, and 459w cm⁻¹. Hydrogen-1 n.m.r.: ([²H₆]-benzene): τ 1.43—2.99 (m, 10 H, Ph), 6.10 (s, 6 H, OMe), and 8.30—9.08 (m, 63 H, PBut_2Me).

Decomposition of the Complex $[CrPt{\mu-C(OMe)Ph}(CO)_{5}^{-}(PMc_{3})_{2}]$.—A 1 mmol sample of $[CrPt{\mu-C(OMe)Ph}(CO)_{5}^{-}(PMe_{3})_{2}]$ was heated at 80 °C (1 h) in toluene (20 cm³). Chromatography, followed by elution with toluene–light petroleum and evaporation of solvent gave compound (10) (16%); ¹H n.m.r. ([²H₆]benzene): τ 1.5—2.8 (m, 15 H, Ph), 5.84 (s, 3 H, OMe), 5.90 (s, 6 H, OMe), and 8.96 (m, 27 H, MeP). Further elution with toluene–light petroleum allowed separation of the two isomers of complex (9) in 11 and 13% yields, after recrystallisation.

Reaction of $[W{C(OMe)Ph}(CO)_5]$ with $[Pt(PBut_2Me)_2]$.---A solution of $[Pt(PBut_2Me)_2]$ (1 mmol) in toluene (8 cm³) was added to a solution of $[W{C(OMe)Ph}(CO)_5]$ (0.26 g, 0.6 mmol) in toluene (6 cm³) at -60 °C. The mixture was stirred as it warmed to room temperature (2 h). Solvent was removed *in vacuo* and the red residue was washed with light petroleum $(7 \times 3 \text{ cm}^3)$. Recrystallisation from toluene-light petroleum gave red *microcrystals* of $[Pt_2W-{\mu-C(OMe)Ph}(CO)_6(PBu^t_2Me)_3]$ (11) (0.38 g, 58%). Hydrogen-1 n.m.r.: τ 2.2—3.4 (m, 5 H, Ph) 6.29 (s, 3 H, OMe), 8.30 (m, 27 H, Bu^t, MeP), 8.66 [d, 9 H, Bu^t, J(PH) 14], 8.70 [d, 18 H, Bu^t, J(PH) 12], and 9.10 [d, 9 H, Bu^t, J(PH) 14 Hz]. Carbon-13 ([²H₂]dichloromethane-CH₂Cl₂), δ 251 [Pt(μ -C)Pt], 231, 219 (CO), 132—118 (aromatic C), 62 (OMe), 36 (CMe₃), 30, 29 (C-CH₃), 8 [d, MeP, J(PC) 18 Hz], and 4 p.p.m. (m, MeP).

Crystal-structure Determination of $[Pt_2W{\mu-C(OMe)Ph}-(CO)_6(PBut_2Me)_2]$.—The complex (1) crystallises as ruby red prisms and that used for data collection was of dimensions *ca.* $0.20 \times 0.28 \times 0.014$ mm. Diffracted intensities were recorded on a Syntex $P2_1$ four-circle diffractometer for

all the remaining non-hydrogen atoms by successive electron-density difference syntheses. The structure was refined by blocked-matrix least squares with anisotropic thermal parameters for metal and phosphorus atoms only. The refinement is not stable if anisotropic thermal parameters are introduced for the tertiary-butyl groups and for carbonyls. The hydrogen atoms were not located. Refinement converged at $R \ 0.075$ ($R' \ 0.082$) with a mean shift-to-error ratio in the final cycle of 0.01:1 with a maximum of 0.2:1. A weighting scheme of the form $w^{-1} = \sigma^2(F) + \alpha |F|^2$ where $\alpha = 0.004$ gave a reasonable weight analysis. The final electron-density difference synthesis showed no peaks > 0.9 or < -0.9 e Å⁻³ except in the vicinity of the metal atoms. Scattering factors were from ref. 24 for C, O, and P, and ref. 25 for Pt and W, including corrections for the

FIGURE 2 Contents of the monoclinic unit cell of (1) viewed down c^* towards the origin

 $2.9 \leq 2\theta \leq 50^{\circ}$, according to methods described earlier.²² Of the total of 6 323 reflections, 3 991 were 'observable' according to the criterion $I \geq 2\sigma(I)$ where $\sigma(I)$ is the estimated standard deviation of the measured intensity based on counting statistics, and only these were used in the solution and refinement of the structure. Corrections were applied for Lorentz and polarisation effects and for the effects of X-ray absorption. All the computations were carried out with the 'X-Ray' system of programs²³ available for the CDC 7600 at the London Computing Centre.

Crystal data. $C_{32}H_{56}O_7P_2Pt_2W$, M = 1 182.7, Monoclinic, a = 16.003(5), b = 15.691(7), c = 15.261(9) Å, $\beta = 93.52(4)^{\circ}$, U = 3 825.0 Å³, $D_m = 2.00$ (flotation), Z = 4, $D_c = 2.01$ g cm⁻³, F(000) = 2 176, Mo- K_{α} X-radiation (graphite monochromator), $\lambda = 0.710$ 69 Å, μ (Mo- K_{α}) = 109.7 cm⁻¹, space group $P2_1/a$.

Structure solution and refinement. The platinum and tungsten atoms were located from a Patterson synthesis, and

effects of anomalous dispersion for $Pt(\Delta f' -2.352, \Delta f'' 8.388)$, $W(\Delta f' -1.421, \Delta f'' 6.872)$, and $P(\Delta f' 0.090, \Delta f'' 0.095)$. Atomic positional parameters are in Table 3, interatomic distances in Table 4, and some least-squares planes in Table 5. The contents of the unit cell are shown in Figure 2. Observed and calculated structure factors and the thermal parameters are listed in Supplementary Publication No. SUP 22783 (18 pp.).*

We thank the S.R.C. for support, the C.S.I.R., Republic of South Africa for study leave (to T.V.A.), and the Spanish Ministry of Education and Science for a Scholarship (to M. L.). We also thank Dr. M. Murray for useful discussions concerning the n.m.r. spectra.

[9/1847 Received, 20th November, 1979]

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

REFERENCES

¹ Part 3, T. V. Ashworth, J. A. K. Howard, and F. G. A.

Stone, preceding paper. ² T. V. Ashworth, J. A. K. Howard, M. Laguna, and F. G. A. Stone, *J.C.S. Dalton*, 1980, 1593.

³ E. O. Fischer, Adv. Organometallic Chem., 1976, 14, 1; E. O. Fischer and U. Schubert, J. Organometallic Chem., 1975, 100, 59; E. O. Fischer, U. Schubert, and H. Fischer, Pure Appl. Chem.,

1978, 50, 857. ⁴ N. C. Harrison, M. Murray, J. L. Spencer, and F. G. A. Stone,

J.C.S. Dallon, 1978, 1337. ⁵ L. Farrugia, J. A. K. Howard, M. Mitrprachachon, J. L.

Spencer, F. G. A. Stone, and P. Woodward, J.C.S. Chem. Comm., 1978, 260.

⁶ M. Ciriano, M. Green, J. A. K. Howard, J. Proud, J. L. Spencer, F. G. A. Stone, and C. A. Tsipis, *J.C.S. Dalton*, 1978, 801; M. Ciriano, J. A. K. Howard, J. L. Spencer, F. G. A. Stone, and H. Wadepohl, *ibid.*, 1979, 1749.

⁷ T. V. Ashworth, M. Berry, J. A. K. Howard, M. Laguna, and F. G. A. Stone, *J.C.S. Chem. Comm.*, 1979, 45.

⁸ M. Green, J. A. K. Howard, M. Murray, J. L. Spencer, and F. G. A. Stone, *J.C.S. Dalton*, 1977, 1509.

 A. Albinati, Inorg. Chim. Acta, 1977, 22, L31.
(a) M. R. Truter and R. C. Watling, J. Chem. Soc. (A), 1967, 1955; (b) R. Mason, G. B. Robertson, and P. O. Whimp, *ibid.*, 1970, 535; (c) G. K. Barker, M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1978, 1839.

¹¹ J. C. Calabrese, L. F. Dahl, P. Chini, G. Longoni, and S. Martinengo, J. Amer. Chem. Soc., 1974, 96, 2614.

12 V. G. Albano and G. Ciani, J. Organometallic Chem., 1974, 66, 311.

- ¹³ L. Manojlović-Muir, K. W. Muir, and R. Walker, J.C.S.

¹⁶ L. Manojovic-Muir, K. W. Muir, and K. Warker, J.C.S. Dalton, 1976, 1279.
¹⁴ C. P. Casey, T. J. Burkhardt, C. A. Bunnell, and J. C. Calabrese, J. Amer. Chem. Soc., 1977, 99, 2127.
¹⁵ N. M. Boag, J. Browning, C. Crocker, P. L. Goggin, R. J. Goodfellow, M. Murray, and J. L. Spencer, J. Chem. Res., 1978, 228-229 (S); 2692-2983 (M).
¹⁶ T. Vachida and S. Otsuka, J. Amer. Chem. Soc., 1977, 99

¹⁶ T. Yoshida and S. Otsuka, J. Amer. Chem. Soc., 1977, 99,

2134. ¹⁷ M. Berry, J. A. K. Howard, and F. G. A. Stone, J.C.S. Dalton, 1980, 1601.

¹⁸ R. J. Goodfellow and M. Murray, unpublished work.

¹⁹ E. Ö. Fischer and H. J. Beck, Angew. Chem. Internat. Edn.,

1970, 9, 72. ²⁰ J. Fornies, M. Green, J. L. Spencer, and F. G. A. Stone, J.C.S. Dalton, 1977, 1006.

²¹ E. O. Fischer, U. Schubert, W. Kleine, and H. Fischer, Inorg.

Synth., 1979, 19, 164.
²² P. Woodward and A. Modinos, J.C.S. Dalton, 1974, 2065.
²³ 'X-Ray' Program System, University of Maryland, Technical Report TR-192, June 1972.

 ²⁴ D. T. Cromer and J. B. Mann, *Acta Cryst.*, 1968, **A24**, 321.
²⁵ 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.