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Synthesis and Structure of Methylmercury(i1) Complexes of 9-Methyl- 
guanine, including the X-Ray Structural Analysis of (9-Methy1guanine)- 
methylmercury( 1 1 )  Nitrate 
By Allan J. Canty ' s t  and (the late) R. Stuart Tobias, Department of Chemistry, Purdue University, West 

Narongsak Chaichit and Bryan M. Gatehouse, Department of Chemistry, Monash University, Clayton, 
Lafayette, Indiana 47907, U S A .  

Victoria, Australia 31 68 

Methylmercury(t1) nitrate reacts with 9-methylguanine (9-MeGua) in water to form solid complexes of stoicheio- 
metry [HgMe(S-MeGuaH-,)], [HgMe(9-MeGua)] [NO,], [HgMe(S-MeGua)] [NO,]*H,O, and [ (HgMe),(9- 
MeGuaH-,)I [NO,]. Comparison of i.r. spectra of the solid complexes and l H  n.m.r. spectra of [2H,]dimethyl 
sulphoxide-soluble (ionic) complexes with spectra of analogous guanosine (Guo) complexes indicates that 
complexes of 9-MeGua and Guo with similar stoicheiometry have the same mode of binding of HgIIMe to the 
purine ring. The spectra indicate that [HgMe(S-MeGuaH-,)] and [(HgMe),(9-MeGuaH-,)] [NO,] have HgIIMe 
bonded to N ( l )  and both N ( l )  and N(7),respectively, and the complexes [HgMe(9-MeGua)] [NO,] and CHgMe(9- 
MeGua)][NO,]*H,O have Hg"Me bonded to N(7) with retention of a proton at N(1). Crystals of [HgMe(9- 
MeGua)][NO,] are monoclinic, with a = 4.196(1), b = 15.060(4), c = 18.288(5) A, = 90.17(2)", Z = 4, and 
space group P2,/c. The structure has been solved by conventional Patterson and Fourier methods and refined by 
least-squares techniques to R 0.061 for 1 152 reflections collected by diffractometer. The complex has HgIIMe 
bound to N(7) with Hg-C 2.06(2), Hg-N(7) 2.09(2) A, and C-Hg-N(7) 175(1)'. Mercury interacts weakly with 
nearby nitrate ions, with Hg 0 2.75(2) and 2.99(2) A; the purine ring is planar with the HgIIMe group slightly 
tilted from this plane, Hg being -0.1 68(1) and the carbon atom -0.41 l (25)  A from the plane. 

METHYLMERCURY(II) ion is often used in the characteriz- 
ation or separation of polynucleotides,l and the first sites 
of reaction of HgIIMe with native DNAs are believed to 
be N(3) of thymine bases and N(l) of guanine  base^.^*^ 
Ultraviolet and Raman studies of aqueous solutions of 
HgIIMe with uridine (u.v. ab~orpt ion,~ Raman 5 ) ,  and 
thymidine monophosphate (dThd-5'-P) 1 (Raman) ,, in- 
dicate that HgIIMe replaces the proton of the base at  
N(3). In support of this assignment i.r. and lH n.m.r. 

( 3 )  
spectra of the solid complex [HgPh(dThdH,)]*H,O 
indicate the same mode of binding.6 For the more com- 
plex nucleoside Guo and nucleotide Guo-6'-P containing 
a guanine base, analogous u . v . ~  and Raman studies, 
respectively, and a subsequent study of solid complexes 
indicate formation of one neutral and two cationic com- 
plexes with structures (1)-(3). 

In view of the importance of these interactions in 
t Present address: Department o f  Chemistry, University of 

1 The 1.U.P.A.C.-I.U.B. abbreviations for nucleosides, etc. are 
Tasmania, Hobart, Tasmania, Australia 7001. 

employed throughout; see Biochemistry, 1970, 9, 4022. 

studies of polynucleotides, and in establishing i.r. and 
lH n.m.r. spectroscopic data for attack of an essentially 
unifunctional8 electrophile a t  specific sites that can be 
used for interpretation of spectral changes on reaction 
with more complex electrophiles, e.g. cis- and trans- 
PtII(NH,),, it is appropriate to confirm these structures 
using X-ray crystallography. Unfortunately, the Guo 
complexes are not crystalline but we have found that 
analogous 9-methylguanine (9-MeGua) complexes can be 
prepared and that of these one forms crystals suitable for 
X-ray crystallography. The synthesis and characteriz- 
ation of 9-MeGua complexes, evidence that they have 
structures analogous to Guo complexes, and the crystal 
and molecular structure of [HgMe(g-MeGua)] [NO,] are 
presented here. 

EXPERIMENTAL 

Methylmercury(r1) nitrate was prepared as described 
previously,6 and 9-methylguanine (Vega Biochemicals) was 
used as received. Microanalyses were performed by the 
Purdue Departmental Microanalytical Laboratory. In- 
frared spectra ( 4 0 0 4  000 cm-l) of complexes in Nujol and 
halogenocarbon mulls were recorded with a Beckman 
Acculab 6 spectrophotometer, and IH n.m.r. spectra with a 
Varian A-60A spectrometer. 

Preparation of Complexes.-All preparations were carried 
out at ambient temperature in a well ventilated fume hood, 
with an inverted beaker placed over reaction vessels to 
ensure slow evaporation of solvent. 

[HgMe(S-MeGuaH-,)]. A solution of methylmercury(r1) 
nitrate (0.144 g ,  0.519 mmol) and 9-methylguanine (0.085 g, 
0.515 mmol) in water (30 cm3) was filtered to remove a small 
amount of insoluble 9-methylguanine, and sodium hydroxide 
(0.19 mol dn1-,; 2.72 cm3, 0.517 mmol) added. After slow 
evaporation over 24 h a white precipitate was collected and 
dried over P,O, (0.112 g, 57%) (Found: C, 22.0; H, 2.7; Hg, 
52.9; N, 18.4. C,H,HgN,O requires C, 22.1; H, 2.4; Hg, 
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52.8; N, 18.4%). Infrared absorption: 3 330m(br), 
3 170m(br), 1665m, 1619s, 1574s, 1534m, 1494s, 1421vw, 
1389w, 1351m, 1280w, 1225vw, 1 182w, 1 131w, 1092vw, 
1 O ~ ~ V W ,  1 O~OW, ~ ~ O V W ,  ~ O ~ V W ,  784w, 756vw, 741vw, 720w, 
632w, 563w, 541w(br), and 426w cm-1. 

[HgMe( 9-Gua)l [NO,] *H,O and [HgMe( 9-MeGua)] [NO,]. A 
solution of methylmercury(I1) nitrate (0.198 g, 0.713 mmol) 
and 9-methylguanine (0.1 18 g, 0.7 14 mmol) in water (20 cm3) 
was filtered to  remove a small amount of insoluble 9- 
methylguanine and allowed to evaporate slowly. After 2 d,  
crystals of the monohydrate were collected (0.107 g, 61%) 
(Found: C, 18.1; H, 3.0; Hg, 43.6; N, 18.5. C,H,,HgN,- 
0, requires C,18.3; H, 2.7; Hg, 43.5; N, 18.2%). Infra- 
red absorption: 3 520w(br), 3 310m(br), 3 125s(br), 1 699s, 
1672s, 1 635w, 1592s, 1546m, 1494m, 1430111, 1 330- 
s(vbr), 1 220vw, 1 180m, 1 088vw, 1 072w, 1 049vw, 
1026vw, 859vw, 820w, 778w, 730m, 698w, 670vw, 621vw, 
623vw, and 427vw cm-l. On slow evaporation to dryness 
the filtrate gave long needles of [HgMe( o-Gua)] [NO,] 
(Found: C, 19.6; H, 2.6; Hg, 45.5; N, 19.3. C,H,,HgN,- 
0, requires C, 19.0; H, 2.3; Hg, 45.3; N, 19.0%). Infra- 
red absorption: 3 450w, 3 328m, 3 216m, 3 165w, 3 120m, 
2 380vw, ca. 1 705m(sh), 1 681s, 1637s, 1596s, 1545n1, 
1488w, 1431w, 1410w, 1375m, 1330s(br), 1220vw, 
1 178m, 1 086vw, 106lvw, 891vw, 822w, 803vw, 774111, 
730111, 682w, 624w, and 490vw(br) cn1-l. 
[(HgMe),(9-MeGuaH-,)][N03]. Sodium hydroxide (0.19 

mol dm-3; 2.58 om3, 0.49 mmol) was added to a solution of 
methylmercury(I1) nitrate (0.272 g, 0.98 mmol) ancl 9- 
methylguanine (0.81 g, 0.49 mmol) in water (30 cm3). The 
solution was filtered, and after 2 d of slow evaporation a 
white precipitate was collected (0.102 g, 31%) (Found: C, 
14.8; H,  2.0; Hg, 61.3; N, 12.9. C8H,,Hg,N,04 requires 
C, 14.6; H, 1.8; Hg, 61.0; N, 12.8%). Infrared absorption: 
3 346m, 3 193m, 3 l l lvw,  3 OGOw, 3 015vw, 2 929vw, 
1 666m, 1 637s, 1 GOOs, 1547w, 1502s, 1430m, 1380s(sh), 
1 330s(br), 1 187m, 1 130w, 1 094w, 1 066w, 1 042w, 907vw, 
820w(sh), 805w, 780m, 722m, 622w, 569w, and 437vw cm-l. 

Crystal Data for [HgMe( 9-MeGua)] [NO,] .-C,H,,HgN,O,, 
M = 422.78, Monoclinic, a = 4.196(1), b = 15.060(4), c = 

g cm-, (by flotation in a CH,I-CHBr, mixture), 2 = 4, 
D, = 2.54 g ~ m - ~ ,  F(000) = 824, space group P2,/c (no. 14, 
C;,) from systematic absences IzOl with 2 odd and OlzO with 
k odd, Mo-K, radiation, A = 0.710 7 A, ~(Mo-K,)  = 12.84 
mm-1. Unit-cell parameters were determined using a 
Philips PW 1 100 automatic four-circle diffractometer 
equipped with a graphite monochromator, as described 
p rev io~s ly .~  

Intensity Measurements.-Intensity data were collected 
using the diffractometer above and a white crystal of 
dimensions 0.01 x 0.03 x 0.06 mm (optimum size 0.15 mm) 
that had been checked for cracking or twinning using a 
polarizing microscope. The crystal was mounted on a 
silica capillary using ' Resiweld ' epoxy-cement and centred 
on the goniometer using high-angle reflections selected from 
an initial rapid data collection. Three standard reflections 
monitored a t  2 h intervals showed no significant systematic 
variation in intensity. 

Data were collected by the o-scan technique with a 
symmetric scan width of f 0 . 5 5 O  in o from the calculated 
Bragg angle, with an allowance for dispersion, a t  a scan rate 
of 0.05' s-l. The Mo-K, radiation was monochromatized 
with a flat graphite crystal and no reflection was sufficiently 
intense to warrant the insertion of an  attenuation filter. 

18.288(5) A, @ = 90.17(2)", U = 1 155.65 Hi3, D,, = 2.56(1) 

The data were processed with a program written specifically 
for the PW 1100 diffractometer.1° The background-cor- 
rected intensities were assigned standard deviations accord- 
ing to o(I) = [C, + (tc/t~)z(Z3, + B,) + (qI)2]lf where CT is 
the total integrated peak count obtained in scan time t,, B ,  
and B,  are background counts each obtained in time &tb, and 
I = CT - (tc/tb)(B1 + B, ) ;  q was 0.04 and is an allowance 
for ' machine errors'. Values of I and a(1) were then correc- 
ted for Lorentz and polarization effects. An absorption cor- 
rection was applied based on the indexed crystal faces 
(1 0 2), ( I 0 2), (0 1 0 ) ,  (0 0 ) ,  (0 0 l ) ,  and (0 0 I), and 
direction cosines calculated for the PW 1100 data. Maxi- 
mum and minimum values of the transmission factors were 
0.879 9 and 0.682 4, respectively. The total number of 
reflections measured to 28(Mo-K,) 60" was 3 881, of which 
134 were rejected as being systematically absent or having 
zero F or I and 408 were multiple observations [the measure 
of agreement between these, R, was 0.048 where R is given by 
(C{NC[w(F,,. - F),])/Z[(N - 1)Z(wF2)])' (the inner sum- 
mations are over the N equivalent reflections averaged to 
give Fa,., and the outer summations are over all unique re- 
flections) 111. This left 3 339 unique reflections of which 
1 17 1 obeyed the condition I >, 30(I), and 19 reflections were 
considered as poorly calculating, very weak reflections and 
were omitted during the refinement. Thus, 1 152 re- 
flections were used in the final refinement. 

Structure Determination and Refinement.-The Patterson 
synthesis enabled location of the mercury atom by standard 
methods; its position was refined and all non-hydrogen 

TABLE 1 
Final fractional co-ordinates for non-hydrogen atoms, 

with estimated standard deviations in parentheses 

Atom xla Y l b  z lc 

C(2) 
C(4) 
C ( 5 )  

C(8) 

"1) 
"2) 
"3) 
"7) 
N(9) 
O(1) 
O(2) 
O(3) 
O(6) 

2 368(3) 1814(1) 3 577(1) 
4 488(12) 

-5 748(56) 1478113) 1 042(11) 
-2  830(54) 2 507(14) 1 648(10) 

2 152(10) - 1  609(52) 1937(13) 
C(6) -2  489(66) 1 Oll(16) 2 086(13) 

323(54) 3 246( 14) 2 415(11) 
4 165(14) 1426(13) -2  267(66) 

- 2 657(53) 3 657(14) 4 017(10) 
-4  432(47) 820( 11) 1490(9) 
- 7 468(51) 1 222(12) 515(10) 
- 4 689(45) 2 323(10) 1078(8) 

356(47) 2 383(12) 2 643(9) 
1 828(8) - 1  545(39) 3 329(10) 

- 1 488(54) 4 350(14) 4 197(11) 
- 1  613(49) 2 966( 11) 4 299(10) 
-4  723(58) 3 625( 12) 3 546(11) 

1749(41) 414(10) 2 553(8) 

c Hg 4 OSO(62) 1 166(15) 

y 9 )  

atoms were located in the subsequent difference-Fourier 
synthesis. The function minimized in full-matrix least- 
squares refinement was Cw(lF,I - IF,1)2, where w is the 
weight [l/02(Fo)] and Fo ancl F, are the observed and cal- 
culated structure factors, respectively. Several cycles, with 
the mercury atom refined anisotropically and other non- 
hydrogen atoms refined isotropically, resulted in R 0.079, 
where R = (CllFol - ~ F c ~ ~ ) / C ~ F o ~ .  Absorption corrections 
were applied and several cycles of full-matrix least-squares 
refinement led to R 0.061 and R' 0.056 (for observed re- 
flections), where R' = Ewi(lFo1 - l F c ~ ) / Z d ~ F 0 ~ .  The final 
difference-Fourier synthesis revealed some hydrogen-atom 
positions but these were not included in refinement, and had 
no major characteristic greater than 1.92 e Hi-,, this being in 
the vicinity of the mercury atom. 
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Final observed and calculated structure factors and 
thermal parameters are listed in Supplementary Publication 
No. SUP 22732 (9 pp.).* Parameters for all non-hydrogen 
atoms are listed in Table 1, together with their estimated 
standard deviations derived from the inverse least-squares 
matrix. The atom-numbering scheme follows the con- 
ventional numbering for purine rings [see structure (l)] . 
Atomic scattering factors for neutral atoms and corrections 
for anomalous dispersion were taken from refs. 12 and 13. 

Calculations .-All calculations were performed on the 
Monash University B6700 computer. The major programs 
used were SHELX-76 ,11 ORFFE,14 MEANPI4,l6 and Figures 
were drawn using ORTEP.lB 

RESULTS AND DISCUSSION 

Preparation and Characterization of Complexes.- 
Complexes of 9-methylguanine were obtained from water 
by employing the same reaction procedures developed for 
synthesis of the analogous guanosine complexes. The 

HgMe(N0,) + NarOH] + 9-MeGua --F 

HgMe(N0,) + 9-MeGua + 

BHgMe(N0,) + Na[OH] + 9-MeGua --F 

[HgMe(S-MeGuaH-,)] + Na[NO,] + H 2 0  (1) 

[HgMe(g-MeGua)] [NO,] *H,O (2) 

[(HgMe),(g-MeGUaH-1)1 [NO,] + WNO,]  + H,O (3) 

monohydrate formed as crystals, and the filtrate from 
this reaction gave crystals of the anhydrous complex 
[HgMe(g-MeGua)] [NO,] on slow evaporation to dryness. 

The complexes have different i.r. spectra (Figure l),  
and the nitrates have strong, broad, absorption in the 
region 1 300-1 400 cm-1 characteristic l7 of free or very 
weakly co-ordinated nitrate ion. For organomercury 
guanosine complexes, spectra in the region 1 500-1 800 
cm-1 were found to be characteristic of structures in- 
volving retention of a proton at N(l)  of Guo in [HgR- 
(Guo)] [NO,], or deprotonation to  give [HgR(GuoH-,)I, 
[(HgR),(GuoH-,)][NO,] (R = Me or Ph), and Na- 
[GuoH-,]*H,O. In  this region, spectra of analogous 
9-MeGua and Guo complexes are very similar (Figure 1), t 
particularly for [HgMe(g-MeGua)] [NO,] and [HgMe- 
(Guo)] [NO,] which have three intense absorptions at 
1 681, 1 637, and 1 596 cm-l, and 1 705, 1 641, and 1 603 
cm-l, respectively. 

Absorption near 1 700 cm-l for guanosine,: primarily 
v[C(6)=0] involving some coupling with ring modes,$ is 
lowered on deprotonation to form Na[GuoH-,]*H,O (ca. 
1 560-1 675 cm-l)T and organomercury complexes (ca. 
1 600-1 669 cm-l),§ consistent with increased electron 
delocalization in the base resulting in a decreased bond 
order for the carbonyl group. Similarly, intense absorp- 
tion of 9-MeGua at 1 686 cm-l is lowered on formation of 
[HgMe (g-MeGuaH-,)] and [ (HgMe),(9-MeGuaH_,)] [NO,] 
(Figure 1). 

Index issue. 

given in ref. 6. 

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, 

t For Guo complexes a Figure similar to that of Figure 1 is 

Proton n.m.r. spectra for ionic complexes of 9-MeGua 
and analogous Guo complexes in [2H,]dimethyl sulphoxide 
are given in Table 2. The compounds 9-MeGua and 
[HgMe(9-MeGuaH-,)] are insoluble in this solvent, and 
both [HgMe(g-MeGua)] [NO,] and its monohydrate have 
similar spectra. Analogous 9-MeGua and Guo complexes 

1800 1500 
'ij /cm" 

FIGURE 1 Infrared spectra of (a) 9-MeGua, (b) [HgMe(S-MeGua)]- 
[NO,], ( c )  [HgMe(S-MeGua)][NO,]-H,O, (d) [HgMe(S-Me- 
GuaH-,)I, and (e) [(HgMe),(S-MeGuaH-,)][NO,] as Nu101 
mulls in the region 1 500-1 800 cm-l 

have similar spectra. The spectra confirm i.r. evidence 
that the proton a t  N ( l )  is retained on formation of 
[HgMe(L)][NO,] and removed on formation of [(HgMe),- 
(LH-,)][NO,] (L = 9-MeGua or Guo). The HgIIMe 
moiety in analogous complexes has an almost identical 

Guanosine occurs in at least two crystalline forms (M. Tsuboi, 
Y .  Kyogoku, and T. Shimanouclii, Biochim. Biophys. A d a ,  1962, 
55, 1). These authors found that form I has absorption at 1 730 
cm-1 and form I1 at 1 730 and 1 692 cm-1. 

0 See ref. 6 for a discussion of this assignment. 
li Part of broad absorption containing both v[C(6)=0] and NH, 

deformation modes. 
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coupling constant I2J(lH-19QHg) 1, reflecting 6* * bonding to  
N(7) in [HgMe(L)][NO,], and both N(l)  and N(7) in 
[(HgMe)&H-i)I "031. 

Close similarity between i.r. and lH n.m.r. spectra of 
Guo and 9-MeGua complexes indicates that the mode of 
bonding of HgIIMe to 9-MeGua in [HgMe(9-MeGua)]- 
[NO,] discussed below is identical to  that in the Guo 
analogue [HgMe(Guo)] [NO,]. 

Crystal and MoZecuZar StrzGcture of [HgMe(g-MeGua)]- 
[NO,] .-Aspects of the molecular geometry are given in 

The nearest atom to  mercury, except for C and N(7), is 
the nitrate O(2) at 2.75(2) A, ca. 0 . 1 4 . 4  A less than the 
sum of van der Waals radii, 2.9 [Hg 1.5,19 0 1.4 A (ref. 
20)] or 3.13 A using GrdeniC's l9 upper limit of 1.73 A for 
the radius of Hg. Consistent with the presence of an 
Hg - * * O(2) interaction the angle C-Hg-N(7) is 175(1)" 
with C and N(7) bent away from O(2) and approximately 
coplanar with Hg and O(2) [sum of angles at Hg 350", 
Hg is -0.090(1) A out of the C, N(7), O(2) plane], 
although this interaction must be very weak as the nitrate 

TABLE 2 
Hydrogen-1 n.m.r. data (6/p.p.m.) for guanosine and ionic complexes of guanosine and 9-methylguanine a 

1 2 ~ ( * ~ - 1 9 9 ~ g )  ii 
Compound 1) HI 8 (NH2) 6[H(8)] 6[H(1') or NMe] * G(MeHg) H z  e 

Guo 10.79 6.47 7.96 5.47 (d) 
[HgMe(Guo)I "031 11.45 7.02 8.69 5.90(d) 0.89 229 
[HgMe( g-MeGua)] [NO,] 11.37 6.94 8.40 3.74 0.87 227 
[HgMe(9-MeGua)] [N03].H,0 11.34 6.93 8.39 3.73 0.87 227 
[(HgMe),(GuoH-,)l~N031 6.97 8.60 5.88(d) 0.85 221 
[(HgMe),(S-MeGuaH-,)] [NO,] 6.96 8.31 3.71 0.83 220 

a For  dimethyl sulphoxide solutions. Hydrogen-1 shifts are downfield from internal tetramethylsilane. 9-Methylguanine and  
[HgMe(S-MeGuaH_,)] are insoluble. Coupling to the methyl protons; the  sign of the coupl- 
ing constant is assumed t o  be negative (F. A. L. Anet and  J .  L. Sudmeier, J .  Magnetic Resonance, 1969, 1, 124; H. F .  Henneike, 
J .  Amer.  Chem. SOC., 1972, 94, 5945). 

* H(1') of Guo, N(9)Me of 9-MeGua. 

From ref. 6. Water protons at 3.38 p.p.m. 

Tables 3-5, and two different views of the structure are 
given in Figures 2 and 3. 

The crystal structure is composed of [HgMe(9-MeGua)] + 

cations and nitrate anions. TheHgIIMe group is bonded 
to N(7) of the purine ring, with the Hg-N(7) bond length 

TABLE 3 
Interatomic distances (A) with estimated standard 

deviations in parentheses 
( a )  Mercury environment 

Hg-C 2.06( 2) H g  * * * O(2) 2.75(2) 
Hg-N(7) 2.09(2) Hg * * O(31) 2.99(2) 

(b) 9-Methylguanine group 
C(2)-N(1) 1.40(3) C(5)-N(7) 1.39(3) 
C( 2)-N( 2) 1.26( 3) C(6)-0(6) 1.28(3) 
C( 2)-N (3) 1.35( 3) C( 6)-N( 1) 1.39( 3) 
C( 4)-N (3) 1.33 (3) C( 8)-u ( 7) 1 .3  7 ( 3) 
C(4)-C(5) 136(3)  C(8)-N(9) 1.33(3) 
C( 4)-N(9) 1.39( 3) C (9)-N (9) 1.4 9 (3) 
C(5)-C(6) 1.45( 3) 

N-0(1) 1.20( 3) N-0 (3) 1.22( 3) 
N-0 (2) 1.24( 3) 

(c) Nitrate group 

Symmetry code: i, 1 + x ,  y ,  z. 

[2.09(2) A] similar to that in [(HgMe),(AdeH-,)I [NO,] 
which has Hg-N(7) 2.09 and Hg-N(9) 2.08 A.ls The 
oxygen O(6) of the purine ring is well removed from 
mercury [3.31(2) A], so the purine is acting as a uni- 
dentate ligand via N(7). 

* In HgIIMe complexes of pyridine and substituted pyridines, 
[HgMe(L)] [NO,], the coupling constant increases with decreasing 
basicity of the pyridine donor (A. J. Canty and A. Marker, 
Inorg. Chem., 1976, 15, 425; A. J. Canty, P. Barron, and P. C. 
Healy, J. Organometallic Chem., 1979, 179, 447). Consistent with 
structures (1) and (2), [HgMe(GuoH-,)I has a coupling constant of 
206.5 Hz, while [HgMe(Guo)] [NO,] has a coupling constant of 229 
Hz as N(7) is less basic than  N(1). The complex [(HgMe),- 
(GuoH-,)I [NO,] has 2J(1H--'eeHg) 221 Hz, intermediate between 
these two values, consistent with rapid exchange of HgIIMe 
between N(1) and  N(7). 

ion is regular (within lo in bond lengths and angles). 
The next-nearest oxygen is O(3) of a symmetry-related 
nitrate ion at  2.99(2) A from mercury. 

The HgIIMe group is slightly out of the plane of the 
purine ring (Table 5 ) ,  with Hg and C -0.168(1) and 
-0.41 l(25) A removed from the plane, respectively. 
The torsion angle C-Hg-N(7)-C(5) is -17(10), and 
C-Hg-N(7)-C(8) is 155(9)", where the sign of the angle 

TABLE 4 
Angles ("), with estimated standard deviations in 

parentheses 
(a) About mercury 

C-Hg-N ( 7) 175( 1) 
C-Hg-O( 2) 97(1) 

(b) 9-Methylguanine group 
C( 2)-N ( 1)-C( 6) 1 23 (2) 
N( 1)-C( 2)-N( 3) 121 (2) 
N ( 1)-C( 2)-N (2) 1 1 7 (2) 
N(2)-C( 2)-N(3) 121 (2) 
C(2)-N(3)-C(4) 115(2) 
C( 5)-C( 4)-N (3) 1 28 ( 2) 
C( 5)-C( 4)-N (9) 105 ( 2) 
N( 3)-C( 4)-N ( 9) 1 27 ( 2) 
C( 4)-C( 5)-C( 6) 1 1 7 (2) 
C( 4)-C( 5)-N( 7) 1 1 1 (2) 
C( 6)-C (5)-N ( 7) 132 (2) 

C (5)-C( 6)-N ( 1) 
C (5) -C (6)-O( 6) 

C(5)-N( 7)-C(8) 
C(5)-N(7)-Hg 
C(8)-N(7)-Hg 
N ( 7)-C( 8)-N( 9) 
C( 4)-N( 9)-C( 8) 
C (8)-N (9)- C (9) 
C (4)-N (9)-C (9) 

N ( 1)-c(6)-0(6) 

( c )  Nitrate group 
O( 1)-N-O( 2) 118(2) O( 2)-N-O( 3) 
O( 1)-N-0(3) 121(2) 

84(1) 

114(2) 
124(2) 

105( 125(2) 2) 

130(1) 

121(2) 

llO(2) 
llO(2) 
124(2) 126(2) 

121(2) 

follows accepted convention.21 The purine ring is 
planar with deviations of atoms from the plane within 
30, except for N(l)  and O(6) which are 0.071(19) and 
-0.067(16) A from the mean plane. 

Hydrogen bonding does not occur between guanine 
bases, but may occur between the base and a symmetry- 
related nitrate ion (X - 1,  y - *, + - x) with N(1) - * * 

0(1) 3.07(3) and N(2) - - - 0(1) 2.90(3) A, and another 
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symmetry-related nitrate ion ( x  - 1, 4 - y,  z - 4) with 
"(2) * * * O(2) 3.07(3) A. 

This work was supported by a Public Health Service 
Grant from the National Institute for Arthritis, Metabolism, 

TABLE 5 
Equations of mean planes and deviations (A) of individual 

atoms from planes in square brackets. XI Y, 2 are 
orthogonal co-ordinates and are related to the frac- 
tional co-ordinates x ,  y ,  z in the crystal system by the 
equation : 

4.196 000 0.000 000 -0.053 942 
(0.000 000 15.060 000 0.000 000) (";> = (5) 

(a) Mean plane through the 9-methylguanine group [C(2), C(4), 
C(5), C(6), C(8), C(9), N(1), N(21, N(3). N(7), N(9), O(6)l 

0.000 000 0.000 000 18.287 920 

0.7925X - 0.1763Y - 0.58392 + 3.3607 = 0 
[C(2) -0.061(22), C(4) -0.013(21), C(5) 0.004(21), C(6) 

0.029(27), C(8) 0.017(22), C(9) -0.028(26), N( l )  0.071(19), 

0.003(16), O(6) -0.067(16), Hg -0.168(1), C -0.411(25)] 
N(2) 0.001(20), N(3) 0.029(18). N(7) 0.013(19), N(9) 

(b) Mean plane through the nitrate group [N, 0(1), 0(2) ,  0(3)] 
0.6941X - 0.0816Y - 0.71522 + 6.4773 = 0 
[N -0.015(20), 0(1) 0.005(21), O(2) 0.005(19), O(3) 0.005(22)] 

(c) Direction cosines 
9-MeGua plane : 0.7925 -0.1763 -0.5839 
Nitrate plane: 0.6941 -0.0815 - 0.7152 
(d) Angle between planes: 10.87" 

"2) 

FIGURE 2 Molecular structure of [HgMe(9-MeGua)] [NO,] 
showing the atom-numbering scheme used 

FIGURE 3 

and Digestive Diseases, by grants from the National Science 
Foundation (to R. S. T.)l the Australian Research Grants 
Committee (to B* 
Assistance Plan (to N. C.). 

Packing of the ions [HgMe(S-MeGua)]+ and NO,- in the unit cell 
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