Crystal Structures of Hydrido-, Fluoro-, and Chloro-tris(triethylphosphine)platinum(II) Salts

By David R. Russell * and Muhammed A. Mazid, Department of Chemistry, University of Leicester, Leicester LE1 7RH
Paul A. Tucker, Research School of Chemistry, Australian National University, Canberra, Australia

Abstract

Crystals of $\left.\left[\mathrm{Pt}^{(} \mathrm{PEt}_{3}\right)_{3} \mathrm{H}\right]\left[\mathrm{PF}_{6}\right]$ are triclinic, $P \mathrm{I}$, with $a=15.969(3), b=20.600(3), c=9.081(2) \AA, \alpha=79.87(2)$, $\beta=88.91(2), \gamma=82.49(2)^{\circ}$, and $Z=4$. Crystals of $\left[P P_{(~}\left(\mathrm{PEt}_{3}\right)_{3} F\right]\left[\mathrm{BF}_{4}\right]$ are monoclinic, $P 2_{1} / c$ with $a=$ $15.627(13), b=10.988(8), c=16.347(16) \AA, \beta=102.7(3)^{\circ}$, and $Z=4$. Crystals of [$\left.\mathrm{Pt}^{2}\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{Cl}\right]\left[\mathrm{BF} \mathrm{F}_{4}\right.$] are monoclinic, $P 2_{1} / n$, with $a=11.507(11), b=17.452(18), c=14.199(20) A, \beta=104.6(4)^{\circ}$, and $Z=4$. Leastsquares refinements for these three complexes converged with $R=0.049$ (4 485 reflections), $R 0.045$ (3 008), and 0.047 (3634) respectively. Mean bond lengths are $\mathrm{Pt}-\mathrm{P}($ trans to H$) 2.335(4), \mathrm{Pt}-\mathrm{P}($ cis to H$) 2.300(3)$, $\mathrm{Pt}-\mathrm{P}$ (trans to F) $2.239(3), \mathrm{Pt}-\mathrm{P}$ (cis to F) 2.337(4), $\mathrm{Pt}-\mathrm{P}$ (trans to Cl$) 2.251$ (3), $\mathrm{Pt}-\mathrm{P}$ (cis to Cl$) 2.353(3), \mathrm{Pt}-\mathrm{F}$ $2.043(7)$, and $\mathrm{Pt}-\mathrm{Cl} 2.366(3) \AA$. The $\mathrm{Pt}-\mathrm{P}$ bond lengths trans to the anionic ligand (X) in the cations follow the expected trans-influence order, whereas those cis to X follow the order $\mathrm{Pt}-\mathrm{P}$ (cis to Cl) $>\mathrm{Pt}-\mathrm{P}$ (cis to F) $>\mathrm{Pt}-\mathrm{P}$ (cis to H) which reflects the anionic size of X.

It has been suggested ${ }^{\mathbf{1 , 2}}$ that the exploration of $c i s$ and trans influences of a ligand L in a formally square-planar metal (M) complex is least ambiguously tackled by obtaining structural data on complexes of the type $\left[\mathrm{MLL}_{3}^{\prime}\right]$ where L^{\prime} is a second ligand. Some structural determinations of anions of the type $\left[\mathrm{PtCl}_{3} \mathrm{~L}\right]^{-}$have been reported (ref. 2 and references therein). It appears that the variations in $\mathrm{Pt}-\mathrm{Cl}($ trans to L$)$ distances are substantial whereas those in $\mathrm{Pt}-\mathrm{Cl}$ (cis to L) are very much smaller. ${ }^{2,3}$ However, it is clear, from the large body of structural information on platinum(II) complexes, that bond lengths involving other ligands do vary with changes in the cis ligand(s). ${ }^{3}$ In order to explore further this cis influence we have begun a structural investigation of the cations of $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{X}\right] \mathrm{Y}$ (1), initially choosing ligands X which have negligible π-bonding character. We report here results on the complexes $\left(1: X=H, Y=P F_{6} ; \quad X=F, Y=\mathrm{BF}_{4}\right.$; and $\left.\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{BF}_{4}\right)$.

EXPERIMENTAL

Crystals of ($\mathrm{l}: \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$; and $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=$ BF_{4}) were kindly provided by Dr. K. R. Dixon. The complexes ($1: \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{BF}_{4}$; and $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{PF}_{6}$) were prepared in a similar manner to the previously reported perchlorate salt ${ }^{4}$ and were characterised by ${ }^{1} \mathrm{H}$ n.m.r. and i.r. spectra and elemental analyses. We were unable to grow single crystals of ($1 ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{BF}_{4}$) suitable for X-ray structural analysis, but crystals of $(1 ; \mathrm{X}=\mathrm{H}$, $\mathrm{Y}=\mathrm{PF}_{6}$) were obtained from ethanol solutions. The colourless crystals are commonly twins [twin plane (100)] but a few single crystals were obtained exhibiting the forms $\{001\},\{010\},\{100\}$, and $\{110\}$. Colourless crystals of ($1 ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$) are plates on $\{100\}$ commonly exhibiting the forms $\{010\},\{001\}$, and $\{012\}$ whereas crystals of (1; $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{BF}_{4}$) are colourless parallele pipeds elongated along [110].

Unit-cell dimensions for ($1: \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$; and $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{BF}_{4}$) were obtained from precession photographs recorded with Mo- K_{α} radiation. The unit-cell dimensions for ($1 ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{PF}_{6}$) were determined by least-squares analysis ${ }^{5}$ of the setting angles $2 \theta, \omega, \chi$, and ϕ
for 12 carefully centred high-angle reflections on a Picker FACS-I four-circle diffractometer. The estimated standard deviations (e.s.d.s) given below derive from this leastsquares procedure but changes in cell parameters of up to 10σ were observed as crystal degradation occurs.

Crystal Data--(1; $\left.\mathrm{X}=\mathrm{H}, \quad \mathrm{Y}=\mathrm{PF}_{6}\right), \quad\left[\mathrm{C}_{18} \mathrm{H}_{46} \mathrm{P}_{3} \mathrm{Pt}\right]-$ $\left[\mathrm{PF}_{6}\right], M=695.5$, Triclinic, $a=15.969(3), b=20.600(3)$, $c=9.081(2) \AA, \alpha=79.87(2), \beta=88.91(2), \gamma=82.49(2)^{\circ}$, $U=2915.4 \AA^{3}, D_{\mathrm{m}}=1.58(1) \mathrm{g} \mathrm{cm}^{-3}, Z=4, D_{\mathrm{c}}=1.59 \mathrm{~g}$ $\mathrm{cm}^{-3}, F(000)=1384, \lambda\left(\mathrm{Mo}-K_{\alpha}=0.7107 \AA\right.$ (for all complexes) $\mu\left(\right.$ Mo $\left.-K_{\alpha}\right)=51.2 \mathrm{~cm}^{-1}$, space group $P \mathrm{I}$.
$\left(1 ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}\right),\left[\mathrm{C}_{18} \mathrm{H}_{45} \mathrm{FP}_{3} \mathrm{Pt}\right]\left[\mathrm{BF}_{4}\right], M=655.4$, Monoclinic, $a=15.627(13), b=10.988(8), c=16.347(16)$ $\AA, \beta=102.7(3)^{\circ}, U=2738.6 \AA^{3}, Z=4, D_{\mathrm{c}}=1.59 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1304, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=56.0 \mathrm{~cm}^{-1}$, space group $P 2_{1} / c$ from systematic absences.
$\left(1 ; \quad \mathrm{X}=\mathrm{Cl}, \quad \mathrm{Y}=\mathrm{BF}_{4}\right), \quad\left[\mathrm{C}_{18} \mathrm{H}_{45} \mathrm{ClP}_{3} \mathrm{Pt}\right]\left[\mathrm{BF}_{4}\right], \quad M=$ 672.0, Monoclinic, $a=11.507(11), \quad b=17.452(18), \quad c=$ 14.199(20) $\AA, \quad \beta=104.6(4)^{\circ}, \quad U=2759.2 \quad \AA^{3}, \quad Z=4$, $D_{\mathrm{e}}=1.62 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1336, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=54.7 \mathrm{~cm}^{-1}$, space group $P 2_{1} / n$ from systematic absences $h 0 l$ for $h+l=$ $2 n+1$ and $0 k 0$ for $k=2 n+1$.

The intensities for ($1: X=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$; and $\mathrm{X}=\mathrm{Cl}$, $\mathrm{Y}=\mathrm{BF}_{4}$) in the range $0.1>\sin \theta>0.7 \AA^{-1}$ were measured on a Stoe Weissenberg diffractometer using graphitemonochromated Mo- K_{α} radiation and an ω-scan technique. Corrections for Lorentz, polarisation, and absorption ${ }^{6}$ effects were made. Intensity data for $(1 ; X=C l, Y=$ BF_{4}) were collected in 18 layers from a crystal of dimensions ca. $0.02 \times 0.03 \times 0.02 \mathrm{~cm}$ mounted about [010]. 3634 Unique reflections with $I>3 \sigma(I)$ were considered observed. Intensity data for ($1 ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$) were collected in 15 layers from a crystal of dimensions ca. $0.01 \times 0.04 \times$ 0.06 cm mounted about [001]. 3008 Unique reflections with $I>3 \sigma(I)$ were considered observed. The intensities for ($1 ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{PF}_{6}$) in the range $3<\theta<30^{\circ}$ were measured on a Picker FACS-I fully automatic four-circle diffractometer using a $\theta-2 \theta$ scan technique with graphitemonochromated Mo- K_{α} radiation. During data collection severe anisotropic crystal degradation (up to 50% intensity loss), as monitored by the periodic measurement of three 'standard' reflections, was observed. Two crystals of dimensions ca. $0.043 \times 0.008 \times 0.014$ and $0.038 \times 0.018 \times$ 0.013 cm were used and the data were corrected for decom-
position assuming a linearly time-dependent isotropic decay. Intensities from the two crystals were corrected for absorption ${ }^{6}$ and placed on the same scale using common reflections. Subsequent data processing followed a pro-

Table 1
Fractional atomic co-ordinates for ($1 ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{PF}_{6}$)

Atom	x / a	y / b	z / c
Pt	0.404 64(4)	0.244 19(2)	0.181 29(6)
$\mathrm{P}(1)$	0.47779 (28)	0.228 30(14)	$0.40770(40)$
$\mathrm{P}(2)$	0.39291 (35)	0.13541 (16)	$0.16464(46)$
$\mathrm{P}(3)$	$0.38715(34)$	0.358 07(15)	0.116 87(42)
$\mathrm{C}(11)$	0.5040 (11)	$0.3012(5)$	0.4750 (16)
$\mathrm{C}(12)$	0.5537 7(14)	$0.2865(7)$	0.6301 (18)
C(13)	$0.5805(11)$	$0.1742(6)$	$0.4108(19)$
$\mathrm{C}(14)$	$0.6418(11)$	$0.2038(8)$	$0.2932(22)$
$\mathrm{C}(15)$	0.4209 (11)	0.1860 (6)	$0.5695(15)$
$\mathrm{C}(16)$	$0.3367(12)$	0.2295 (7)	0.5978 (20)
$\mathrm{C}(21)$	0.430 7(14)	$0.0668(5)$	0.3149 (18)
C(22)	$0.4144(17)$	-0.004 9(6)	0.279 9(22)
C(23)	0.442 3(17)	0.1167 (8)	$-0.0094(22)$
C(24)	0.538 5(14)	$0.1285(9)$	-0.024 8(26)
C(25)	0.276 7(15)	0.1274 (9)	0.123 6(24)
C(26)	0.222 6(15)	0.1470 (11)	$0.2375(30)$
C(31)	0.340 8(14)	0.3818 (7)	$-0.0751(19)$
C(32)	0.3218 8(15)	0.4604 (7)	-0.1295(22)
C(33)	0.317 1(16)	0.3993 (7)	0.2419 (25)
C(34)	0.229 3(16)	0.374 7(9)	0.251 6(36)
$\mathrm{C}(35)$	0.483 6(13)	0.4029 (7)	$0.1152(20)$
$\mathrm{C}(36)$	0.553 4(13)	$0.3757(9)$	0.0148 (27)
Pt	0.881 18(4)	$0.25352(2)$	0.65170 (7)
$\mathrm{P}(1)$	$1.01465(41)$	0.253 73(24)	$0.73956(81)$
$\mathrm{P}(2)$	$0.86910(45)$	$0.14244(22)$	$0.69982(70)$
$\mathrm{P}(3)$	$0.83499(38)$	0.364 68(19)	$0.56857(54)$
C(11)	1.0529 (14)	0.3337 (9)	0.7441 (31)
C(12)	1.142 l (19)	0.329 6(12)	0.808 8(46)
$\mathrm{C}(13)$	1.092 4(16)	0.212 6(14)	$0.6297(46)$
C(14)	$1.0863(26)$	0.249 7(20)	0.4611 (44)
$\mathrm{C}(15)$	$1.0312(28)$	$0.2072(12)$	0.924 3(39)
C(16)	$0.9872(30)$	$0.2389(21)$	$1.0340(31)$
$\mathrm{C}(21)$	0.949 0(16)	0.079 5(7)	$0.7921(25)$
C(22)	0.927 1(19)	0.0053 (8)	$0.8159(32)$
C(23)	0.842 l (22)	$0.1125(11)$	$0.5428(37)$
C (24)	0.922 3(24)	$0.1167(13)$	$0.4315(32)$
$\mathrm{C}(25)$	$0.7615(23)$	0.128 9(11)	0.8041 (40)
$\mathrm{C}(26)$	$0.7701(25)$	0.1645 (13)	0.944 8(38)
C(31)	0.9090 (17)	0.423 7(9)	$0.5107(30)$
$\mathrm{C}(32)$	$0.8640(21)$	0.4989 9(10)	$0.4501(27)$
$\mathrm{C}(33)$	$0.7663(26)$	0.398 8(12)	$0.7097(36)$
$\mathrm{C}(34)$	0.779 9(24)	0.391 7(16)	0.848 9(31)
C(35)	0.756 7(15)	0.375 3(10)	$0.4122(30)$
$\mathrm{C}(36)$	$0.8021(21)$	0.348 8(12)	0.274 5(25)
$\mathrm{P}(7)$	0.0	0.5	0.0
$\mathrm{P}(8)$	0.5	0.5	0.5
$\mathrm{P}(9)$	$0.25552(59)$	$0.01870(24)$	$0.74016(74)$
F(71)	-0.0879(39)	$0.4902(40)$	$0.0512(150)$
F (72)	$0.0862(49)$	$0.4715(39)$	-0.041 2(143)
F (73)	0.027 6(21)	0.506 l (13)	$0.1564(22)$
F (74)	-0.001 4(32)	0.4266 (9)	0.043 6(38)
$\mathrm{F}(81)$	$0.5572(8)$	0.448 l (4)	0.422 3(12)
$\mathrm{F}(82)$	$0.5382(13)$	0.4685 (6)	0.654 6(13)
F (83)	0.4318 (9)	0.4518 (5)	$0.5264(17)$
F(91)	$0.3008(17)$	$-0.0056(9)$	0.8970 (19)
$\mathrm{F}(92)$	0.330 6(43)	0.0495 (30)	0.704 7(68)
F(93)	$0.2747(33)$	-0.0517(12)	0.723 3(61)
F ${ }^{\text {(94) }}$	$0.2545(29)$	0.091 6(8)	0.754 0(57)
F (95)	$0.1619(26)$	0.0241 (25)	0.673 2(104)
F (96)	0.320 4(41)	-0.0075(31)	0.638 4(58)
F(97)	0.1993 (49)	-0.029 0(37)	$0.8119(64)$
$\mathrm{F}(98)$	$0.2308(46)$	$0.0454(30)$	0.587 2(26)
F (99)	0.198 7(27)	$0.0497(26)$	0.837 7(44)

cedure described elsewhere. ${ }^{7} 7468$ Unique reflections with $I>3 \sigma(I)$ were considered observed.

Structure Solution and Refinement.-Scattering factors for neutral atoms including anomalous-dispersion corrections for Pt were taken from ref. 8. Conventional

Patterson and difference-Fourier techniques were used. For ($1 ; \quad \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4} ; \quad \mathrm{X}=\mathrm{Cl}, \quad \mathrm{Y}=\mathrm{BF}_{4}$) blockdiagonal least-squares refinement was carried out using anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 1.0 \AA$) with a fixed isotropic thermal parameter $B=5.0 \AA^{2}$. For ($1 ; X=H, Y=P F_{6}$), full-matrix least-squares refinement was used with anisotropic thermal parameters for non-hydrogen atoms; hydrogen atoms were not included. In all cases the function $\Sigma w\left(\left|F_{o}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ was minimised using weighting schemes which were chosen so that the function was approximately independent of $\left|F_{\mathrm{o}}\right|$ and $(\sin \theta) / \lambda$. In the final difference-Fourier syntheses no residual features were greater than 0.5 e \AA^{-3} except for positive and negative peaks ca. le \AA^{-3} close to Pt for (1; $\mathrm{X}=\mathrm{H}$).
In the case of $\left(1 ; X=H, Y=P F_{6}\right) 2983$ reflections
Table 2
Fractional atomic co-ordinates for (1; X $=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$)

Atom	x / a	y / b	z / c
Pt	$0.28525(3)$	$0.20476(4)$	$0.19160(3)$
$\mathrm{P}(1)$	$0.1579(2)$	$0.1060(3)$	$0.1746(2)$
$\mathrm{P}(2)$	$0.2230(2)$	$0.3992(3)$	$0.1829(2)$
$\mathrm{P}(3)$	$0.3771(2)$	$0.0370(3)$	$0.1922(2)$
$\mathrm{F}(1)$	$0.3994(5)$	$0.3019(8)$	$0.2204(6)$
$\mathrm{F}(2)$	$0.8848(10)$	$0.1648(13)$	$0.1254(9)$
$\mathrm{F}(3)$	$0.8168(12)$	$0.2249(14)$	$-0.0022(9)$
$\mathrm{F}(4)$	$0.7725(11)$	$0.2816(21)$	$0.1104(14)$
$\mathrm{F}(5)$	$0.8931(12)$	$0.3530(14)$	$0.0880(10)$
$\mathrm{C}(11)$	$0.1614(11)$	$-0.0576(14)$	$0.1956(11)$
$\mathrm{C}(12)$	$0.0740(12)$	$-0.1175(17)$	$0.1953(15)$
$\mathrm{C}(13)$	$0.0874(9)$	$0.1179(17)$	$0.0695(9)$
$\mathrm{C}(14)$	$0.1374(11)$	$0.0960(19)$	$0.0020(10)$
$\mathrm{C}(15)$	$0.0911(9)$	$0.1643(13)$	$0.2469(10)$
$\mathrm{C}(16)$	$0.1350(11)$	$0.1438(17)$	$0.3371(11)$
$\mathrm{C}(21)$	$0.1160(10)$	$0.4305(17)$	$0.1162(14)$
$\mathrm{C}(22)$	$0.0836(13)$	$0.5585(19)$	$0.1149(16)$
$\mathrm{C}(23)$	$0.2936(11)$	$0.5040(15)$	$0.1433(12)$
$\mathrm{C}(24)$	$0.3048(15)$	$0.4706(22)$	$0.0585(14)$
$\mathrm{C}(25)$	$0.2145(13)$	$0.4613(17)$	$0.2848(13)$
$\mathrm{C}(26)$	$0.2950(14)$	$0.4417(28)$	$0.3527(14)$
$\mathrm{C}(31)$	$0.3503(11)$	$-0.0716(17)$	$0.1076(12)$
$\mathrm{C}(32)$	$0.4117(14)$	$-0.1722(18)$	$0.1050(14)$
$\mathrm{C}(33)$	$0.4011(12)$	$-0.0517(18)$	$0.2906(12)$
$\mathrm{C}(34)$	$0.4168(16)$	$0.0195(26)$	$0.3655(13)$
$\mathrm{C}(35)$	$0.4857(10)$	$0.0889(10)$	$0.1817(13)$
$\mathrm{C}(36)$	$0.4891(14)$	$0.1475(21)$	$0.1019(15)$
B	$0.8407(17)$	$0.2535(20)$	$0.0783(16)$

measured after considerable ($>20 \%$) crystal degradation had occurred were omitted from the final refinement cycles. Inclusion of these reflections results only in larger thermal parameters for cation B [Figure $l(b)$], in particular for the phosphine ligand $\mathrm{P}(1) \mathrm{Et}_{3}$, but has no appreciable effect on cation A. A probable consequence of crystal degradation is that some chemically equivalent bond lengths, noticeably $\mathrm{Pt}-\mathrm{P}(1)$, differ significantly in the two cations. We believe the values for cation A are more reliable.

Final R factors for the three compounds (1) in the order $\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}$ were $R=0.049,0.045,0.047$ and $R^{\prime}=$ $0.057,0.059,0.058$. Observed and calculated structure factors are listed as part of Supplementary Publication No. SUP 22790 (46 pp.).*

RESULTS AND DISCUSSION

Crystal Structures.-Final atomic co-ordinates for non-hydrogen atoms are given in Tables 1-3 for

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

Table 3
Fractional atomic co-ordinates for (1; $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{BF}_{4}$)

Atom	x / a	y / b	z / c
Pt	$0.20212(3)$	$0.15512(2)$	0.227 55(3)
Cl	$0.1733(3)$	$0.2665(2)$	$0.1294(3)$
$\mathrm{P}(1)$	0.240 6(2)	0.048 8(2)	0.3200 (2)
$\mathrm{P}(2)$	$0.3678(3)$	0.1419 (2)	$0.1594(3)$
$\mathrm{P}(3)$	0.0223 (2)	0.1978 (2)	0.2598 (2)
F(1)	0.664 6(19)	0.370 9(14)	0.111 6(11)
F(2)	$0.8092(15)$	0.446 5(12)	0.1700 (10)
$\mathrm{F}(3)$	$0.7546(18)$	0.370 7(11)	$0.2667(12)$
F(4)	0.645 9(16)	0.4619 (12)	0.2103 (14)
C(11)	0.1446 (11)	0.0229 (7)	0.3976 (9)
C(12)	$0.1787(16)$	-0.049 9(9)	$0.4567(11)$
C(13)	$0.3887(11)$	0.0521 (8)	0.403 9(8)
C(14)	0.4013 3(14)	$0.1178(11)$	0.474 3(11)
C(15)	0.227 7(9)	-0.0386 (6)	0.242 6(7)
C(16)	0.1151 (16)	$-0.0558(9)$	0.1836 (12)
$\mathrm{C}(21)$	$0.4772(14)$	0.0648 (9)	0.1861 (13)
C(22)	0.5681 (17)	0.061 1(13)	$0.1289(16)$
C(23)	0.463 7(13)	0.227 4(10)	0.185 3(14)
$\mathrm{C}(24)$	0.5070 (15)	0.247 0(12)	0.2868 8(19)
$\mathrm{C}(25)$	0.3129 9(15)	$0.1359(11)$	0.027 5(11)
C(26)	$0.2260(19)$	0.070 9(15)	-0.0072(13)
C(31)	-0.056 4(11)	0.15178()	$0.3409(11)$
$\mathrm{C}(32)$	$-0.1730(16)$	0.189 6(12)	0.346 6(15)
$\mathrm{C}(33)$	-0.0916(10)	$0.2029(9)$	$0.1454(10)$
$\mathrm{C}(34)$	-0.115 5(16)	0.124 2(13)	0.099 2(13)
$\mathrm{C}(35)$	0.037 6(12)	0.2958 (8)	0.3035 (12)
$\mathrm{C}(36)$	$0.1265(17)$	$0.3051(11)$	0.399 7(15)
B	$0.7153(20)$	0.4113 (14)	0.190 3(16)

compounds (1) in the order $\mathrm{X}=\mathrm{H}, \mathrm{F}$, and Cl . The atom numbering is the same where possible for all compounds and is shown for the cations in Figure l. The crystal packing is illustrated in the stereopairs of Figures 2-4. Bond lengths and angles in the cations are compared in Table 4. Anisotropic thermal parameters, hydrogen-atom co-ordinates, bond lengths and

Figure 1 Molecular geometry and atom numbering in complexes (1). Hydrogen atoms have been omitted for clarity. (a) $\left(\mathbf{1} ; \mathbf{X}=\mathbf{H}, \mathbf{Y}=\mathrm{PF}_{6}\right)$ cation A , (b) cation B ; (c) $(\mathbf{1} ; \mathbf{X}=$ $\left.\mathbf{F}, \mathbf{Y}=\mathrm{BF}_{\mathbf{4}}\right) ;($ d $)\left(\mathbf{1} ; \mathbf{X}=\mathrm{Cl}, \mathbf{Y}=\mathrm{BF}_{\mathbf{4}}\right)$

Table 4
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the cations

Pt-X
 $\mathrm{Pt}-\mathrm{P}(1)$ $\mathrm{Pt}-\mathrm{P}(2)$
 $\mathrm{Pt}-\mathrm{P}(3)$
 $\mathrm{P}(1)-\mathrm{C}(11)$ $\mathrm{P}(1)-\mathrm{C}(13)$ $\mathrm{P}(1)-\mathrm{C}(15)$ $\mathrm{P}(2)-\mathrm{C}(21)$ $\mathrm{P}(2)-\mathrm{C}(23)$ $\mathrm{P}(2)-\mathrm{C}(25)$ $\mathrm{P}(3)-\mathrm{C}(31)$ $\mathrm{P}(3)-\mathrm{C}(33)$ $\mathrm{P}(3)-\mathrm{C}(35)$ mean
 $\mathrm{C}(11)-\mathrm{C}(12)$ $\mathrm{C}(13)-\mathrm{C}(14)$ $\mathrm{C}(15)-\mathrm{C}(16)$ $\mathrm{C}(21)-\mathrm{C}(22)$ $\mathrm{C}(23)-\mathrm{C}(24)$ $\mathrm{C}(25)-\mathrm{C}(26)$ $\mathrm{C}(13)-\mathrm{C}(32)$ $\mathrm{C}(33)-\mathrm{C}(34)$ $\mathrm{C}(35)-\mathrm{C}(36)$

mean
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(3)$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}(3)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{X}$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{X}$
$\mathrm{P}(3)-\mathrm{Pt}-\mathrm{X}$
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(13)$
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(15)$
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(21)$
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(23)$
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(25)$
$\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(31)$
$\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(33)$
$\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(35)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(15)$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(15)$
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(23)$
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(25)$
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(25)$
$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{C}(33)$
$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{C}(35)$
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(35)$
mean
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$
$\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(16)$
$\mathrm{P}(2)-\mathrm{C}(21)-\mathrm{C}(22)$
$\mathrm{P}(2)-\mathrm{C}(23)-\mathrm{C}(24)$
$\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$
$\mathrm{P}(3)-\mathrm{C}(31)-\mathrm{C}(32)$
$\mathrm{P}(3)-\mathrm{C}(33)-\mathrm{C}(34)$
$\mathrm{P}(3)-\mathrm{C}(35)-\mathrm{C}(36)$
mean

mean

${ }^{a}$ In the PF_{6} anions, two of which lie on inversion centres (one disordered) and the third (disordered) in a general position, the $\mathrm{P}-\mathrm{F}$ bond length varies from 1.43 to $1.61 \AA$ with a mean value of $1.51(5) \AA$. ${ }^{b}$ In the BF_{4} anions the mean $\mathrm{B}-\mathrm{F}$ bond length is $1.32(3) \AA$ and the mean $\mathrm{F}-\mathrm{B}-\mathrm{F}$ angle $109(3)^{\circ}$. ${ }^{\circ}$ Bond lengths corrected for thermal motion, assuming the phosphorus atom to ride on the platinum atom, are: cation $\mathrm{A}, \mathrm{Pt}-\mathrm{P}(1)$ 2.335, $\mathrm{Pt}-\mathrm{P}(2) 2.315, \mathrm{Pt}-\mathrm{P}(3) 2.305$; cation $\mathrm{B}, \mathrm{Pt}-\mathrm{P}(1) 2.324, \mathrm{Pt}-$ $\mathrm{P}(2)$ 2.315, $\mathrm{Pt}-\mathrm{P}(3) 2.324 \AA$.
angles in the anions, and the shorter intra- and intermolecular contacts are included in the Supplementary Publication. For each compound studied the crystals consist of discrete ions separated by normal van der Waals contacts. In ($1 ; X=H, Y=P F_{6}$) the fluorine atoms attached to $\mathrm{P}(7)$ and $\mathrm{P}(9)$ are disordered, and in particular the anion $P(9)$ appears to be completely rotationally disordered.

Conformations of the Phosphine Ligands.-In the cations of ($1 ; \mathrm{X}=\mathrm{H}$ or Cl) the phosphine ligands exhibit approximate $(\mathbf{1 8 0}, 60,-60)$ conformations,* as does the $\mathrm{P}(1) \mathrm{Et}_{3}$ ligand in ($1 ; \mathrm{X}=\mathrm{F}$). Phosphine ligands $\mathrm{P}(2) \mathrm{Et}_{3}$ and $\mathrm{P}(3) \mathrm{Et}_{3}$ of (1; X $=\mathrm{F}$) have approximately ($180,60,60$) and ($180,-60,-60$) conformations respectively. Although the conformation observed ${ }^{10}$ in solid $\mathrm{PEt}_{3}\left(60,60,60\right.$ with C_{3} symmetry)

Figure 2 Stereoscopic pair view of the crystal structure of (1; $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{PF}_{6}$), approximately along c. Hydrogen atoms not determined
would not be expected in the crowded environment of a square-planar tris complex, all the conformations observed in these complexes are found in liquid $\mathrm{PEt}_{3} .{ }^{10}$ The relevant torsion angles are listed in Table 5.
contact with other phosphine ligands. Repulsions between the ethyl groups of adjacent phosphine ligands are also responsible for deviations of the $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$ and $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(3)$ angles from the ideal of 90°. There are significant differences between these two angles

Table 5
Bond torsion angles $\left({ }^{\circ}\right)$ in the cations $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{X}\right]^{+}$

	$\mathrm{X}=\mathrm{H}$		$\mathrm{X}=\mathrm{F}$	$\mathrm{X}=\mathrm{Cl}$
	Cation A	Cation B		
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	180	178	172	180
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	62	60	46	62
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	-64	-71	-63	-64
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	179	179	178	174
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(23)-\mathrm{C}(24)$	57	68	57	56
$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	-59	-56	50	-58
$\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	177	178	176	-178
$\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(33)-\mathrm{C}(34)$	-56	47	-41	63
$\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(35)-\mathrm{C}(36)$	54	-64	-65	-65
$\mathrm{X}-\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(31)$			-134	180
$\mathrm{X}-\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(21)$			158	-179
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(21)$	4	3	-28	0
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(3)-\mathrm{C}(31)$	173	25	52	0
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$	180	-174	-169	179
$\mathrm{P}(3)-\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$	-1	5	16	-4

which arise [excepting cation A of $(1 ; \mathrm{X}=\mathrm{H})$] because, whereas $C(21)$ slots into the gap between $C(13)$ and $C(15)$, $\mathrm{C}(11)$ and $\mathrm{C}(31)$ approach more closely resulting in $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(3)$ being larger than $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$.

It is surprising that angles $\mathrm{X}-\mathrm{Pt}-\mathrm{P}(2)$ and $\mathrm{X}-\mathrm{Pt}-$ $\mathrm{P}(3)$ do not increase as the radius of X increases. Presumably the steric crowding between the three $c i s-\mathrm{PEt}_{3}$ groups does not allow the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles to become much less than 96°. The size of X does have an affect on the cis- PEt_{3} conformation. Only in the case of $\mathrm{X}=\mathrm{Cl}$ (the largest X studied) does the size of X force both bonds $\mathrm{P}(2)-\mathrm{C}(21)$ and $\mathrm{P}(3)-\mathrm{C}(31)$ to eclipse $\mathrm{Pt}-\mathrm{P}(1)$, thereby minimising contact between chlorine and the

Figure 3 Stereoscopic pair view of the crystal structure of ($\mathbf{1} ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}$), approximately along b

The $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ angles vary significantly but fall into two groups such that for any individual triethylphosphine ligand one $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ angle has a mean value $120.9 \pm 2.8^{\circ}$ (mean of 12) and the other two average to $112.2 \pm 2.5^{\circ}$ (mean of 24). In all but one case $\left[\mathrm{P}(3) \mathrm{Et}_{3}\right.$ of cation A of ($1 ; \mathrm{X}=\mathrm{H}$)] the larger angle involves the ethyl group whose $\mathrm{Pt}-\mathrm{P}-\mathrm{C}-\mathrm{C}$ torsion angle is $\mathrm{ca} .180^{\circ}$; this is generally the ethyl group more directly affected by close

[^0]methylene hydrogens (at ca. $2.7 \AA$). The equivalent contact in ($1 ; \mathrm{X}=\mathrm{H}$) is not critical, which may well be why differing conformations of the phosphine ligand $\mathrm{P}(3)$ are observed in the two independent cations. In $(1 ; X=F)$ the situation is intermediate and complicated by different conformations of the two cis-phosphine ligands. It may be that the high electronegativity of fluorine results in a small attractive interaction between methylene hydrogens of $\mathrm{C}(23), \mathrm{C}(35)$, and fluorine (the appropriate $\mathrm{H} \cdots \mathrm{F}$ contacts are $2.40 \AA$). This could
result in a stabilisation of the $(180,60,60)$ and (180 , $-60,-60)$ conformations relative to the usual $(180,60$, -60) conformation, possibly also accounting for the marked tetrahedral distortion of the Pt co-ordination plane in ($\mathbf{1} ; \mathrm{X}=\mathrm{F}$) (see Table 6).

The two $\mathrm{Pt}-\mathrm{P}$ bonds cis to X , although essentially equal in length within a given compound, are significantly different between compounds and follow the order $\mathrm{Pt}-\mathrm{P}($ cis to Cl$)>\mathrm{Pt}-\mathrm{P}($ cis to F$)>\mathrm{Pt}-\mathrm{P}($ cis to H$)$. Thus within the series of cations examined there is no

FIGURE 4 Stereoscopic pair view of the crystal structure of (1; $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{BF}_{4}$), approximately along \{101\}. Hydrogen atoms omitted

The cis and trans Influences.-The $\mathrm{Pt}-\mathrm{P}$ bond lengths trans to X in the series $(\mathbf{1} ; \mathrm{X}=\mathrm{H}, \mathrm{F}$, or Cl) follow the usual trans-influence order, i.e. $\mathrm{Pt}-\mathrm{P}($ trans to H$) \gg \mathrm{Pt}-$ $\mathrm{P}($ trans to Cl$)>\mathrm{Pt}-\mathrm{P}($ trans to F$)$. It has been shown ${ }^{11}$ that $\mathrm{Pt}-\mathrm{PEt}_{3}$ bond lengths correlate with platinumphosphorus coupling constants ${ }^{1} J\left(\mathrm{Pt}^{-\mathrm{P}}\right)$. Using reported values for ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ and the bond lengths from
straightforward correlation between cis and trans influences of the ligand X on the $\mathrm{Pt}-\mathrm{P}$ bond length. Neither is there a correlation between cis influence and the electronegativity of X , so the variation in $\mathrm{Pt}-\mathrm{P}$ (cis to X) bond length is unlikely to be caused primarily by a change in the charge on the metal with consequential metal-orbital contraction. Furthermore, it does not

Table 6
Deviations (\AA) of atoms from the platinum co-ordination plane in complexes (1)

Complex	Atoms defining plane
(1; X $=\mathrm{H}, \mathrm{Y}=\mathrm{PF}_{6}$) (Cation A)	$\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3)$
(Cation B)	$\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3)$
$\left(1 ; \mathrm{X}=\mathrm{F}, \mathrm{Y}=\mathrm{BF}_{4}\right.$)	$\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3), \mathrm{F}(1)$
$\left(\mathbf{1} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{BF}_{4}\right.$)	$\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3), \mathrm{Cl}$

this work, the correlation is further substantiated [although there is a marginal discrepancy in the order of trans influence for $\mathrm{X}=\mathrm{F}$ and Cl when based on ${ }^{1} J\left(\mathrm{Pt}^{-}\right.$

Table 7
Coupling constants ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ and bond lengths $l(\mathrm{Pt}-\mathrm{P})$ in complex cations $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{X}\right]^{+}(\mathrm{X}=\mathrm{H}, \mathrm{F}$, or Cl$)$

Complex cation
${ }^{1} J(\mathrm{Pt}-\mathrm{P}) / \mathrm{Hz}$
$l(\mathrm{Pt}-\mathrm{P}) / \AA$
$\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{H}\right]^{+}$
$($ cis P$)$
(trans P$)$
$\mathrm{Pt}_{\left(\mathrm{PEt}_{4}\right)_{3} \mathrm{~F}}$
$\left[\mathrm{Pt}_{\left.\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{~F}\right]+}\right.$
$($ cis P$)$
$($ trans P$)$
$\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3} \mathrm{Cl}\right]^{+}$
$\begin{array}{lll}\text { (cis P) } & 2261{ }^{b}(2233)^{c} & 2.354(3) \\ (\text { tran } & \text { (mean } 2)\end{array}$
(trans P) $\quad 3474$ (3499) $\quad 2.251(3)$
${ }^{a}$ T. W. Dingle and K. R. Dixon, Inorg. Chem., 1974, 13, 846.
${ }^{6}$ M. A. Cairns, K. R. Dixon, and J. J. McFarland, J.C.S.
Dalton, 1975, 1159. 'G. G. Mather, A. Pidcock, and G. J. N.
Rapsey, Inorg. Nuclear Chem. Letters, 1973, 9, 567.
P) or $\mathrm{Pt}-\mathrm{P}$ distance]. The correlation also extends to the $\mathrm{Pt}-\mathrm{P}$ (cis to X) bonds (see Table 7).
Deviations from plane
$\overbrace{\mathrm{Pt}, 0.013 ; \mathrm{P}(1),-0.002 ; \mathrm{P}(2),-0.005 ; \mathrm{P}(3),-0.005}^{\mathrm{Pt}, 0.009 ; \mathrm{P}(1),-0.002 ; \mathrm{P}(2),-0.004 ; \mathrm{P}(3),-0.004} \mathbf{\mathrm { Pt } , 0 . 0 0 0 ; \mathrm { P } (1) , 0 . 0 0 4 ; \mathrm { P } (2) , 0 . 1 0 1 ; \mathrm { P } (3) , 0 . 1 0 5 ; \mathrm { F } (1) - 0 . 2 2 9}$
$\mathrm{Pt},-0.001 ; \mathrm{P}(1),-0.007 ; \mathrm{P}(2), 0.068 ; \mathrm{P}(3), 0.041 ; \mathrm{Cl},-0.030$
seem reasonable that hybridisation differences at platinum, caused by preferred orbital requirements for formulation of the $\mathrm{Pt}-\mathrm{X}$ bond, could account for the order because one would then expect a correlation between cis and trans influences. Similarly, differences in metal-phosphorus π bonding may be neglected.

An obvious factor which does correlate with the observed order of cis influence is the size of X . The lack of influence of the size of X on cis $\mathrm{X}-\mathrm{Pt}-\mathrm{P}$ and $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles has been noted above. Because of crowding in the $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3}$ unit, relief of strain between X and $c i s-\mathrm{PEt}_{3}$ groups can only be overcome either by distortion towards tetrahedral geometry, which is not observed (except for $\mathrm{X}=\mathrm{F}$, see above), or lengthening of the cis $\mathrm{Pt}-\mathrm{P}$ bonds, which is observed. Lengthening of $\mathrm{Pt}-\mathrm{P}$ bonds by steric interaction with large cis ligands has already been observed ${ }^{12}$ in the case of trans $-\left[\mathrm{PtI}_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right] \text {. It must be concluded that the }}\right.\right.$ cis-Pt-P bond lengths in (1) are controlled by steric interaction with cis-iigand atoms as small as Cl and possibly even F . For $(1 ; \mathrm{X}=\mathrm{Br}$ or I$)$, the cor-
relation of ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ with $\mathrm{Pt}-\mathrm{P}$ bond lengths would suggest that the cis $-\mathrm{Pt}-\mathrm{P}$ bond lengths in $(1 ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) are approximately equal. However, our work suggests that $\mathrm{Pt}-\mathrm{P}[$ cis to I in ($1 ; \mathrm{X}=\mathrm{I}$)] should be longer than $\mathrm{Pt}-\mathrm{P}[$ cis to Cl in $(1 ; \mathrm{X}=\mathrm{Cl})]$. A breakdown in the correlation between ${ }^{\mathbf{1}} J(\mathrm{Pt}-\mathrm{P})$ and $\mathrm{Pt}-\mathrm{P}$ bond lengths has already been recognised for trans$\left[\mathrm{PtI}_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]^{13} \text { where steric interactions are large. }}\right.\right.$ Structural data on (1; X $=\mathrm{Br}$ and I) are necessary to decide this point.

We thank the S.R.C. for financial assistance, and the staff of Leicester University Computer Laboratory and the Australian National University Computer Centre for use of their facilities.
[0/077 Received, 14th January, 1980]

REFERENCES

${ }^{1}$ G. W. Bushnell, A. Pidcock, and M. A. R. Smith, J.C.S. Dalton, 1975, 572.
${ }^{2}$ D. R. Russell, P. A. Tucker, and S. Wilson, J. Organometallic Chem., 1976, 104, 387.
${ }^{3}$ P. B. Hitchcock, B. Jacobson, and A. Pidcock, J.C.S. Dalton, 1977, 2043.
${ }^{4}$ M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1968, 3074.
${ }^{5}$ W. R. Busing and H. A. Levy, Acta Cryst., 1967, 22, 457.
${ }^{6}$ J. De Meulenaer and H. Tompa, Acta Cryst., 1965, 19, 1014; N. W. Alcock, ibid., 1969, A25, 518.
${ }^{7}$ M. A. Bennett, T. W. Matheson, G. B. Robertson, A. K. Smith, and P. A. Tucker, unpublished work.
${ }_{8}$ 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
${ }^{9}$ R. H. Stanford and J. Waser, Acta Cryst., 1972, A28, 213.
${ }^{10}$ C. Crocker and P. L. Goggin, J.C.S. Dalton, 1978, 388.
${ }^{11}$ G. G. Mather, A. Pidcock, and G. J. N. Rapsey, J.C.S. Dalton, 1973, 2095.

12 N. W. Alcock and P. G. Leviston, J.C.S. Dalton, 1974, 1834. ${ }^{13}$ P. B. Hitchcock, B. Jacobson, and A. Pidcock, J.C.S. Dalton, 1977, 2038.

[^0]: * The three numbers give the $\mathrm{Pt}-\mathrm{P}-\mathrm{C}-\mathrm{C}$ torsion angles (${ }^{\circ}$) defined in ref. 9.

