Interaction of Nitric Oxide with Paramagnetic and Diamagnetic Alkyls of Titanium, Zirconium, Vanadium, Niobium, and Tantalum

By A. Robert Middleton and Geoffrey Wilkinson,* Chemistry Department, Imperial College of Science and Technology, London SW7 2AY

An earlier observation that there is a profound difference in the way paramagnetic and diamagnetic alkyl compounds of transition metals react with nitric oxide is extended. The reaction of NO with bis(η^5 -cyclopentadienyl)dimethylniobium(IV), d^1 , can be followed by nuclear magnetic resonance spectra and intermediates detected. The final product of the reaction is bis(η^5 -cyclopentadienyl)methyloxoniobium(V), which with excess of NO, gives the *N*-methyl-*N*-nitrosohydroxylaminato-complex Nb(η -C₅H₅)₂(O)[ON(Me)NO]. An intermediate niobioaziridine collapses with methylnitrene transfer to give azomethane, and in the presence of styrene, an aziridine. Tetrakis(trimethylsilylmethyl)vanadium(IV) gives with NO the previously known VO(CH₂SiMe₃)₃ while the titanium(III), d^1 , compounds Ti(η -C₅H₅)₂R (R = Ph or CH₂Ph) lose both cyclopentadienyl and aryl or benzyl groups to give a trimeric species Ti₃(η -C₅H₅)₃O₄(NO) that has oxo-bridges and a bent Ti–NO group. The diamagnetic alkyls of titanium and zirconium, TiR₄, TiR₃Cl₂, ZrR₄, and ZrR₂Cl₂ (R = CH₂SiMe₃ or CH₂CMe₃) and NO give *N*-alkyl-*N*-nitrosohydroxylaminato-complexes. The titanium compounds are six-co-ordinate with unidentate and bidentate ON(R)NO groups, while the zirconium compounds are eight-co-ordinate with chelate groups only. The pentamethyls MMe₅ (M = Nb or Ta) and NO give NbMe₂[ON(Me)NO]₃ and {TaMe₃[ON(Me)NO]₂}₂ respectively.

THE reaction of nitric oxide with transition-metal alkyls or complex alkyls leads to the formation of *N*-alkyl-*N*-nitrosohydroxylaminato-compounds ^{1,2} by the fast reaction of NO with the radical intermediate first formed by alkyl transfer ² [see equations (i) and (ii)].

$$M-R + \dot{N}O \longrightarrow M-O^{N}R \qquad (i)$$

$$M = O \xrightarrow{N} R + NO \longrightarrow M \xrightarrow{O} = N \qquad (ii)$$

The structures of tungsten,² rhenium,³ and tantalum ⁴ chelate complexes have been determined by X-ray diffraction study and the chelate nature of the ON(R)NO group confirmed.

By contrast, the paramagnetic methyl, ReOMe₄, which has a single unpaired electron, was found to react with NO to give *cis*-trimethyldioxorhenium(VII) and azomethane, $CH_3N=NCH_3$. It was suggested ⁵ that the unstable intermediate first formed is diamagnetic and that this has a structure with either a three-membered ring (1) or a bridge (2a) [a bridge of type (2b) was con-

sidered less likely since the normal co-ordination number of rhenium(VII) would be exceeded], either of which can decompose with loss of methylnitrene, leading to $CH_3N=$ NCH₃ and formation of a Re=O bond. This reaction thus results in deoxygenation of nitric oxide. Paramagnetic alkyls with two unpaired electrons such as $Cr(CH_2SiMe_3)_4$ also reacted with nitric oxide ⁶ but the products were complex and not characterised.

 η^2 -Nitrosoalkane or metallo-oxoaziridine complexes of type (1) have recently been made from substituted hydroxylamines ^{7,8} and the structure of a molybdenum complex with a η^2 -ONH group has also been characterised,^{9a} while a related η^2 -ON(H)(CH₃) compound has been structurally characterised by X-ray methods.^{9b} A cobalt compound [CoMe(μ -MeNO)(PMe₃)₂] has been obtained from CoMe₂(PMe₃)₃¹⁰ and a bridge of type (2b) was proposed.

RESULTS AND DISCUSSION

Interaction of Nitric Oxide with Paramagnetic Alkyls.---The red d^1 compound Nb(η^5 -C₅H₅)₂Me₂¹¹ reacts rapidly with an excess of nitric oxide at room temperature in light petroleum to give a very insoluble white precipitate of stoicheiometry $Nb(cp)_{2}(O)[ON(Me)NO]$ (cp = cyclopentadienyl) which is diamagnetic and has a band in the i.r. at 865 cm⁻¹ that can be ascribed to Nb=O as well as bands typical for the N-methylnitrosohydroxylaminatogroup.² It may well be polymeric as is a zirconium compound,^{1a} with bridging ON(Me)NO groups. At -70 °C, however, a pale yellow toluene-soluble precipitate is obtained. This is diamagnetic, and has a band at 1 670 cm⁻¹ that can be assigned to a bent Nb(NO) group.¹² The ¹H n.m.r. spectrum has two peaks due to non-equivalent methyl groups and one due to η^{5} -C₅H₅. The reaction sequence shown in the Scheme is proposed, where (3) and (4) could be characterised only spectroscopically.

On monitoring the n.m.r. spectrum at room temperature, the δ 0.12 p.p.m. (Nb-CH₃) peak diminishes and is replaced by one at 2.83 p.p.m. (N-CH₃), consistent with methyl migration to form an unstable η^2 -nitrosomethane complex (4), which then decomposes with elimination of CH₃N=NCH₃. The latter was identified by its mass peak at 58 and characteristic fragmentation pattern.¹³ The resulting oxo-methyl complex, (5), is readily isolated and characterised. Additional NO converts it to the insoluble white compound noted above.

Although we cannot be certain that (4) has a threemembered oxo-aziridine ring and not a bridge of type (2), the confirmation of the three-membered ring in one case ⁷ suggests that a η^2 -nitrosomethane structure is most likely. Additional evidence for nitrene transfer, however, is the reaction of (4), made *in situ*, with styrene to give an aziridine.

This transfer is similar to that found for molybdenum η^2 -PhNO compounds ^{7,8} except that in the latter the aziridine was not isolated and the work-up led to allylic amines. When the reaction mixture from styrene or 1-methylcyclohexene with the niobium compound was worked up in acidic conditions, polymeric amines (*cf.* ref. 14) were also obtained.

The reaction of the d^1 alkyl V(CH₂SiMe₃)₄ with NO initially gives a red solution which is unstable and on warming deposits yellow needles of VO(CH₂SiMe₃)₃, but in this case, no further reaction to give a N-alkyl-N- nitrosohydroxylaminato-complex occurs, presumably because of co-ordinative saturation of vanadium(v) in this oxo-alkyl.

The paramagnetic d^1 titanium compounds Ti(η^5 - $C_5H_5)_2R$ (R = C_6H_5 or $CH_2C_6H_5$) react in both cases to give the same product. The sparingly soluble complex has the stoicheiometry Ti₃(cp)₃O₄(NO), where not only has the phenyl or benzyl group been lost, but also one C_5H_5 group per titanium. This difference from the vanadium and niobium compounds can be ascribed to the well known preference of titanium to form Ti-O-Ti, rather than Ti=O bonds.¹² The initial transfer of Ph or PhCH₂ to NO can be expected to give an unstable (cp), Ti=O' intermediate which then reacts further in presence of nitric oxide. Loss of a C₅H₅ ring and formation of Ti-O-Ti bridges has also been observed in the formation of the complex Ti₆(cp)₆O₈ in the reaction of $Ti(cp)_2(CO)_2$ with carbon monoxide and hydrogen and in which a η^2 -OCH intermediate was invoked.¹⁵ If we propose that there is an intermediate $Ti_3(C_5H_5)_3O_4$, which would have one unpaired electron, this could either dimerise to $Ti_6(cp)_6O_8$ or, in the presence of NO, could be trapped by reaction with NO to give $Ti_3(cp)_3O_4(NO)$. For this complex we propose the structure (6), where the $Ti(\eta^5-C_5H_5)$ units are linked by oxo-bridges, on the basis of spectroscopic data. Thus, the ¹H n.m.r. spectrum has two peaks (δ 6.30 and 6.37 p.p.m.) in the ratio 2 : 1 due to the two environments of the C₅H₅ rings, while the i.r. band at 1550 cm^{-1} can be assigned to a bent Ti(NO) group.

Interaction of Nitric Oxide with Diamagnetic Alkyls.— The interaction of NO with several titanium and zirconium alkyls follows the same route as found previously ^{1,2} and leads to N-alkyl-N-nitrosohydroxylaminates.

The zirconium alkyls give the compounds Zr[ON(R)-NO]₄ ($R = CH_2SiMe_3$ or CH_2CMe_3) that are monomeric and stable in dry air, though hygroscopic; they are evidently eight-co-ordinate as in (7). The partially alkylated compounds, MR_2Cl_2 (M = Ti or Zr; R = CH₂SiMe₃ or CH₂CMe₃) (which have been made in situ by exchange reactions but not isolated), absorb four equivalents of NO and give octahedral complexes MCl₂[ON(R)NO]₂ whose i.r. bands indicate cis-M-Cl groups as in (8). However, Ti(CH₂SiMe₃)₄ gives a monomeric, more highly coloured low-melting solid Ti[ON(R)NO]₄ whose ¹H n.m.r. spectrum indicates two types of alkyl group bound to nitrogen so that there must be both unidentate and chelate groups as in (9). An i.r. band at *ca*. 1 550 cm⁻¹ can be ascribed to v(NO)of the unidentate group. Although a unidentate group was proposed for $Zr(\eta^5-C_5H_5)_2(CH_3)[ON(CH_3)NO]^{1a}$ this compound does not have a band in the 1550 cm⁻¹ region and the ON(Me)NO group is probably chelated as suggested previously.² The alkyl TiCl(CH₂CMe₃)₃ also gives a compound, probably of structure (10), that has a band at 1 550 cm⁻¹ and two types of neopentyl groups bound to nitrogen.

The pentamethyls of niobium and tantalum, like

 WMe_{θ} ,² react by successive stages with NO until the maximum or preferred co-ordination number is reached. Niobium gives $NbMe_2[ON(Me)NO]_3$ which is monomeric with equivalent chelate ligands and two methyl groups remaining bound to Nb as in (11). The rather similar

 $NbCl_2Me[ON(Me)NO]_2$, obtained from $NbCl_2Me_3$, is only seven-co-ordinate ⁴ however, and this difference is presumably due to the greater steric bulk of the halogen atoms (*cf.* ref. 1*b*).

Pentamethyltantalum gives a white dimeric complex, ${TaMe_3[ON(Me)NO]_2}_2$; there is no band at *ca*. 1 550 cm⁻¹ and the ¹H n.m.r. spectrum indicates two types of

N-methyl-N-nitrosohydroxylaminato-groups as well as three equivalent methyl groups bound to tantalum. The structure (12) is suggested.

EXPERIMENTAL

All operations were carried out under nitrogen or *in vacuo*. Nitric oxide was from British Oxygen Co. The diethyl ether, tetrahydrofuran, toluene, and light petroleum (b.p. 40—60 °C) were dried over sodium and distilled under nitrogen. Melting points were determined in sealed capillaries; molecular weights were determined cryoscopically in benzene or osmometrically in dichloromethane, using a Perkin-Elmer-Hitachi osmometer.

Hydrogen-1 n.m.r. spectra were measured on Perkin-Elmer R12A or R32 instruments in C_6D_6 , C_8D_8 , or CDCl₃, i.r. spectra in Nujol mulls on a Perkin-Elmer 457 instrument. Mass spectra were determined on a VG Micromass spectrometer.

Microanalyses were by the Pascher, Bonn, and Imperial College laboratories. Note that analytical data (Table) on *N*-nitrosohydroxylaminato-compounds are often unsatisfactory ² due to difficulties with combustion. The yields are *ca.* 95%, unless otherwise stated.

Interaction of Nitric Oxide and Bis(n⁵-cyclopentadienyl)dimethylniobium(IV).---Bis(n⁵-cyclopentadienyl)dimethyl-(nitrosyl)niobium, bis(n⁵-cyclopentadienyl)methyl(oxo)niobium(v), and bis(n⁵-cyclopentadienyl)-N-methyl-N-nitrosohydroxylaminato-oxoniobium(v). Nitric oxide was slowly passed into a solution of Nb(cp)₂Me₂¹¹ in light petroleum at -70 °C until the red colour of the solution disappeared. The yellow precipitate of the adduct Nb(cp)₂Me₂(NO) was collected at -70 °C, washed with cold light petroleum, and freed from solvent by pumping at -20 °C (10^{-3} mmHg).* Although the compound was too unstable to analyse properly, it may be handled in nitrogen briefly and i.r. and n.m.r. spectra measured. I.r.: 1.670 cm⁻¹ (N=O); ¹H n.m.r.: δ 0.12s (CH₃), 0.94s (CH₃), and 5.92 (2 × C₅H₅).

When the same reaction was carried out in toluene, the complex remained in solution. When this solution, or a solution of the isolated complex in deuteriotoluene, was allowed to warm in a n.m.r. tube, the changes in the methyl resonances could be followed readily at room temperature.

The nitric oxide adduct or its solutions were readily converted to Nb(cp)₂O(CH₃) and for direct synthesis of the latter, the light petroleum precipitate above was warmed to 25 °C, dissolved in warm toluene, and the solution cooled to -30 °C to give the crystalline compound which was collected, washed with diethyl ether, and dried (*ca.* 80%). I.r.: 835 cm⁻¹ (Nb=O); ¹H n.m.r.: δ 0.88s (CH₃) and 5.94s (2 × C₅H₅).

Interaction of NO and Nb(cp)₂Me₂ in toluene at 25 °C gave a white precipitate of Nb(cp)₂(O)[ON(Me)NO] which was collected, washed with light petroleum and tetra-hydrofuran, and dried *in vacuo*. It was too insoluble to determine either the n.m.r. spectra or molecular weight and consequently, it may be polymeric with bridging ON(Me)NO groups. I.r.: 1 190 cm⁻¹, 1 255 cm⁻¹ (ONNO), and 865 cm⁻¹ (Nb=O).

Interaction of Styrene with η^2 -Nitrosomethane Intermediate.—A solution of Nb(cp)₂Me₂(NO), from Nb(cp)₂Me₂ (ca. 2 g) in toluene (40 cm³) at -70 °C, containing an excess (ca. 2 cm³) of freshly distilled styrene was allowed to warm

* Throughout this paper: 1 mmHg \approx 13.6 \times 9.8 Pa.

to 25 °C and was stirred for several hours. The solution was reduced to *ca*. 5 cm³, transferred to a silica column, and eluted with toluene-light petroleum, which removed styrene, and then with dichloromethane. The collected solvent was removed and 1-methyl-2-phenylaziridine ¹⁶ was distilled at 35 °C (0.3 mmHg). It was characterised by its mass spectrum 133 (calc. 133) and ¹H n.m.r. spectrum δ 1.5m, 1.7m, 2.1m (3 × C⁻H), 2.38s (1 × CH₃), and 7.2m (5 × Ph-H).

Interaction of Nitric Oxide with Tetrakis(trimethylsilylmethyl)vanadium(IV).—Through a solution of $V(CH_2-SiMe_3)_4$ ⁶ in light petroleum at -70 °C, was passed NO until the green solution became red. On warming to room titanium(IV).—As above, but from TiCl(CH₂CMe₃)₃ [made in situ by interacting TiCl₄ and Ti(CH₂CMe₃)₄ in diethyl ether] to give a yellow crystalline solid from diethyl ether. I.r.: 1 545 (NO) and 345 (Ti-Cl) cm⁻¹; ¹H n.m.r.: δ 1.02s (CH₃), 1.12s (2 × CH₃), 3.58s (2 × CH₂), and 3.72s (CH₂). Dichlorobis(N-neopentyl-N-nitrosohydroxylaminato)-

titanium(Iv).—As above but from TiCl₂(CH₂CMe₃)₂ [in situ from TiCl₄ and Ti(CH₂CMe₃)₄ in diethyl ether] to give a white crystalline solid from toluene-tetrahydrofuran (1 : 1). I.r.: 320 and 355 cm⁻¹ (Ti-Cl); ¹H n.m.r.: δ 0.88s (CH₃) and 350s (CH₂).

Tetrakis(N-nitroso-N-trimethylsilylmethylhydroxylaminato)zirconium(1v).—From $Zr(CH_2SiMe_3)_4$ ¹⁸ in light

	Anal	ytical data	of new comp	ounds		
		Determ	Analysis (%) •			
Compound	Colour	$(\theta_{c}/^{\circ}C)$	c	H	Ň	M ª
$Ti[ON(CH_2SiMe_3)NO]_4$	Orange	40	29.7 (30.2)	6.8 (6.9)	17.6 (17.6)	605 ° (636)
$TiCl_2[ON(CH_3SiMe_3)NO]_2$	White	130	22.3 (23.2)	4.6 (5.3)	12.7 (13.6)	()
$TiCl[ON(CH_2CMe_3)]_3$	Yellow	60	38.0 (37.8)	6.8 (6.9)	16.8 (17.6)	455 ^b (476)
$TiCl_2[ON(CH_2CMe_3)NO]_2$	White	130	30.6 (31.5)	6.8 (5.8)	12.8	381 4
${\rm Ti}_{s}({\rm cp})_{s}{\rm O}_{4}({ m NO})$	Orange	180	46.0 (43.6)	4.1 (3.6)	(14.7) 4.0 ^d (3.4)	420^{b}
Zr[ONCH ₂ SiMe ₃ NO] ₄	White	120	28.5	6.1	(3. 4) 16.1 (16.5)	765 ^b
$ZrCl_2[ON(CH_2SiMe_3)NO]_2$	White	140	20.5	4.6	(10.0) 12.2 (12.2)	(079)
$Zr[ON(CH_2CMe_3)NO]_4$	White	180	(21.1) 39.0 (20.0)	$(\frac{4.8}{7.2})$	(12.3) 18.0 (18.9)	580 b
Nb(cp) ₂ (O)Me	White	140	(39.0) 51.0 (59.0)	(7.2) 5.1 (5.1)	(18.2)	270 ×
$Nb(cp)_2(O)[ON(Me)NO]$	White	160	(52.0) 41.2 (41.7)	(5.1) 3.6 (4.1)	(U) 8.9 (8.0)	(204)
NbMe ₂ [ON(Me)NO] ₃	Yellow	150	(41.7) 17.1	(4.1)	(8.9) 22.1	380 -
${TaMe_{3}[ON(Me)NO]_{3}}_{2}$	White	70	(17.2) 15.0 (15.9)	(4.3) 3.3 (5.0)	(24.1) 13.0 (15.0)	(348) 700 ¢ (750)
lculated values are given i	n parentheses.	^b Osmomet	rically. Mas	s spectrum.	^d Direct oxygen	analysis 1

^a Calculated values are given in parentheses. ^b Osmometrically. ^c Mass spectrum. ^d Direct oxygen analysis 18.9 (19.4). ^c Cryoscopically.

temperature, the solution became yellow and deposited yellow needles of $VO(CH_2SiMe_3)_3$,⁶ essentially quantitatively; although $(Me_3SiCH_2)_2N_2$ is presumably formed, we have not isolated this material.

Interaction of Nitric Oxide with $Bis(\eta^5$ -cyclopentadienyl)phenyl- and -benzyl-titanium(III).—The compounds ¹⁷ in diethyl ether reacted with NO to form an orange precipitate which was collected, washed with diethyl ether, and recrystallised from dichloromethane. The product in both cases is $Ti_3(\eta^5-C_5H_5)_3O_4(NO)$. I.r.: 1 550 cm⁻¹ (NO); ²H n.m.r.: δ 6.30s (2 × C₅H₅) and 6.37s (C₅H₅).

Tetrakis (N-nitroso-N-trimethylsilylmethylhydroxylaminato)titanium(IV).—In light petroleum at 0 °C, Ti(CH₂-SiMe₃)₄¹⁸ reacted with NO to give a yellow-orange solution. Removal of solvent and crystallisation from diethyl ether gave an orange solid. I.r.: 1 550 cm⁻¹ (NO); ¹H n.m.r.: δ 0.06, 0.14s (CH₃), 3.47, and 3.76s (CH₂).

Dichlorobis (N-nitroso-N-trimethylsilylmethylhydroxylaminato)titanium (IV).—In light petroleum NO and TiCl₂-(CH₂SiMe₃)₂ [made *in situ* by interacting TiCl₄ and Ti-(CH₂SiMe₃)₄ in diethyl ether] reacted to give a white

 $(CH_2SiMe_3)_4$ in diethyl ether] reacted to give a white precipitate which was recrystallised from toluene-tetrahydrofuran (1:1). I.r.: 320 and 350 cm⁻¹ (Ti-Cl); ¹H n.m.r.: δ 0.90s (CH₃) and 3.27s (CH₂).

Chlorotris (N-neopentyl-N-nitrosohydroxylaminato)-

petroleum a white solid recrystallised from toluene. ¹H n.m.r.: δ 0.11s (CH₃) and 3.52s (CH₂).

Dichlorobis (N-nitroso-N-trimethylsilylmethylhydroxyl-

aminato)zirconium(IV).—From $\operatorname{ZrCl}_2(\operatorname{CH}_2\operatorname{SiMe}_3)_2$ [made in situ by stoicheiometric interaction of ZrCl_4 and $\operatorname{Zr}(\operatorname{CH}_2$ -SiMe₃)₄] in light petroleum recrystallised from toluene-tetrahydrofuran (1:1). I.r.: 330 and 350 cm⁻¹ (Zr⁻Cl); ¹H n.m.r.: δ 0.04s (CH₃) and 3.24s (CH₂).

Tetrakis(N-neopentyl-N-nitrosohydroxylaminato)zir-

conium(IV).—From $Zr(CH_2CMe_3)_4^{18}$ in light petroleum a white precipitate crystallised from toluene. ¹H n.m.r.: δ 0.98 (CH₃) and 3.55s (CH₂).

Dimethyltris (N-methyl-N-nitrosohydroxylaminato)niobium(v).—Interaction of NO and NbMe₅¹⁹ in light petroleum at -70 °C gave a yellow precipitate which was collected, extracted with toluene at 25 °C, and the solution cooled to -30 °C to give orange-yellow crystals. ¹H n.m.r.: δ 0.63s (Nb-CH₃) and 3.2s (N-CH₃).

Trimethylbis(N-methyl-N-hydroxylaminato)tantalum(v). As above, but using TaMe₅¹⁹ to give colourless crystals. ¹H n.m.r.: δ 1.78s (Ta-CH₃), 3.24s, and 4.18s (N-CH₃).

We thank the Science Research Council for a Studentship (to A. R. M.).

[0/259 Received, 13th February, 1980]

REFERENCES

¹ (a) P. C. Wailes, H. Weigold, and A. P. Bell, J. Organo-metallic Chem., 1972, **34**, 135; (b) R. J. H. Clark, J. A. Stockwell, and J. D. Wilkins, J.C.S. Dalton, 1976, 120. ² A. J. Shortland and G. Wilkinson, J.C.S. Dalton, 1973, 327;

- S. R. Fletcher, A. J. Shortland, A. C. Skapski, and G. Wilkinson,
- J.C.S. Chem. Comm., 1972, 422. * P. G. Edwards, K. Mertis, G. Wilkinson, M. B. Hursthouse, and K. M. A. Malik, J.C.S. Dalton, 1980, 334.
- ⁴ J. D. Wilkins and M. G. B. Drew, J. Organometallic Chem., 1974, **69**, 111.

- ⁵ K. Mertis and G. Wilkinson, J.C.S. Dalton, 1976, 1488.
 ⁶ W. Mowat, A. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky, and G. Wilkinson, J.C.S. Dalton, 1972, 533.
 ⁷ L. S. Liebeskind, K. B. Sharpless, R. D. Wilson, and J. A.
- Ibers, J. Amer. Chem. Soc., 1978, 100, 7061.
- ⁸ D. A. Muccigrossc, S. E. Jacobsen, P. A. Apgar, and F. Mares, J. Amer. Chem. Soc., 1978, **100**, 7063.
- * (a) K. Wieghardt and W. Holzbach, Angew. Chem. Internat.

- Edn., 1979, 18, 549; (b) K. Wieghardt, W. Holzbach, J. Weiss, B. Nubar, and B. Prinker, ibid., 1979, 19, 548.
 - ¹⁰ H. F. Klein and H. H. Karsch, Chem. Ber., 1976, 109, 1453.

 - ¹⁰ H. F. Klein and H. H. Karsch, Chem. Ber., 1976, 109, 1453.
 ¹¹ I. H. Elson, J. K. Kochi, U. Klabunde, L. E. Manzer, G. W. Parshall, and R. N. Tebbe, J. Amer. Chem. Soc., 1974, 96, 7374.
 ¹² F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4th edn., Wiley, New York, 1980.
 ¹³ Z. Prasil and W. Forst, J. Amer. Chem. Soc., 1968, 99, 3344;
 L. J. Steif and P. Ansloos, J. Phys. Chem., 1961, 65, 877.
 ¹⁴ V. Minoura, M. Takebayashi, and C. C. Price, J. Amer. Chem. Soc. 1959 81 4689.

 - Soc., 1959, 81, 4689.
 ¹⁶ J. C. Huffman, J. G. Stone, W. C. Krusell, and K. G.
 Caulton, J. Amer. Chem. Soc., 1977, 99, 5829.
 ¹⁶ J. N. Wells, A. V. Shirookar, and A. M. Knevel, J. Medicin.
 - Chem., 1966, 9, 195.
 - J. H. Teuben, J. Organometallic Chem., 1973, 57, 159.
 M. R. Collier, M. F. Lappert, and R. Pearce, J.C.S. Dalton,
 - 1973, 445.
 - ¹⁹ R. R. Schrock, J. Organometallic Chem., 1976, 122, 209.