# Stereochemistry of [M(bidentate ligand)<sub>2</sub>(unidentate ligand)]. Crystal Structure of lodobis(pyrrolidinyldithiocarbamato)iron(m)-lodine (2/1)

By David L. Kepert, Colin L. Raston, and Allan H. White,\* Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, 6009, Western Australia

Dimitris Petridis, Nuclear Research Centre ' Demokritos,' Athens, Greece

The crystal structure of a complex analysing as  $FeL_2I_2$ , L = pyrrolidinyldithiocarbamate, has been determined at 295(1) K by X-ray diffraction and refined to a residual of 0.046 for 1 422 ' observed ' reflections. Crystals are monoclinic,  $P2_1/c$ , a = 6.735(4), b = 18.28(2), c = 15.11(1) Å,  $\beta = 96.71(5)^\circ$ , and Z = 4. The substance has been shown to be a molecular complex,  $[Fel\{S_2CN(CH_2)_4\}_2] \cdot 0.5I_2$ , the iodine molecule being located on a crystal-lographic centre of symmetry. The bond lengths are as expected [Fe-I 2.652(3), Fe-S 2.271(4) - 2.305(5) Å]; for the iodine molecule, I-I is 2.779(3) Å. The latter has a contact at 3.516(3) Å to the complexed iodine atom. The stereochemistry of the five-co-ordinate complex is a square pyramid with the iodine atom in the apical site, distorted towards a square pyramid with the iodine atom in a basal site. This distortion is discussed in terms of repulsion theory.

**REACTION** of complexes of the type  $[FeI(S_2CNR_2)]$  with iodine has been reported to yield products of the type  $[FeI_2(S_2CNR_2)_2]$ ;<sup>1</sup> the nature of these compounds remains somewhat uncertain although it has been suggested that they may be adducts of the type  $[FeI-(S_2CNR_2)_2]\cdot 0.5I_2$ . If so, it is interesting that this formulation persists through complexes with a wide range of ligand substituents. In order to determine unambiguously the nature of these complexes, we have determined the crystal structure of one of them containing the pyrrolidinyldithiocarbamate ligand; the preparation followed that reported previously.<sup>1</sup>

## EXPERIMENTAL

Crystal Data.— $C_{10}H_{16}FeI_2N_2S_4$ , M = 602.2, Monoclinic, space group  $P2_1/c$  ( $C_{2h}^5$ , no. 14), a = 6.735(4), b = 18.28(2), c = 15.11(1) Å,  $\beta = 96.71(5)^\circ$ , U = 1.847(2) Å<sup>3</sup>,  $D_m = 2.14(1)$ , Z = 4,  $D_c = 2.16_5$  g cm<sup>-3</sup>, F(000) = 1.144, specimen size  $0.10 \times 0.06 \times 0.22$  mm, monochromatic Mo- $K_{\alpha}$  radiation ( $\lambda = 0.710$  6g Å),  $\mu = 43.4$  cm<sup>-1</sup>, T = 295(1) K.

Structure Determination.—A unique data set to  $2\theta_{\max} = 50^{\circ}$  (terminated during h = 5 due to machine failure) was measured on a Syntex PI four-circle diffractometer, in the conventional  $\theta$ —2 $\theta$  scan mode, yielding 2 661 independent reflections, 1 422 of which with  $I > 3\sigma(I)$  being considered 'observed ' and used in the least-squares refinement after absorption correction and solution of the structure by direct methods. The parameters of FeI<sub>2</sub>S<sub>4</sub> were refined jointly in a single block; other non-hydrogen atoms were refined as  $9 \times 9$  blocks with anisotropic thermal motion.



Hydrogen-atom parameters were constrained estimates,  $U_{\rm H}$  (isotropic) being set at  $\langle 1.25 \ U_{\rm ii}$  (parent C) $\rangle$ . The values of the residuals( R and R') were 0.046 and 0.047 respectively with reflection weights  $[\sigma^2(F_{\rm o}) + 0.000 \ 3 - (F_{\rm o})^2]^{-1}$ . Scattering factors for the neutral atoms were

 $\dagger$  For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

employed, those of the non-hydrogen atoms being corrected for anomalous dispersion (f', f'').<sup>2-4</sup> Computations were carried out using the 'X-RAY '76' program system <sup>5</sup> on a CYBER 76 computer. Structure factor amplitudes, thermal parameters, and hydrogen-atom parameters are

#### Table 1

Non-hydrogen-atom fractional cell co-ordinates with estimated standard deviations in parentheses

| x a             | y/b                                                                                                                                                                                                                                                                                                                                                   | <i>z c</i>                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.169 0(2)      | $0.222 \ 8(1)$                                                                                                                                                                                                                                                                                                                                        | 0.173 4(1)                                           |
| $0.042\ 5(2)$   | $0.062\ 5(1)$                                                                                                                                                                                                                                                                                                                                         | $0.050 \ 9(1)$                                       |
| $-0.015\ 2(3)$  | 0.3200(1)                                                                                                                                                                                                                                                                                                                                             | $0.062\ 3(1)$                                        |
| -0.3311(6)      | $0.271\ 5(2)$                                                                                                                                                                                                                                                                                                                                         | $0.046\ 2(3)$                                        |
| -0.0320(6)      | $0.262 \ 4(2)$                                                                                                                                                                                                                                                                                                                                        | -0.0715(2)                                           |
| -0.0777(6)      | $0.420\ 9(2)$                                                                                                                                                                                                                                                                                                                                         | 0.146 4(2)                                           |
| $0.225 \ 4(6)$  | $0.401\ 1(2)$                                                                                                                                                                                                                                                                                                                                         | 0.031 8(2)                                           |
| -0.2581(19)     | 0.2311(7)                                                                                                                                                                                                                                                                                                                                             | -0.0494(9)                                           |
| $-0.367\ 5(16)$ | $0.182 \ 9(6)$                                                                                                                                                                                                                                                                                                                                        | -0.0965(7)                                           |
| $-0.556\ 6(24)$ | 0.1531(10)                                                                                                                                                                                                                                                                                                                                            | -0.0754(11)                                          |
| -0.6119(29)     | $0.098 \ 0(13)$                                                                                                                                                                                                                                                                                                                                       | -0.1403(14)                                          |
| -0.475 4(26)    | $0.098 \ 8(11)$                                                                                                                                                                                                                                                                                                                                       | -0.2071(13)                                          |
| -0.303 9(24)    | 0.150 7(9)                                                                                                                                                                                                                                                                                                                                            | -0.1784(9)                                           |
| 0.137 1(19)     | 0.457~6(6)                                                                                                                                                                                                                                                                                                                                            | $0.110\ 5(8)$                                        |
| $0.221 \ 3(16)$ | $0.516 \ 8(5)$                                                                                                                                                                                                                                                                                                                                        | $0.139\ 7(7)$                                        |
| $0.151 \ 6(24)$ | $0.562 \ 9(8)$                                                                                                                                                                                                                                                                                                                                        | $0.209\ 5(9)$                                        |
| $0.341\ 5(23)$  | 0.605 0(8)                                                                                                                                                                                                                                                                                                                                            | 0.2449(9)                                            |
| $0.475 \ 0(26)$ | $0.605\ 7(10)$                                                                                                                                                                                                                                                                                                                                        | 0.174 0(11)                                          |
| $0.404 \ 0(21)$ | $0.546\ 1(7)$                                                                                                                                                                                                                                                                                                                                         | 0.1086(9)                                            |
|                 | $\begin{array}{r} x/a \\ 0.169\ 0(2) \\ 0.042\ 5(2) \\ -0.015\ 2(3) \\ -0.331\ 1(6) \\ -0.032\ 0(6) \\ -0.077\ 7(6) \\ 0.225\ 4(6) \\ -0.258\ 1(19) \\ -0.367\ 5(16) \\ -0.556\ 6(24) \\ -0.611\ 9(29) \\ -0.475\ 4(26) \\ -0.303\ 9(24) \\ 0.137\ 1(19) \\ 0.221\ 3(16) \\ 0.151\ 6(24) \\ 0.341\ 5(23) \\ 0.475\ 0(26) \\ 0.404\ 0(21) \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

deposited as Supplementary Publication No. SUP 22795 (13 pp.).<sup>†</sup> Non-hydrogen-atom fractional cell co-ordinates are given in Table 1. Non-hydrogen-atom numbering with ligands n = 1 and 2 is as shown; hydrogen atoms are designated A,B for distinguishing purposes.

#### **RESULTS AND DISCUSSION**

The crystal-structure determination effectively confirms the stoicheiometry of the complex as being [FeI- $\{S_2CN(CH_2)_4\}_2$ ]·0.5I<sub>2</sub>. The unit-cell contents, shown in projection down *a* in Figure 1, contain [FeI $\{S_2CN(CH_2)_4\}_2$ ] and I<sub>2</sub> molecules; the latter is located about an inversion centre so that only one of the iodine atoms is independent. The two molecular species are not strictly 'discrete' as there appears to be an interaction between the iodine molecule and the iodine atom of the complex, presumably of a charge-transfer nature, the I · · · I distance being 3.516(3) Å. The I-I distance within the molecular iodine is considerably longer [2.779(3) Å] than in free iodine  $(2.66_7 \text{ Å}).^6$  The I-I  $\cdot \cdot \cdot I$  angle is 177.16(6)°, while the I • • • I-Fe angle is 99.12(8)°. The bond Fe-I [2.652(3) Å] may be somewhat longer than the less precisely determined value observed in [FeI(S<sub>2</sub>- $CNEt_{2}_{2}$  [2.59(1) Å].<sup>7</sup> The overall result is a loose 'dimeric' association of the type  $(R_2NCS_2)_2FeI\cdots$ I-I··· IFe $(S_2CNR_2)_2$ . Within the [FeI $\{S_2CN(CH_2)_4\}_2$ ] species the molecular

geometry (Table 2) is as expected. The bond lengths of

ligand 1, and its neighbouring protons, a result which is not surprising in view of the tendency of the dithio-



carbamate ligand to delocalize positive charge from the metal to the nitrogen. The lengths of  $I(2) \cdot \cdot \cdot S(1, 2)$ . C(1), N(1), and H(5A) are 4.569(5), 4.099(5), 3.89(1),



FIGURE 1 Unit-cell contents projected down a showing 20% thermal ellipsoids for the non-hydrogen atoms, together with atom labelling

Fe-S show a rather wide scatter  $[2.271(4)-2.305(5) \text{ \AA}]$ as is often the case in FeX(S<sub>2</sub>CNR<sub>2</sub>)<sub>2</sub> complexes, as is the variation in I-Fe-S angles [99.6(1)-106.8(1) Å]. In the present case, however, the scatter appears to originate in distortions of a less random nature than those previously observed and ascribed to 'packing forces'. The interaction between the molecular I<sub>2</sub> and the complexed iodine atom lies almost normal to the Fe-I bond and is directed outwards near the 'axis' of ligand 1. The I-Fe-S(1, 2) angles of ligand 1 [99.6(1), 102.9(1)°] are less than those of ligand 2  $[106.8(1), 105.8(1)^{\circ}]$ , indicative of a possible attractive interaction between the two independent iodine species against crystal packing forces and this is reflected in the associated I ••• S distances of 3.784(5), 3.857(5) Å (ligand 1), 3.986(5), 3.941(5) Å (ligand 2). The molecular iodine atom, moreover, is in reasonably close proximity to the conjugated section of 4.00(1), and 3.65 Å respectively, while the inversion related I(2) has distances of  $3.8_4$  and  $3.9_4$  Å to H(4A, 5A) respectively. The vibrational amplitudes of the carbon atoms of the pyrrolidine ring of ligand 1 are much larger than those of ligand 2 (Figure 1) and the ring more nearly planar (Table 3), suggesting that in reality the ring atoms of ligand 1 are disordered and that this disorder may be induced by the proximity of the iodine molecule, either as a consequence of I · · · H interactions and/or the inability of the ring to adopt its usual conformation because of obstruction by the iodine position. Ligand 2 is more normal in respect of conformation (Table 3).

As usual, the iron lies well out (0.55 Å) of the plane defined by the four sulphur atoms [deviations: S(11, 12, 21, 22, -0.04, 0.04, 0.04, -0.04 Å]; the inclinations of the ligand planes to this plane, however, are unusually

shallow (8.4, 8.0° respectively for 1,2) and the iron atom lies 0.31 Å out of the planes of both ligands. (The dihedral angle between the two ligand planes is  $16.3^{\circ}$ .) While the unusual disposition (in this respect) of ligand 1

#### TABLE 2

Molecular non-hydrogen geometry \*

| (a) Distanc        | es (Å)             |                      |                  |
|--------------------|--------------------|----------------------|------------------|
| FeI(1)             | 2.652(3)           | C(1)-N(1)            | 1.30(2), 1.28(2) |
| Fe-S(1)            | 2.292(5), 2.305(5) | N(1) - C(2)          | 1.45(2), 1.47(2) |
| FeS(2)             | 2.271(4), 2.282(5) | N(1) - C(5)          | 1.48(2), 1.47(2) |
| $S(1) \cdots S(2)$ | 2.843(6), 2.849(6) | C(2) - C(3)          | 1.42(3), 1.53(2) |
| S(1) - C(1)        | 1.74(1), 1.74(1)   | C(3) - C(4)          | 1.44(3), 1.48(2) |
| S(2) - C(1)        | 1.70(1), 1.73(1)   | C(4) - C(5)          | 1.52(2), 1.51(2) |
| (b) Angles         | (°)                |                      |                  |
|                    | I(1) - Fe - S(1)   | 99.6(1), 10          | 6.8(1)           |
|                    | I(1) - Fe - S(2)   | <b>102.9(1)</b> , 10 | 5.8(1)           |
|                    | S(1) - Fe - S(2)   | 77.1(2), 76          | <b>.8(2)</b>     |
|                    | S(1) - Fe - S(1)   | <b>98.1(2)</b>       |                  |
|                    | S(2) - Fe - S(2')  | 94.8(2)              |                  |
|                    | S(1) - Fe - S(2')  | 154.5(2), 15         | 60.3(2)          |
|                    | Fe-S(1)-C(1)       | 84.5(5), 85          | .7(4)            |
|                    | Fe-S(2)-C(1)       | 86.2(5), 86          | <b>6.6(4</b> )   |
|                    | S(1) - C(1) - S(2) | 111.5(7), 11         | 0.4(7)           |
|                    | S(1) - C(1) - N(1) | 122(1), 125          | (1)              |
|                    | S(2) - C(1) - N(1) | 126(1), 125          | (1)              |
|                    | C(1) - N(1) - C(2) | 126(1), 125(         | (1)              |
|                    | C(1) - N(1) - C(5) | 122(1), 124(         | (1)              |
|                    | C(2) - N(1) - C(5) | 112(1), 112(         | (1)              |
|                    | N(1)-C(2)-C(3)     | 106(1), 102(         | (1)              |
|                    | C(2) - C(3) - C(4) | 110(2), 108          | (1)              |
|                    | C(3) - C(4) - C(5) | 109(2), 107          | (1)              |
|                    | C(4) - C(5) - N(1) | 102(1), 106          | (1)              |

• Where two entries are given these are for ligands 1 and 2 respectively.

might be ascribed to interaction with the iodine molecule (see above), the reason for the disposition of ligand 2 is not so apparent. In fact (Table 4) although the diversity of the  $FeXS_4$  core parameters is large, it would seem that at least among the halogen substituents, the number of structures determined is now sufficient to discern a possible trend in deviations of the iron atom from the  $S_4$ 

### TABLE 3

Least-squares planes, defined by the  $S_2CNC_2$  fragments of the two dithiocarbamate ligands, in the form pX + qY + rZ = s, relative to the orthogonal right-hand angström frame (X, Y, Z) defined with X parallel to a and Z in the ac plane. Atom deviations,  $\delta$ , and  $\sigma$ (defining atoms) are given in Å

| -                 |          |          |
|-------------------|----------|----------|
|                   | Ligand 1 | Ligand 2 |
| 10 <sup>4</sup> ¢ | -4034    | 4 761    |
| 10 <sup>4</sup> q | 7 317    | -5126    |
| 104r              | -5495    | 7 146    |
| S                 | 4.161    | -2.741   |
| σ                 | 0.02     | 0.02     |
| δS(1)             | 0.02     | -0.01    |
| δS(2)             | -0.03    | 0.02     |
| δC(1)             | 0.00     | -0.02    |
| δN(1)             | 0.01     | -0.01    |
| δC(2)             | -0.03    | 0.02     |
| δC(3)             | -0.13    | 0.59     |
| δC(4)             | 0.01     | 0.31     |
| 8C(5)             | 0.02     | -0.01    |
| δFe               | 0.31     | 0.31     |

plane [greatest for Cl (ca. 0.65 Å), least for I (ca. 0.55 Å)], accompanied by a parallel diminution in the dihedral angle between the two ligand planes.

Calculations based on the minimisation of the total

repulsion energy have previously been reported <sup>8</sup> for complexes of the type  $[M(bidentate)_2(unidentate)]$ . These calculations showed that for small values of the normalized bite (b < 1.2) a single minimum on the potential-energy surface corresponds to the square pyramid (or more correctly, the rectangular pyramid). As the normalized bite is progressively increased, the minimum becomes shallower and then symmetrically splits into two minima corresponding to the two equivalent irregular trigonal bipyramids. These two minima progressively deepen and move further apart as the normalized bite is further increased.

A number of effects can be predicted as the value of the

## TABLE 4

Interplanar angles (°) and atom deviations (Å) observed in a variety of  $FeX(S_2CNR_2)_2$  structure determinations



<sup>6</sup> The data given for [FeCl(S<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] are based on a recent diffractometer data redetermination of that structure, confirming the essential details of the original determination [B. F. Hoskins and A. H. White, *J. Chem. Soc.* (A), 1970, 1668]. <sup>6</sup> S. Mitra, B. N. Figgis, C. L. Raston, B. W. Skelton, and A. H. White, *J.C.S. Dalton*, 1979, 753. <sup>e</sup>G. E. Chapps, S. W. McCann, H. H. Wickman, and R. C. Sherwood, *J. Chem. Phys.*, 1974, **60**, 990. <sup>d</sup> Ref. 7. <sup>e</sup> This work. <sup>f</sup>C. L. Raston, W. E. Sly, and A. H. White, *Austral. J. Chem.*, 1980, **33**, 221. <sup>e</sup>G. R. Davies, J. A. J. Jarvis, B. T. Kilbourn, R. H. B. Mais, and P. G. Ouston, *J. Chem. Soc.* (A), 1970, 1275.

effective bond-length ratio R(unidentate/bidentate) is varied, which is defined as the distance between the central atom and the effective centre of repulsion of the metal-unidentate ligand bond, divided by the distance between the central atom and the effective centre of repulsion of the metal-bidentate ligand bond. The break from the rectangular pyramid to the trigonal bipyramid occurs at higher values of b as R(unidentate/bidentate) is decreased from 1.0 to 0.6, but this behaviour is reversed at still lower values of R(unidentate/bidentate). The variation of the unidentate-M-bidentate bond angles with b and R(unidentate/bidentate) is shown in Figure 2. The stabilisation of the square pyramid relative to the trigonal bipyramid for R(unidentate/bidentate) <1.0 is similar to the behaviour observed for [M(unidentate A)<sub>4</sub>(unidentate B)].<sup>9</sup>

The general stereochemistry for  $[M(bidentate)_2(unidentate)]$ , with no assumed symmetry, is shown in Figure 3. The axes are chosen so that  $\phi_A = \phi_B = \phi_C$  and  $\theta_B = 180^{\circ}$ , and the structure is completely defined by  $\phi_A$ ,



FIGURE 2 Unidentate—M—bidentate bond angles, in degrees, for [M(bidentate)<sub>2</sub>(unidentate)] as a function of normalized bite b and effective bond-length ratio R(unidentate/bidentate), n = 6 (ref. 8).

 $\theta_A$ ,  $\theta_C$ ,  $\phi_D$ , and  $\phi_E$ , the remaining variables  $\theta_D$  and  $\theta_E$  being calculated from the normalized bite.

A typical potential-energy surface, projected onto the  $\phi_D - \phi_E$  plane, is shown in Figure 4. The potentialenergy surface is symmetrical across the lines  $\phi_D = \phi_E$ , and  $\phi_E = 180^\circ$ . The blank area centred on  $\phi_D = 0$ ,



FIGURE 3 General stereochemistry for [M(bidentate)<sub>2</sub>-(unidentate)] with no assumed symmetry

 $\phi_{\rm E} = 180^{\circ}$ , is because the bidentate ligands cannot span from E to A and from D to C while maintaining  $\phi_{\rm A} = \phi_{\rm C}$ .

The stereochemistries corresponding to the points marked I, II, and III on Figure 4 are shown in Figure 5. The minimum at I at  $\phi_D = 180^\circ - \phi_E = 20.3^\circ$  and  $\phi_A =$ 

90° is the same as that found previously.<sup>8</sup> Movement along the line  $\phi_D = 180^\circ - \phi_E$  in Figure 4 maintains  $\phi_A = 90^\circ$  and the two-fold axis through B, and corresponds to movement along the trough in the potentialenergy surface reported previously.<sup>8</sup> However the potential-energy surface in Figure 4 also shows that distortions with loss of the two-fold axis are possible, in the direction towards the distorted square pyramid at II. This distorted square pyramid at II can form the symmetrical square pyramid either at I or at III by interchanging the A and E labels on the bidentate AE.

This change from the symmetrical square pyramid at I to the unsymmetrical square pyramid at II can alternatively be conveniently pictured as rotation of one of the bidentate ligands above the triangular plane formed by



FIGURE 4 Projection of the potential-energy surface for  $[M(bidentate)_{a}(unidentate)]$  onto the  $\phi_{D}-\phi_{E}$  plane (in degrees). The five faint contour lines are for successive 0.01 increments above the minima, and the five heavy contour lines are for successive 0.1 increments above the minima, b = 1.2, n = 6

the unidentate ligand and the other bidentate ligand (Figure 6).

The unsymmetrical square pyramid at II with the unidentate ligand in a basal site becomes increasingly possible as the metal-unidentate ligand effective bond length is increased relative to the metal-bidentate ligand effective bond length. Potential-energy surfaces for R(unidentate/bidentate) = 1.2 and 1.4 are shown in Figures 7 and 8 respectively. That is, under conditions of one extended bond and four contracted bonds, this unsymmetrical square pyramid, or some intermediate structure, may be expected.

Compounds of the type  $[M(bidentate)_2(unidentate)]$ containing symmetrical bidentate ligands are listed in Table 5. The four unidentate-metal-bidentate bond angles are listed, the lowest value being defined as BMA. The first group of compounds are those of phosphorus(v) and arsenic(v). All have a reasonable twofold axis, that is  $BMA \sim BMC$  and  $BME \sim BMD$ , and the stereochemistries range from near square pyramidal (BMA = BMC = BME = BMD) to near trigonal bipyramidal  $(BMA = BMC = 90^{\circ}, BME = BMD = 120^{\circ}).$ 

The experimental bond angles can be fitted against bond angles calculated as a function of the effective



FIGURE 5 Stereochemistries corresponding to points marked on Figure 4



FIGURE 6 Alternative view of stereochemistries corresponding to points marked on Figure 4



FIGURE 7 Projection of the potential-energy surface for  $[M(bidentate)_{a}(unidentate)]$  onto the  $\phi_{D}-\phi_{E}$  plane (in degrees). The five faint contour lines are for successive 0.01 increments above the minima, and the five heavy contour lines are for successive 0.1 increments above the minima, R = 1.2, b = 1.2, n = 6

bond length of the unidentate ligands relative to the bidentate ligands, Figure 2, to yield R(unidentate/bidentate) = 1.0 for  $P(O_2C_6H_4)_2F$ , and  $R(\text{unidentate/bidentate}) \sim 0.8$  for all other complexes. This difference between fluoro and alkyl derivatives is typical for non-metals bonded to these ligands.<sup>10</sup>

The next five compounds in Table 5 are transitionmetal complexes containing oxide or nitride as the unidentate ligand. All are close to square-pyramidal



FIGURE 8 Projection of the potential-energy surface for  $[M(\text{bidentate})_2(\text{unidentate})]$  onto the  $\phi_D - \phi_E$  plane (in degrees). The five faint contour lines are for successive 0.01 increments above the minima, and the five heavy contour lines are for successive 0.1 increments above the minima, R = 1.4, b = 1.2, n = 6

stereochemistry as expected for  $O^{2-}$  and  $N^{3-}$  with small metal-ligand effective bond-length ratios, and the experimental bond angles can be fitted to calculations based on R(unidentate/bidentate) = 0.8 (Figure 2).

| Stereochemical paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers for [M | (bidentate) <sub>2</sub> (u | nidentate)] co | mplexes      |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|----------------|--------------|---------|
| Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ь          | BMA/°                       | BME/°          | BMC/°        | BMD/    |
| $P(O_{\bullet}C_{\bullet}H_{\bullet})_{\bullet}F^{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.43       | 95.8                        | 106.6          | 96.0         | 107.3   |
| P(O.C.H.).Cl »                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.42       | 98.8                        | 105.3          | 98.3         | 105.0   |
| P(O.C.H.).Ph <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.42       | 99.9                        | 106.1          | 100.0        | 108.7   |
| $P(O_{\bullet}C_{\bullet}H_{\bullet})$ . Me <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.42       | 101.0                       | 106.2          | 102.1        | 105.6   |
| - (-2-64/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.41       | 101.4                       | 105.9          | 102.3        | 106.4   |
| $P(O_{a}C_{a}H_{a})_{a}(CMe_{a})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.40       | 102 5                       | 106.4          | 102.5        | 106.6   |
| $As(O_{\bullet}C_{\bullet}H_{\bullet}) Me I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 40       | 100.2                       | 108.6          | 101 1        | 108.3   |
| As(OCMe_CMe_O), Ph #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 39       | 94.5                        | 1174           | 95.7         | 118.0   |
| As(OCH, CH, O), (OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00       | 94.0                        | 109.1          | 00.1<br>00.1 | 110.0   |
| $P(S C H) M_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.10       | 101.0                       | 108.3          | <b>33. 1</b> | 110.5   |
| $V(M_{e}C)CHC(M_{e}) \cap I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 28       | 101.0                       | 108.5          | 105.6        | 108.4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00       | 104.0                       | 110.2          | 105.0        | 1100.4  |
| $[V(S CNEt) \cap ]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00       | 107.5                       | 112.0          | 107.5        | 112.8   |
| $[M_0/S CNP_{\pi}] \cap I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.21       | 107.4                       | 100.3          | 107.4        | 110.2   |
| $[\mathbf{M}_{0}(\mathbf{S}_{2} \cup \mathbf{M}_{1}; \mathbf{s}_{2})]^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.10       | 100.0                       | 109.0          | 111.7        | 110.3   |
| $\left[ \mathbf{Re}(\mathbf{S}_{2} \cup \mathbf{Re}(\mathbf{s}_{2})) \right] = \left[ \mathbf{Re}(\mathbf{R}) \right] = \left[ \mathbf{Re}(\mathbf$ | 1.19       | 100.8                       | 107.1          | 107.9        | 109.1   |
| $[Fe{S_2C_2(CF_3)_2}_2(ASPn_3)] = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.41       | 92.3                        | 101.0          | 98.2         | 93.5    |
| $[Fe(S_2C_2Pn_2)_{2}\{P(OMe)_{3}\}]^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.40       | 90.3                        | 103.7          | 106.9        | 95.2    |
| [Fe(MeCOCHCOMe) <sub>g</sub> CI] <sup>p</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ca. 105                     | ca. 105        | ca. 105      | ca. 105 |
| $[Fe{C_6H_4(AsMe_8)_2}_{9}(NO)][ClO_4]_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.34       | 95.9                        | 98.8           | 99.1         | 97.1    |
| $[Fe(S_2CNEt_2)_2Cl]^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.24       | 105.1                       | 105.5          | 106.7        | 105.4   |
| $[Fe(S_2CNEt_2)_2Br]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.23       | 104.7                       | 105.5          | 105.7        | 106.0   |
| $[Fe(S_2CNEt_8)_2I]'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.23       | 99.4                        | 107.8          | 103.1        | 109.9   |
| $[Fe{S_2CN(CH_{g})_4}_{g}] \cdot 0.5I_{g} *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.24       | 99.6                        | 102.9          | 105.8        | 106.8   |
| [Fe(S <sub>2</sub> CNPr <sub>2</sub> ) <sub>2</sub> Cl]·CHCl <sub>3</sub> <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.23       | 104.2                       | 104.6          | 109.5        | 107.7   |
| $[Fe(S_2CNEt_3)_2(NCS)] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.24       | 102.7                       | 103.1          | 105.5        | 107.0   |
| $[Fe(S_2CNMe_2)_2(NO)]$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.23       | 103.1                       | 104.3          | 108.3        | 107.5   |
| $[Fe(S_2CNEt_2)_2(NO)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.23       | ca. 106                     | ca. 106        | ca. 106      | ca. 106 |
| $[Co{C_{e}H_{4}(AsMe_{2}),}(NO)][ClO_{4}], $ <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.36       | 90.3                        | 135.5          | 92.1         | 125.2   |
| [Co(Ph,PCH,CH,PPh,),Cl][SnCl,] "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.32       | 90.0                        | 95.8           | 94.5         | 94.0    |
| [Co(Ph.PCH.CH.PPh.).Cl][SnCl.].PhCl "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30       | 91.7                        | 128.1          | 92.1         | 126.1   |
| Co{NH(CH,CH,CH,),NH},CI]CI EtOH bb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                             |                |              |         |
| [Co(S.CNMe.).(NO)] ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.24       | 102.2                       | 103.6          | 103.5        | 103.5   |
| $[Ni(S_PEt_a), (NC_sH_a)]^{44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.32       | 99.7                        | 100.7          | 98.9         | 110.3   |
| Cu(NH.CH.CH.CH.NH.).(NCS)][ClO.] "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42       | 89.5                        | 116.8          | 90.2         | 109.0   |
| $[Cu(bipv)_{\circ}(NO_{\circ})][NO_{\circ}] \cdot H_{\circ}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.31       | 85.4                        | 91.9           | 85.9         | 127 7   |
| $[Cu(bipv)_1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.31       | 89                          | 122            | 92           | 124     |
| [Cu(bipy)-Cl]Cl·6H_O **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.28       | 90.9                        | 118.6          | 90.9         | 1187    |
| $[Cu(bipy), (NH_{-})]$ (BF.], #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 28       | 91.6                        | 122.3          | 92.7         | 129.5   |
| $[Cu(bipy)_{s}(NH_{s})_{s}][C(0,1, #)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20       | 92.3                        | 124.4          | 93.4         | 120.0   |
| $[C_{11}(C H N) NH \}$ [][[C]O]] #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20       | 87.3                        | 194.7          | 87.8         | 195 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.36       | 88.0                        | 137.0          | 99.4         | 110.9   |
| (Cu(phen) (OH ))[NO ] #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 33       | 85.5                        | 110.0          | 95.5         | 119.0   |
| $[Cu(phen)_{2}(OH_{2})][PC_{3}]_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00       | 96.4                        | 110.0          | 80.0<br>96.4 | 110.0   |
| $[Cu(phen)_{\mathbf{g}}(OH_{\mathbf{g}})][DH_{\mathbf{d}}]_{\mathbf{g}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.34       | 00.4                        | 111.7          | 00.4         | 111.7   |
| $[Cu(phen)_{s}]_{1} S_{s} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.29       | 94.3                        | 120.0          | 92.3         | 120.3   |
| $[Cu(pnen)_{s}(CN)][NO_{s}] \cdot H_{s}O \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.29       | 91.8                        | 129.0          | 93.9         | 132.4   |
| [Zn(MeCOCHCOMe) <sub>2</sub> (OH <sub>2</sub> )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.39       | 97.5                        | 104.9          | 100.3        | 104.9   |
| $[2n(S_2 CNEt_2)_2(C_5H_5N)] \cdot 0.5C_6H_6 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19       | 93.9                        | 116.8          | 95.9         | 116.1   |
| $[2n(S_2 \cup UEt)_2(U_{\delta}H_{\delta}N)]^{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.17       | 103.8                       | 115.4          | 103.8        | 115.4   |
| $[Mo(Ph_{2}PCH_{2}CH_{2}PPh_{2})_{2}(CO)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.28       | 90.4                        | 92.1           | 95.0         | 95.0    |
| $[Ru(Pn_{g}PCH_{g}CH_{g}PPh_{g})_{g}(NO)][BPh_{4}] \cdot Me_{g}CO"$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30       | 90.1                        | 126.1          | 93.1         | 134.5   |
| [Ir(Ph <sub>2</sub> PCH <sub>2</sub> CH <sub>2</sub> PPh <sub>2</sub> ) <sub>2</sub> (CNMe)][ClO <sub>4</sub> ] **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.34       | 87.2                        | 106.9          | 89.3         | 132.7   |
| [Ir(Ph <sub>2</sub> PCH <sub>2</sub> CH <sub>2</sub> PPh <sub>3</sub> ) <sub>3</sub> (CO)]Cl **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.33       | 91                          | 109            | 91           | 143     |
| [NEt.][Cd(S.COEt)[Cd(S.COEt)_] **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.09       | 111.8                       | 111.9          | 1191         | 1127    |

 TABLE 5

 Stereochemical parameters for [M(bidentate)<sub>2</sub>(unidentate)] complexes

[NEt, j][Cd[\$\_COEt)]\_Cd[\$\_COEt)\_] \*\*\* 1.09 111.8 111.9 119.1 112.7 \*H. Wunderlich and D. Mootz, Acta Cryst., 1974, B30, 935. \*R. K. Brown and R. R. Holmes, Inorg. Chem., 1977, 16, 2294. \*R. K. Brown and R. R. Holmes, J. Amer. Chem. Soc., 1977, B9, 3326; H. Wunderlich, Acta Cryst., 1978, B34, 342. \*H. Wunderlich, Acta Cryst., 1974, B30, 939. \*H. Wunderlich, Acta Cryst., 1978, B34, 2015. 'H. Wunderlich, Acta Cryst., 1978, B34, 342. \*H. Wunderlich, Acta Cryst., 1974, B30, 939. \*H. Wunderlich, Acta Cryst., 1975, B34, 2015. 'H. Wunderlich, Acta Cryst., 1978, B34, 342. \*H. Wunderlich, Acta Cryst., 1974, B30, 939. \*H. Wunderlich, Acta Cryst., 1975, B34, 2015. 'H. Wunderlich, Acta Cryst., 1978, B34, 342. \*H. Wunderlich, Acta Cryst., 1978, B34, 2015. 'H. Wunderlich, Acta Cryst., 1978, B34, 342. \*H. Wunderlich, Acta Cryst., 1978, B34, 2015. 'E. Chem. Comm., 1973, 144. 'R. P. Dodge, D. H. Templeton, and A. Zalkin, J. Chem. Phys., 1961, 35, 55; P. K. Hon, R. L. Belford, and C. E. Pfluger, *ibid.*, 1965, 43, 3111. 'F. L. Phillips and A. C. Skapski, *J.C.S. Dalton*, 1975, B31, 1814. \*K. Henrick, C. L. Raston, and A. H. White, *J.C.S. Dalton*, 1974, 25, 145. \*H. Miyamae, S. Sato, Y. Saito, K. Sakai, and M. Fukuyama, Acta Cryst., 1977, B33, 3942. P. F. Lindley and A. W. Smith, Chem. Comm., 1970, 1355. \*J. H. Enemark, R. D. Feltham, B. T. Huie, P. L. Johnson, and K. B. Swedo, J. Amer. Chem. Soc., 1977, 99, 3285. 'Footnote a, Table 4. 'Footnote c, Table 4. 'Ref. 7. "This work. 'S. Mitra, Astaral. J. Chem., in the press. \*G. R. Davies, J. A. J. Jarvis, B. T. Kilbourn, R. H. B. Mais, and P. G. Owston, J. Chem. Soc. 'J. H. Enemark, R. D. Feltham, J. K. Stalick, P. W. R. Corfield, and D. W. Meek, Inorg. Chem., 1973, 12, 1668. \*E. D. Steffen and E. D. Stevens, Inorg. Nuclear Chem. Letters, 1973, 9, 1011. \*'J. H. Enemark, R. D. Feltham, J. C.S. Dalton, 1972, 118. \*'P. S. Shetty and Q. Fernando, J. Amer. Chem. Soc., 1970, 92, 3964. \*'M. Cannas, G. Carta, and G. Marongiu, J.C.S. Dalton, 1974, 550. ''H. Nakai, S. Ooi, and H. Kuroya, Bull

The stereochemistries of many of the remaining transition-metal complexes are more complicated. A number are distorted away from structures containing a two-fold axis, that is  $(BMA - BMC) \neq (BME -$ BMD). For example, for  $[Fe{S_2CN(CH_2)_4}_2I] \cdot 0.5I_2$ ,  $BMA - BMC = -6.2^\circ$ ,  $BME - BMD = 3.9^\circ$ . This distortion is towards the unsymmetrical square pyramid, in which one of the bidentate ligands spans the edge between a basal site and an apical site (Figures 5 and 6), that is, towards the saddle point in Figures 7 and 8.

We thank the Australian Research Grants Committee for support of this work and Professor R. L. Martin of Monash University for helpful discussions.

[9/1641 Received, 16th October, 1979]

REFERENCES

- <sup>1</sup> E. A. Pasek and D. K. Straub, Inorg. Chim. Acta, 1977, 21, 23.
- <sup>2</sup> D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321. <sup>8</sup> D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53,
- 1891. <sup>4</sup> R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem.

Phys., 1965, 42, 3175. <sup>5</sup> 'The X-RAY System,' ed. J. M. Stewart, Technical Report TR-446, Computer Science Centre, University of Maryland, V.S.A., 1976.
\* 'Table of Interatomic Distances and Configuration in

Molecules and Ions, Supplement 1956-1959,' Special Publ., The Chemical Society, London, 1965, no. 18.

<sup>7</sup> P. C. Healy, A. H. White, and B. F. Hoskins, J.C.S. Dalton, 1972, 1369.

 <sup>8</sup> D. L. Kepert, Inorg. Chem., 1973, 12, 1942.
 <sup>9</sup> D. L. Kepert, Inorg. Chem., 1973, 12, 1938.
 <sup>10</sup> M. C. Favas and D. L. Kepert, Progr. Inorg. Chem., 1980, 26, 325.