Vibrational Spectroscopic Study of Trimethylarsine-Boron Trihalide Adducts

By Yoshitaka Gushikem,* Instituto de Química, Universidade Estadual de Campinas, C.P. 1170, 13100 Campinas, S.P., Brasil

Fumio Watari, Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai, Japan

The vibrational spectra of AsR₃.¹⁰BX₃ (R = CH₃ or CD₃; X = Cl or Br) and AsR₃·nBX₃ (R = CH₃ or CD₃; X = Cl, Br, or I; n = natural abundance) are reported. The BAs stretching frequencies are assigned between 640 and 740 cm⁻¹, and the calculated force constants (2.84, 2.26, and 1.70 mdyn Å⁻¹) show that the BAs bond strength decreases for the adducts in the sequence BI₃ > BBr₃ > BCl₃. The order of BAs bond strength is the same as that of the adduct stabilities as determined by calorimetry.

It is known that trialkylarsines react with diborane to form 1:1 addition compounds similar to those of the corresponding phosphorus and nitrogen compounds, although those involving BAs bonding are less stable.^{1,2} The normal-co-ordinate analysis (n.c.a.) carried out recently on AsMe₃·BH₃^{3,4} allowed, for the first time, a comparison of the BAs bond strengths (in terms of force constants) with BN and BP bond strengths of similar compounds. However, no boron-ligand stretching force constants for other BAs compounds are known.

In recent work by Denniston and Martin ⁵ and also by Mills and co-workers,^{6,7} the preparation and properties of AsMe₃·BX₃ were reported. The i.r. and Raman spectra presented ⁷ are however incomplete and the assigned BAs stretching frequency between 181 and 221 cm⁻¹ appeared to be quite low.

In this work we present, in more detail, the vibrational spectra and the n.c.a. of $AsMe_3 \cdot BX_3$ (X = Cl, Br, or I). Of particular interest is a comparison of the bond strengths in our adducts with those in $AsMe_3 \cdot BH_3$, and of the calculated BAs stretching force constants with the adduct stabilities determined by calorimetry.^{6,7}

EXPERIMENTAL

Materials.—The compounds AsR_3 (R = CH₃ or CD₃) were prepared using the previously described method.⁴ Boron-10 trichloride and tribromide were prepared by the reaction of freshly sublimed or distilled AlCl₃ or AlBr₃ with dried K[¹⁰BF₄] (95% enriched in ¹⁰B) in a sealed glass ampoule provided with a break-seal, at 423—443 K during 4—6 h.⁸ The final products were purified by trap-to-trap distillation and stored in a break-seal ampoule. Similarly, natural-abundance BCl₃ and BBr₃ were always purified before use. High-purity BI₃ (only in natural abundance) was used without further purification.

Preparation of the Adducts.—All the preparations were carried out in a high-vacuum line. The adducts of BCl_3 and BBr_3 were prepared by condensing trimethylarsine and the boron trihalide in a 1:1 mol ratio in a glass tube (ca. 1 cm³) cooled to 77 K. The tube was immersed in a bath at ca. 189 K for the BCl_3 compounds and ca. 228 K for the BBr_3 compounds. The products were dried at room temperature by opening the system to the vacuum line. The adduct $AsMe_3 \cdot BI_3$ was prepared by dissolving first a known amount of BI_3 crystals in benzene. The tube containing this solution was then cooled to 77 K and a slight excess of trimethylarsine was condensed into it. The reaction was completed by gradually warming the reaction tube to room temperature. The product was dried under vacuum during 30 min and stored under vacuum, protected against light.

Spectroscopic Measurements.—Infrared spectra of the solids were recorded between 400 and 4 000 cm⁻¹ by subliming the sample onto a CsI window cooled to 77 K. The solid film was annealed at room temperature for 30 min for the BCl₃ and BBr₃ compounds and nearly 60 min for the BI₃ compound. All the spectra were recorded at 77 K. Far-i.r. spectra between 33 and 400 cm⁻¹ were obtained at room temperature with the samples as Nujol mulls. Raman spectra of the solids in a glass capillary tube were recorded at room temperature. The low solubility of these compounds in all common solvents ⁷ hindered polarization measurements. Only a poor spectrum was obtained for the BCl₃ compound in CH₂Cl₂. The equipment used and the calibration procedure were as described previously.⁴

RESULTS

Assignments.—For all the adducts the assignments were made for C_{3v} molecular symmetry for which the 10 A_1 and 15 E modes are both i.r. and Raman active while 5 A_2 is inactive in both spectra. The designation of the fundamentals is given in Table 1. The vibrational frequencies

Table	1

Approximate description and numbering of the fundamental vibrations of AsMe₃·BX₃

			3 3
A_1	A ₁	Ε	
<i>v</i> ₁	v ₁₁	V16, V17	CH ₃ , CD ₃ asym str.
V2		ν_{18}	CH ₃ , CD ₃ sym str.
ν_{a}	V12	ν_{19}, ν_{20}	CH_3 , CD_3 asym def.
V4		ν_{21}	CH ₃ , CD ₃ sym def.
ν_5	ν_{13}	ν_{22}, ν_{23}	CH ₃ , CD ₂ rock.
VB			BAs str.
V7		ν ₂₅	AsC ₃ str.
VB		ν ₂₄	BX ₃ str.
va		V27	AsC _a def.
ν_{10}		V36	BX ₃ def.
-10		V28	AsC ₃ rock.
			BX ₃ rock.
		V 29	CH ₃ , CD ₃ torsion
	V14	V ₃₀	BX ₃ torsion
	¥15		DA ₃ torsion

are given in Tables 2—6. The assignment of the fundamental frequencies of the Me₃As moiety was straightforward by comparison with the assignments of the free ligand,^{9,10} trimethylarsine-borane,^{3,4} and other complexes of trimethylarsine.^{11,12}

AsMe₃·BCl₃, 100–800 cm^{-1} —In this region the i.r. spectrum is characterized by a strong band near 735 cm⁻¹ for ¹⁰B and near 705 cm⁻¹ for ¹¹B compounds. These are

associated with the BCl₃ degenerate stretching (v_{24}) and are in reasonable agreement with the expected ¹⁰B-¹¹B isotopic shift. The corresponding symmetric stretching (v_8) is assigned to the band near 370 cm⁻¹ which was confirmed by

TABLE 2

In	frared bands	(cm ⁻¹) of .	AsMe ₃ ·BCl ₃ a	at 77 K
¹⁰ BH •	10BD	11BH ø	11 B D	Assignment
3 917vw		3 910vw		$\nu_1 + \nu_8$
3 840vw		3 830vw		$\nu_2 + \nu_5$
3 010m	2 250m	3 011m	2 253m	$\nu_1, \nu_{16}, \nu_{17}$
2 923m	2 123m	2 919m	2 128m	ν_{1}, ν_{18}
1 902vw		1 900vw		$v_4 + v_{25}$
1 857vw		1 850vw		$\nu_{4} + \nu_{7}$
1 403s	1 031m	1 400s	1 033m	ν_{19}
1 390m	1 029	$1 \ 387$	1 030w(sh)	ν_{3}, ν_{20}
1 288w		1 287w		?
1 272m	988m	1 273m	988m	V ₈₁
1 265m	986m	1 266m	984m	ν_4
926)		925]		
919 }s	696s	919}s	692 (sh)	ν_{22}
911J	689(sh)	912J	681s	ν_{5}
834w	636s	835w	633s	V 23
735vs,br	736vs	737m	742m)
708m		705vs	717vs	$\langle \nu_{6}, \nu_{24} \rangle$
702w			704vs	J
640m	584w	641m	584w	ν_{25}
594s	540m	593s	538m	ν7
373m	371w	374m	370w	ν_8
259m	255m	259m	255m	V28
230m	212m	231m	214m	ν_{9}, ν_{27}
	185w		186w	V 28
174m	163m	174m	165m	<i>v</i> ₁₀
		131vw		V 29

* v = Very, w = weak, s = strong, m = medium, br = broad, sh = shoulder. Abbreviations of compounds: ${}^{10}BH$, AsMe₃·{}^{10}BCl₃; ${}^{10}BD$, As(CD₃)₃·{}^{10}BCl₃; ${}^{11}BH$, AsMe₃·{}^{11}BCl₃; and ${}^{11}BD$, As(CD₃)₃·{}^{11}BCl₃. 6 Boron-11 represents the normal isotopic distribution.

polarization measurement. The band near 255 cm⁻¹ is easily assigned to the BCl₃ degenerate deformation (ν_{26}), while the assignment of the corresponding symmetric deformation (ν_{10}) is difficult because it varies according By comparison with AsMe₃·BH₃, the BAs stretching mode (v_6) should be expected between 450 and 510 cm⁻¹, but no band in this region was observed for the BCl₃ compound. However, the trend of boron-ligand stretching frequency in NMe₃·BCl₃ and PMe₃·BCl₃ complexes ¹³⁻¹⁶ suggests that the BAs mode is accidentally degenerate with v_{24} in our case. This assignment is clearly supported by the spectrum of the BBr₃ and BI₃ compounds, where v_6 is relatively well separated from v_{24} .

AsMe₃·BBr₃, 90-800 cm⁻¹.-The i.r. spectra show a strong absorption near 715 and 670 cm^{-1} for the ¹⁰B and ¹¹B complexes. These bands, which appear with medium intensity in the Raman spectra, were assigned to v_8 . The strong i.r. bands, well separated from $\nu_6,$ at 651 and 663 cm^{-1} for ¹⁰BH and ¹⁰BD compounds, were assigned to v_{24} . For the natural-abundance ¹¹BH and ¹¹BD compounds, although the i.r. spectrum is very complex in this region, v_{24} was assigned at 616 and 608 cm⁻¹. The band near 240 cm⁻¹, which is strong in the Raman and medium in the i.r. spectrum, was assigned to $\nu_8.~$ The deformation modes, ν_{10} at ca. 130 cm⁻¹ and v_{26} at ca. 145 cm⁻¹, were assigned by comparison with those made for PMe3.BBr3.16 Again v10 is considerably lower compared with NMe₃·BBr₃¹⁵ (ca. 196 cm^-1). The ν_{29} vibration was not assigned although a weak band was observed at ca. 90 cm⁻¹ in both spectra.

AsMe₃·BI₃, 70—700 cm^{-1} .—The band near 650 cm⁻¹, which appears with medium to strong intensity in both spectra, is reliably assigned to v₆. The band near 543 cm⁻¹ is assigned to v₂₄, taking into account the i.r. intensity and the expected lower value for this mode in BI₃, than in BCl₃.

The only reasonable assignments for v_8 are the bands which appear very strongly in the Raman at 167 and 162 cm⁻¹ for ¹¹BH and ¹¹BD respectively, assuming that this mode is accidentally degenerate with v_{28} . For the remaining frequencies, by comparison with the assignments made for PMe₃·BI₃ ¹⁶ and PI₃·BI₃,¹⁷ those at *ca*. 110, 97, and 71 cm⁻¹ were assigned to v_{10} , v_{26} , and v_{29} , respectively.

The product-rule ratios compared with the theoretical

	Raman ba	ands (cm ⁻¹) of AsM	e ₃ ·BCl ₃ at room ter	nperature	
10BH #	10BD	11BH	11BD	10BD P	Assignment
3 015vw	2 260m	3 010vw	2 259m	2 259m	$\nu_1, \nu_{16}, \nu_{17}$
2 929w	2 133m	2 926w	2 132m	2 133m,p	ν_{2}, ν_{18}
1 411vw	1 029m	1 411vw	1 030m	1 030vw	ν_{3}, ν_{20}
1 283vw		1 288w			?
1 265vw	990m	1 270w	991m	991m,p	VA
915(?)	681m	920(?)	675m	1	ν ₅
843vw	640w	846w	635w		V23
738w	735w	732vw	743vw		1
		700m	720w		VE, V24
640s	585s	640s	586 s	582m	V 25
592vs	543vs	591vs	543vs	541s,p	ν ₇
373s	371vs	373vs	372s	372s,p	ν ₈
256s	253s	258s	255s	1	V 26
226m	211vw	231m	212w	211vw	ν_{9}, ν_{27}
208s	187m	211s	185m		V28
170vs	160vs	175vs	163vs	165m,p(?)	ν ₁₀
130vw				-72 (- 7	ν ₁₉ ?

TABLE 3

• See footnote a to Table 2. • Spectrum in CH_2Cl_2 , p = polarized.

to the ligand.¹³⁻¹⁶ The bands between 160 and 175 cm⁻¹ observed with strong to medium intensities in both spectra were assigned as v_{10} . The position of this band is almost the same as that observed for PMe₃·BCl₃,¹⁶ *i.e.* 160 cm⁻¹, but considerably lower in relation to NMe₃·BCl₃,¹⁵ *i.e.* 270 cm⁻¹.

ratios of the determinant of the G matrices (in parentheses), calculated for A_1 symmetry only, are: ${}^{10}\text{BH} : {}^{10}\text{BD} = 5.42$ (5.53), ${}^{10}\text{BH} : {}^{11}\text{BH} = 1.00$ (1.05), ${}^{10}\text{BH} : {}^{11}\text{BD} = 5.51$ (5.78) for AsMe₃·BCl₃; ${}^{10}\text{BH} : {}^{10}\text{BD} = 5.21$ (5.57), ${}^{10}\text{BH} :$ ${}^{11}\text{BH} = 1.05$ (1.05), ${}^{10}\text{BH} : {}^{11}\text{BD} = 5.74$ (5.83) for AsMe₃· BBr₃; and ${}^{11}\text{BH} : {}^{11}\text{BD} = 5.48 : 1$ (5.59 : 1) for AsMe₃·BI₃. These results give some support for the assignments. (For the abbreviations ^{10}BH , ^{10}BD , *etc.* see the footnote in Table 2.)

Normal-co-ordinate Analysis.—The structural parameters

		TABLE 4	4	
Int	frared bands	(cm ⁻¹) of A	sMe₃•BBr₃ a	at 77 K
10BH *	10BD	11BH	11BD	Assignment
3 898vw		3 900vw		$\nu_1 + \nu_5$
3 821vw		3 820vw		$\nu_2 + \nu_5$
2 995m	2 251m	2 995m	2 250m	$\nu_1, \nu_{16}, \nu_{17}$
2 912m	2 125m	2 915m	2 126m	ν_2, ν_{18}
		1 900vw	1 561vw	$\nu_4 + \nu_{25}$
		1 845vw	1 516vw	$\nu_4 + \nu_7$
1 399s	1 030s	1 396s	1 030s	ν ₁₉
1 390w	1 027(sh)	1 387m	1 027(sh)	ν_{3}, ν_{20}
1 286w	· · ·	1 286w	ζ,	?
1 267(sh)	987m	1 270m	988m	ν_{21}
1264m	983m	1 264m	984m	ν4
922 918}s		$egin{array}{c} 923 \ 918 \end{bmatrix} \mathrm{s}$		V22
918∫ ^s		918∫ ^S		
912m	690s	910m	688m	ν_5
835w	620vs	834m	622m	ν_{23}
715s	715s	715m	716m	ν_{6} (¹⁰ B)
683vw		687s	669vs	ν ₆ (¹¹ B)
651vs	663vs	651s	651s	ν_{24} (¹⁰ B)
620w	607w	616vs	608vs	ν_{24} (¹¹ B)
636s	581w	640vs	582m	ν_{25}
590m	538m	588s	538m	ν_7
246 m	240m	247m	240m	ν_8
	19 0w	213w	189w	ν_{9}, ν_{27}
185m	175w	184m	173w	ν_{28}
147m	143w	147m	143m	V26
	130vw	128vw	125w	P10
	94w		93w	ν ₂₉ ?
	* See fo	otnote a to 1	Cable 9	

* See footnote a to Table 2.

were taken from $AsMe_3 \cdot BH_3^3$ and $NMe_3 \cdot BX_3^2$: ¹⁸ r(BAs) = 2.035, r(AsC) = 1.945, r(CH) = 1.090, r(BCl) = 1.83, r(BBr) = 2.04, and r(BI) = 2.28 Å (1 Å = 100 pm); CAsC 105°. The geometry around C and B atoms was assumed to be tetrahedral. The symmetry co-ordinates

-			~	
	AВ	тτ	0.5	

Raman	bands	(cm ⁻¹)	of	$AsMe_3 \cdot BBr_3$	at	room
		4				

		temperat	ure	
10BH *	10BD	11BH	¹¹ BD	Assignment
3 010w	2.258w	3 010w	2 257w	$\nu_1, \nu_{16}, \nu_{17}$
2 924m	2 129m	2 924m	2 129m	ν_2, ν_{18}
1 408m	1 027w	1 408m	1 028m	ν_{19}
1 286vw		1 285w		ν ₁₉ ?
1 265vw	989m	1 264w	988m	Va
9 19vw	679m	919(?)		V22
843w	630w	843w		V23
708m	720w	709vw		$\nu_{6}^{(10}B)$
		678m	671m	ν_{6} (¹¹ B)
	665(sh)			ν_{24} (¹⁰ B)
	· · ·	619m	610vw	ν_{24} (¹¹ B)
633vs	584vs	637m	582vs	V25
589vs	541m	587vs	540vs	ν_7
243vs	242vs	246vs	241 vs	V ₈
210vs	196vs	214vs	192vs	ν_{9}, ν_{27}
179s	172s	184m	170s	V28
143(sh)	140s	146m	143s	V26
130 ` w´	133s	134s	130s	V10
	84vw		85m	V29?
	* See f	ootnote a to	Table 2.	

were similar to those described elsewhere.⁴ In the calculations the frequencies were weighted by $1/\lambda$ and the initial set of force constants transferred from AsMe₃·BH₃⁴ and MeCN·BX₃.¹⁹ The least-squares refinement was carried

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

out in terms of symmetry force constants, which were fitted to the observed frequencies of all isotopes simultaneously.

Since it was not possible to refine all the significant offdiagonal symmetry force constants, the best estimated values, determined from various trial refinements, were constrained in the last least-squares cycle. Due to the uncertainty of assignment for the BX₃ rocking in BCl₃ and BBr₃ adducts, the corresponding force constant, $F_{29,29}$, was directly transferred from MeCN·BX₃¹⁹ and constrained. The torsional mode was not included in the calculations.

Infrared frequencies were used to compute the force constants, while below 400 cm^{-1} Raman frequencies were used because the far-i.r. spectrum was very noisy and the bands were relatively broad.

The calculated symmetry force constants and calculated

TABLE 6

Infrared bands (cm⁻¹) at 77 K and Raman bands (cm⁻¹) at room temperature of AsMe₃⁻¹¹BI₃

Infra	ured	Rar	nan	
¹¹ BH *	11BD	¹¹ BH	¹¹ BD	Assignment
3 900vvw				$\nu_1 + \nu_5$
3 824vvw				$\nu_2 + \nu_5$
2 994m	2 244m	2 995w	2 244m	$\nu_1, \nu_{16}, \nu_{17}$
2 914m	2 112m	2 910s	2117s	ν_2, ν_{18}
	1 560vw			$\nu_4 + \nu_{25}$
	1 510vw			$\nu_4 + \nu_7$
1 411m	1 028m	1 400m	1 020m	ν_{19}
1 397s	1 023s			ν_{3}, ν_{20}
1 281w				?
1 270m	984w	1 274m		V21
1 257m	978m		978s	V4
	776vw			?
917(sh)	724vs	_		V22
907vs	707 vs	907w	702w	ν_5
829vw		824w	610w	ν_{23}
685w	668m	675w	662vw	$\nu_{6}^{23}(^{10}B)$
658m	646 s	648s	636s	ν_6 (¹¹ B)
632s	580vs	629vs	576vs	ν_{25}
577s	530 ms	575vs	530vs	ν,
573(sh)	563ms		5 6 0w	ν_{24} (¹⁰ B)
546vs	540vs	544s		ν_{24} (¹¹ B)
229m	205m	223s	199s	ν_9
210(?)	186vw	214s	183s	ν_{27}
172m	166w	167vvs	162vvs	ν_8, ν_{28}
	158m			?
116m	113m	110m	107m	ν_{10}
99m	95m	99m	95m	ν_{26}
72m	70m	72m	70m	ν_{29}
	* See fo	otnote a to 1	fable 2.	

frequencies are presented in Supplementary Publication No. SUP 22799 (6 pp.).*

DISCUSSION

The modes in the trimethylarsine part of the adduct which show a large shift are the AsC₃ symmetric and asymmetric stretching. The calculated force constants indicate that the AsC bond is strengthened in the complexes, *i.e.* average f(AsC) = 2.93 mdyn Å⁻¹, in comparison with free trimethylarsine where f(AsC) = 2.56mdyn Å⁻¹ (Table 7).† This bond strengthening may result, as rationalized for AsMe₃·BH₃, from a rehybridization around the As atom to give a higher s character in the AsC bond.³ Little significance may be attached to the variation in f(AsC) from Cl to I since the constraints used for $F[\rho(CH_3, CD_3), \nu(AsC_3)]$ of E species slightly affect

† Throughout this paper: 1 dyn = 10^{-5} N.

TABLE	7
-------	---

Symmetry force constants ($f/mdyn Å^{-1}$) and thermodynamic data ($\Delta H/k I mol^{-1}$)

		AsMe₃•BΣ	K3				BX3 .	
	Cl	Br	I	AsMe ₃ ^a	AsMe ₃ ·BH ₃ »	Cl	Br	I
f(BAs)	1.70	2.26	2.84		1.85			
f(BX) + 2f(BX, BX)	2.95	2.51	1.94			4.89	3.75	2.70
$f(\mathbf{BX}) = f(\mathbf{BX}, \mathbf{BX})$	2.57	1.75	1.48			2.49	2.55	1.47
f(AsC) + 2f(AsC, AsC)	2.89	2.90	2.86	2.56	2.92			
f(AsC) - f(AsC, AsC)	3.09	2.98	2.82	2.56	3.17			
$-\Delta H_r^{d}$	193	340			207			

^a Ref. 3. ^b Ref. 4. ^c The force constants are those of ref. 20(a); however, see also refs. 20(b)--(d), since the values of f(BX) - f(BX, BX) of the three BX₃ compounds are very discrepant. ^d For the reaction: acid(g) + base(g) \longrightarrow adduct(s).⁶

the value of this force constant. Comparing the BX stretching force constants of the adducts with those of free BX₃,²⁰ the usual decrease for the adducts is observed. The largest changes are found for lighter acids where the decrease in strength of the BX π bond should be larger upon formation of the donor-acceptor bond.¹⁹

In the previous work of Mente and Mills,⁷ the BAs stretching force constants calculated via a diatomic oscillator model are very approximate. The potentialenergy distribution showed that v_6 is very highly coupled and basically this mode originates from BAs stretch mixed with BX₃ (sym) stretch and BX₃ (sym) deformation. It was also observed that the contribution of BAs stretch changes for each adduct, as a consequence of which the frequency ν_6 decreases from Cl to I.

The increase of BAs stretching force constants along the series $BCl_3 < BH_3 < BBr_3 < BI_3$ in AsMe₃·BX₃ and AsMe₃·BH₃ follows the sequence of adduct stability determined by calorimetry,⁶ except for BI₃ for which the enthalpy of reaction is not known.

Y. G. is indebted to Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for support.

[9/1933 Received, 5th December, 1979]

REFERE NCES

¹ F. Hewitt and A. K. Holliday, J. Chem. Soc., 1953, 530.

² F. G. A. Stone and A. B. Burg, J. Amer. Chem. Soc., 1954, 76,

386. ³ J. R. Durig, B. A. Hudgens, and J. D. Odom, *Inorg. Chem.*,

1974, 13, 2306.
⁴ F. Watari, Bull. Chem. Soc. Japan, 1977, 50, 1287.
⁵ M. L. Denniston and D. R. Martin, J. Inorg. Nuclear Chem., 1974, 36, 2175.

⁶ D. C. Mente, J. L. Mills, and R. E. Mitchell, Inorg. Chem., 1975, 14, 123.

D. C. Mente and J. L. Mills, *Inorg. Chem.*, 1975, 14, 1862.
 E. L. Gamble, P. Gilmont, and J. F. Stiff, *J. Amer. Chem.*

Soc., 1940, 62, 1257. ⁹ E. J. Rosenbaum, D. J. Rubin, and C. R. Sandberg, *J. Chem. Phys.*, 1940, **8**, 366.

¹⁰ P. J. D. Park and P. J. Hendra, Spectrochim. Acta, 1968, A24, 2081.

¹¹ D. A. Duddel, P. L. Goggin, R. J. Goodfellow, M. G. Norton, and J. G. Smith, *J. Chem. Soc.* (A), 1970, 545.
 ¹² C. F. Shaw and R. S. Tobias, *Inorg. Chem.*, 1973, 12, 965.

¹³ R. L. Amster and R. C. Taylor, Spectrochim. Acta, 1964, 20,

1487. ¹⁴ W. Sawodny and J. Goubeau, Z. phys. Chem. (Frankfurt), 1965, 44, 227.

15 P. H. Ladwick and R. C. Taylor, J. Mol. Structure, 1976, 34, 197.

¹⁶ J. E. Drake, J. L. Hencher, and B. Rapp, Inorg. Chem., 1977, 16, 2289.

¹⁷ G. W. Chantry, A. Finch, P. N. Gates, and D. Steele, J.

Chem. Soc. (A), 1966, 896. ¹⁸ P. H. Clippard, J. C. Hanson, and R. C. Taylor, J. Cryst. Mol. Struct., 1971, **1**, 363.

 ¹⁹ D. F. Shriver and B. Swanson, *Inorg. Chem.*, 1971, 10, 1354.
 ²⁰ (a) J. A. Ladd and W. J. Orville-Thomas, Spectrochim. Acta, 1963, 19, 1911; (b) J. L. Duncan, J. Mol. Spectroscopy, 1964, 13, 338 and refs. therein; (c) I. W. Levin and S. Abramowitz, J. Chem. Phys., 1965, 43, 4213; (d) S. G. W. Ginn, D. Johansen, and J. Overend, J. Mol. Spectroscopy, 1970, 38, 448.