Crystal Structure, and the Infrared and Raman Spectra, of Potassium Hydroxylamine-N,O-disulphonate, $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$. The Infrared and Raman Spectra of Potassium Hydroxylaminetrisulphonate Sesquihydrate, $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \dagger$

By John R. Hall," Robert A. Johnson, and Colin H. L. Kennard, Department of Chemistry, University of Queensland, Brisbane, Australia 4067
Graham Smith, Department of Chemistry, Queensland Institute of Technology, Brisbane, Australia 4000
Brian W. Skelton and Allan H. White, Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Western Australia 6009

Abstract

The crystal structure of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ has been determined using three-dimensional X-ray diffraction data with 1097 observed reflections. Crystals are monoclinic, space group $P 2_{1} / a$, with $Z=4$ in a cell of dimensions $a=$ $11.009(3), b=10.040(2), c=7.483(3) \AA$, and $\beta=109.49(2)^{\circ}$. The structure was solved by the heavy-atom method and refined by full-matrix least squares to $R 0.033$. The $N-S$ bond [1.704(3) \AA] is markedly longer than found for $\mathrm{K}_{2}\left[\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2}\right]$ in which both sulphonate groups are bound directly to nitrogen. The infrared (4000$50 \mathrm{~cm}^{-1}$) and Raman spectra of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ and $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and their ${ }^{15} \mathrm{~N}$ and ${ }^{2} \mathrm{H}$ derivatives at 77 K are reported and interpreted. Aqueous spectra have also been recorded. The following frequencies were assigned : $v(\mathrm{~N}-\mathrm{O}), 925$; $v(\mathrm{~N}-\mathrm{S}), 808$; and $v[\mathrm{~S}-\mathrm{O}(\mathrm{N})]$, ca. $730 \mathrm{~cm}^{-1}$ for $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$; $v(\mathrm{~N}-\mathrm{O}), 930$; $\nu_{\mathrm{asym}}(\mathrm{N}-\mathrm{S}), 820 ; \nu_{\mathrm{sym}}(\mathrm{N}-\mathrm{S}), 757$; and $v[\mathrm{~S}-\mathrm{O}(\mathrm{N})], 708 \mathrm{~cm}^{-1}$ for $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$.

As part of a continuing investigation into the vibrational properties of the sulphonate derivatives of methane, ammonia, and hydroxylamine, we have recorded the i.r. and Raman spectra of polycrystalline potassium hydroxylamine- N, O-disulphonate, $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$, and potassium hydroxylaminetrisulphonate sesquihydrate, $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, at liquid nitrogen temperature. Spectra of the ${ }^{25} \mathrm{~N}$ and ${ }^{2} \mathrm{H}$ derivatives have also been recorded. The i.r. spectra above $400 \mathrm{~cm}^{-1}$ of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right], \quad \mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONDSO}_{3}\right]$, and $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}-\right.$ $\left.\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ have previously been reported. ${ }^{1}$ In order to have an adequate prediction of the spectra of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$, the X-ray crystal structure of this salt has now been determined. However, the neutron structure of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ has already been published. ${ }^{2}$ To assist with the internal mode assignments, the aqueous solution spectra, including qualitative Raman polarization data, have been obtained. The lattice-water assignment of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ is assisted by comparison with the i.r. spectra of partially deuteriated samples.

EXPERIMENTAL

Preparations.- $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ was prepared by the method described by Raschig ${ }^{3,4}$ (Found: K, 28.0; $\mathrm{N}, 3.5$; S, 23.5. Calc. for $\mathrm{H}_{3} \mathrm{~K}_{3} \mathrm{NO}_{11.5} \mathrm{~S}_{3}$: K, 28.3; $\mathrm{N}, 3.4$; $\mathrm{S}, 23.2 \%$). The ${ }^{15} \mathrm{~N}$ derivative was prepared by the same procedure, starting with $\mathrm{Na}\left[\mathrm{NO}_{2}\right]$ of $99.8 \%{ }^{16} \mathrm{~N}$ enrichment (The British Oxygen Company Ltd.).
The compound $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{D}_{2} \mathrm{O}$ was converted by several recrystallizations of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{D}_{2} \mathrm{O}$ made weakly alkaline with dry $\mathrm{Li}_{2}\left[\mathrm{CO}_{3}\right]$ to prevent hydrolysis ${ }^{5}$ to hydroxylamine- N, O-disulphonate. Exchange of the hydrogen atoms was estimated from i.r.
\dagger The title compounds are more systematically named as potassium hydroxylamido-N,O-disulphate(2-) and potassium hydroxylamidotrisulphate(3-) sesquihydrate respectively.
spectra to be ca. $\mathbf{8 0 \%}$ (Found: K, 27.8; N, 3.4. Calc. for $\mathrm{D}_{3} \mathrm{~K}_{3} \mathrm{NO}_{11.5} \mathrm{~S}_{3}$: $\mathrm{K}, 28.1 ; \mathrm{N}, 3.4 \%$).

Partially deuteriated samples were made using a previously reported method, ${ }^{6}$ starting with $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right]$ $1.5 \mathrm{H}_{2} \mathrm{O}$ and recrystallizing from $\mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}$ mixtures made weakly alkaline with dry $\mathrm{Li}_{2}\left[\mathrm{CO}_{3}\right]$. The approximate concentrations of $\mathrm{H}_{2} \mathrm{O}, \mathrm{HDO}$, and $\mathrm{D}_{2} \mathrm{O}$ in the deuteriated samples were calculated. ${ }^{7}$

The compound $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ was obtained by the acid-catalysed hydrolysis of hydroxylaminetrisulphonate using Raschig's method ${ }^{8}$ (Found: K, 28.8; N, 5.0; S, 23.7. Calc. for $\mathrm{HK}_{2} \mathrm{NO}_{7} \mathrm{~S}_{2}: \mathrm{K}, 29.0 ; \mathrm{N}, 5.2 ; \mathrm{S}, 23.8 \%$). The same procedure was used for the ${ }^{15} \mathrm{~N}$ derivative.

The compound $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ was deuteriated into $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONDSO}_{3}\right]$ by several recrystallizations from $\mathrm{D}_{2} \mathrm{O}$ made weakly alkaline with dry $\mathrm{Li}_{2}\left[\mathrm{CO}_{3}\right]$ to prevent hydrolysis ${ }^{5}$ to hydroxylamine-O-sulphonate, $\mathrm{NH}_{2} \mathrm{OSO}_{3}{ }^{-}$. Exchange was cstimated to be $c a .85 \%$ (Found: K, $\mathbf{2 8 . 8}$; N , 5.3. Calc. for $\mathrm{DK}_{2} \mathrm{NO}_{7} \mathrm{~S}_{2}$: K, 28.9; N, 5.2%).

Crystal Data-- $\mathrm{HK}_{2} \mathrm{NO}_{7} \mathrm{~S}_{2}, M=269.4$, Monoclinic, $a=$ $11.009(3), b=10.040(2), c=7.483(3) \AA, \quad \beta=109.49(2)^{\circ}$, $U=779.7(4) \AA^{3}, D_{\mathrm{m}}=2.30 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $Z=4$, $D_{\mathrm{c}}=2.29 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=536$, space group $P 2_{1} / a$ (variant of $\left.P 2_{1} / c\right)$ ($C_{2 h}^{5}$, no. 14), Mo- K_{α} radiation, $\lambda=0.7107 \AA$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=16.7 \mathrm{~cm}^{-1}$. A total of 1097 reflections with $I>3 \sigma(I)$ were considered observed out of 1369 unique reflections collected from one crystal ($0.25 \times 0.43 \times 0.40$ mm) mounted on a Syntex $P \mathbf{I}$ four-circle diffractometer $\left(2 \theta_{\text {max }}=50^{\circ}\right)$ using a $\theta-2 \theta$ scanning mode. Graphitemonochromated Mo- K_{α} radiation was used and no absorption corrections were applied.

Structure Determination.-The structure was solved using the heavy-atom method and refined by full-matrix least squares with anisotropic temperature factors on all atoms except hydrogen. The hydrogen position was located in a difference-Fourier synthesis and its co-ordinates refined giving a final isotropic temperature factor (U) of $0.02 \AA^{2}$. The final $R\left(=\Sigma \mid F_{0}-F_{\mathrm{e}} / / \Sigma F_{\mathrm{o}}\right)$ was 0.033 and $R^{\prime}(=$ $\left.\Sigma w\left|F_{o}-F_{\mathrm{c}}\right|^{2} / \Sigma w\left|F_{o}\right|^{2}\right)^{\ddagger}$ was 0.044 . Reflections were given
the weights $w=\left[\sigma^{2}\left(F_{0}\right)+0.0005\left(F_{0}\right)^{2}\right]^{-1}$. Neutral-atom scattering factors ${ }^{9,10}$ were used while non-hydrogen atoms were corrected for anomalous dispersion ($\left.\Delta f^{\prime}, \Delta f^{\prime \prime}\right)^{11}$ All computations were carried out on the University of Western Australia's CYBER 73 computer using the ' X-RAY ' 76 ' system. Final atomic positional parameters are listed in Table 1 while structure factor amplitudes and anisotropic thermal parameters are deposited as Supplementary Publication No. SUP 22802 (9 pp .).*
Infrared Spectra.-Infrared spectra were recorded using Perkin-Elmer model 225 and Beckman-RIIC IR-720 spectrophotometers with low-temperature facilities. ${ }^{12}$
Raman Spectra.-Raman spectra were recorded on a Cary model 82 laser spectrometer using 514.5 nm exciting radiation and a power of $c a .600 \mathrm{~mW}$ at the sample.

The i.r. and Raman spectra recorded at ambient temperature showed little change from the 77 K spectra. Observed

Table 1

Atomic positional parameters for hydrogen ($\times 10^{3}$) and other atoms ($\times 10^{4}$) with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c
$\mathrm{~K}(1)$	$3120(1)$	$933(1)$	$3468(1)$
$\mathrm{K}(2)$	$4848(1)$	$2525(1)$	$9548(1)$
$\mathrm{S}(1)$	$1237(1)$	$2448(1)$	$5565(1)$
$\mathrm{S}(2)$	$2337(1)$	$-442(1)$	$9097(1)$
$\mathrm{N}(21)$	$1568(4)$	$76(3)$	$6831(5)$
$\mathrm{O}(11)$	$948(2)$	$1333(3)$	$6958(4)$
$\mathrm{O}(12)$	$668(3)$	$1925(3)$	$3663(4)$
$\mathrm{O}(13)$	$2610(2)$	$2612(3)$	$6123(4)$
$\mathrm{O}(14)$	$555(3)$	$3553(3)$	$6009(4)$
$\mathrm{O}(22)$	$1489(3)$	$-183(3)$	$10179(4)$
$\mathrm{O}(23)$	$3512(3)$	$310(3)$	$9767(4)$
$\mathrm{O}(24)$	$2506(3)$	$-1835(3)$	$8787(4)$
$\mathrm{H}(21)$	$90(4)$	$-35(4)$	$652(5)$

frequencies are considered accurate to $\pm 2 \mathrm{~cm}^{-1}$ below $2000 \mathrm{~cm}^{-1}$ and $\pm 4 \mathrm{~cm}^{-1}$ above $2000 \mathrm{~cm}^{-1}$. Experimental conditions used have been previously described. ${ }^{12}$

RESULTS AND DISCUSSION

Crystal Structure.-Figure 1 illustrates the molecular conformation and atomic numbering scheme used for $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$. The observed bond distances and angles are given in Table 2. As in the case of imidosulphonate, $\mathrm{K}_{2}\left[\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2}\right]$, in which both sulphonate groups are bound directly to nitrogen, the nitrogen atom has distorted tetrahedral stereochemistry. However, the sum of the interbond angles at nitrogen in K_{2} $\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]\left(303.7^{\circ}\right)$ is considerably less than that in $\mathrm{K}_{2}\left[\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2}\right]\left(347.6^{\circ}\right) .{ }^{13}$ This is attributed mainly to reduced repulsion between the bulky sulphonate groups in the former species due to the presence of the bridging oxygen atom. Also, this increased deviation from planarity is accompanied by an increase in the $\mathrm{N}-\mathrm{S}$ bond length $\left\{1.704(3) \AA\right.$ for $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right], 1.674(5) \AA$ for $\left.\mathrm{K}_{2}\left[\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2}\right]^{13}\right\}$. This is presumably due to the net effect of a decrease in the s character of the $\sigma \mathrm{N}^{-\mathrm{S}}$ bond and less efficient π overlap between the lone-pair orbital of nitrogen and the unfilled $3 d$ orbitals of sulphur on the one hand, and delocalization of the nitrogen lone pair into only one set of sulphur d orbitals on the other hand.

[^0]The $\mathrm{N}-\mathrm{S}$ bond length observed for sulphamic acid, $\left[\mathrm{NH}_{3}\right]\left[\mathrm{SO}_{3}\right][1.76(2) \AA]^{14}$ is indicative of a single $\mathrm{N}-\mathrm{S}$ bond since there are no lone-pair electrons on nitrogen available for π bonding. The single-bond value cal-

Figure 1 Molecular conformation and atomic numbering used for the $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}$ ion
culated from the Schomaker-Stevenson rules ${ }^{15}$ is $1.74 \AA$. In $\mathrm{K}_{3}\left[\mathrm{~N}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, which has two π-bonding lone pairs on nitrogen, the $\mathrm{N}-\mathrm{S}$ bond length is $1.609(3)$ $\AA .{ }^{16}$ Similar arguments can be used to rationalize the decrease in the sum of the interbond angles at nitrogen and the increase in the $\mathrm{N}-\mathrm{S}$ bond length on going from nitrilosulphonate, $\mathrm{K}_{3}\left[\mathrm{~N}\left(\mathrm{SO}_{3}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\left[360^{\circ}, 1.71(2) \AA\right]^{17}$ to hydroxylaminetrisulphonate, $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5$ $\mathrm{H}_{2} \mathrm{O}\left[330.6^{\circ}, 1.750(2) \AA\right] .^{2}$
The N-O bond length $[1.454(4) \AA]$ is very close to the postulated σ-bond length ($1.44 \AA \AA^{15}$ and that observed for $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}[1.434(1) \AA]^{2}$ and sulphoperamidic acid, $\left[\mathrm{NH}_{3}\right]\left[\mathrm{OSO}_{3}\right][1.48(4) \AA] .{ }^{18, *}$ The $\mathrm{S}-\mathrm{O}$ (mean $1.442 \AA$) and $\mathrm{S}-\mathrm{O}(\mathrm{N})[1.632(3) \AA]$ bond lengths and the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ (mean 114.1°), $\mathrm{O}-\mathrm{S}-\mathrm{N}$ (mean 104.8°), and $\mathrm{O}-\mathrm{S}-\mathrm{O}(\mathrm{N})$ (mean 104.0°) angles are generally similar to

Table 2

Interatomic distances and angles with estimated standard deviations in parentheses
(a) Distances (\AA)

$\mathrm{N}(21)-\mathrm{O}(11)$	$1.454(4)$	$\mathrm{S}(1)-\mathrm{O}(14)$	$1.440(3)$
$\mathrm{N}(21)-\mathrm{H}(21)$	$0.82(4)$	$\mathrm{N}(21)-\mathrm{S}(2)$	$1.704(3)$
$\mathrm{O}(11)-\mathrm{S}(1)$	$1.632(3)$	$\mathrm{S}(2)-\mathrm{O}(22)$	$1.448(3)$
$\mathrm{S}(1)-\mathrm{O}(12)$	$1.448(3)$	$\mathrm{S}(2)-\mathrm{O}(23)$	$1.436(3)$
$\mathrm{S}(1)-\mathrm{O}(13)$	$1.437(3)$	$\mathrm{S}(2)-\mathrm{O}(24)$	$1.440(3)$

(b) Angles (${ }^{\circ}$)
$\mathrm{O}(11)-\mathrm{N}(21)-\mathrm{S}(2) \quad 106.7(2)$
$\mathrm{O}(11)-\mathrm{N}(21)-\mathrm{H}(21) \quad 94(3)$ $\mathrm{S}(2)-\mathrm{N}(21)-\mathrm{H}(21)$ $\begin{array}{ll}\mathrm{N}(21)-\mathrm{O}(11)-\mathrm{S}(1) & 110.9(2)\end{array}$ $103(3)$ $\mathrm{O}(11)-\mathrm{S}(1)-\mathrm{O}(12) \quad 105.5(2)$ $\begin{array}{lr}\mathrm{O}(11)-\mathrm{S}(1)-\mathrm{O}(13) & 107.7(2) \\ \mathrm{O}(11)-\mathrm{S}(1)-\mathrm{O}(14) & 98.8(2)\end{array}$ $\mathrm{O}(12)-\mathrm{S}(1)-\mathrm{O}(13) \quad 113.3(2)$ $\mathrm{O}(12)-\mathrm{S}(1)-\mathrm{O}(14) \quad 114.8(2)$
$\mathrm{O}(13)-\mathrm{S}(1)-\mathrm{O}(14) \quad 114.8(2)$
$\mathrm{O}(13)-\mathrm{S}(1)-\mathrm{O}(14) \quad 115.1(2$

$\mathrm{N}(21)-\mathrm{S}(2)-\mathrm{O}(22)$	$107.6(2)$
$\mathrm{N}(21)-\mathrm{S}(2)-\mathrm{O}(23)$	$106.1(2)$
$\mathrm{N}(21)-\mathrm{S}(2)-\mathrm{O}(24)$	$100.6(2)$
$\mathrm{O}(22)-\mathrm{S}(2)-\mathrm{O}(23)$	$112.6(2)$
$\mathrm{O}(22)-\mathrm{S}(2)-\mathrm{O}(24)$	$114.0(2)$
$\mathrm{O}(23)-\mathrm{S}(2)-\mathrm{O}(24)$	$114.6(2)$

those found in other sulphonates of methane, ammonia, and hydroxylamine.
The torsion angles about the $\mathrm{N}(21)-\mathrm{O}(11), \mathrm{N}(21)-\mathrm{S}(2)$, and $\mathrm{O}(11)-\mathrm{S}(1)$ vectors in $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}$ (1) and $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ (2) are compared in Table 3. The

[^1]presence of an additional sulphonate group on the nitrogen group in (2) appears to impose some strain on the system, where torsion angles are contracted (116.2,

Table 3
Comparative torsion angles (${ }^{\circ}$) for $\left(O_{3} \mathrm{SONHSO}_{3}{ }^{2-}\right.$ (1) and $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}(2)$. The primed atoms $\mathrm{O}\left(22^{\prime}\right), \mathrm{O}\left(23^{\prime}\right)$, $O\left(24^{\prime}\right)$, and $S\left(2^{\prime}\right)$ are from the second sulphonate group in (2)

Vector	Torsion angle	$\stackrel{(1)}{\mathrm{O}_{3} \mathrm{SONHSO}_{3}^{2-}}$	$\stackrel{(2)}{\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}}$
$\mathrm{N}(21)-\mathrm{O}(11)$	S(2)-S(1)	132.5	116.2
	$\mathrm{S}\left(2^{\prime}\right)-\mathrm{S}(1)$		- 116.7
$\mathrm{N}(21)-\mathrm{S}(2)$	$\mathrm{O}(11)-\mathrm{O}(22)$	41.5	-69.9
	$\mathrm{O}(11)-\mathrm{O}\left(22^{\prime}\right)$		-67.1
	$\mathrm{O}(11)-\mathrm{O}(23)$	-79.2	48.9
	$\mathrm{O}(11)-\mathrm{O}\left(23^{\prime}\right)$		52.5
	$\mathrm{O}(11)-\mathrm{O}(24)$	159.9	171.4
	$\mathrm{O}(11)-\mathrm{O}\left(24^{\prime}\right)$		171.8
$\mathrm{O}(11)-\mathrm{S}(1)$	$\mathrm{N}(21)-\mathrm{O}(13)$	-58.7	-86.4
	$\mathrm{N}(21)-\mathrm{O}(12)$	62.5	27.0
	$\mathrm{N}(21)-\mathrm{O}(14)$	178.7	146.6

- 116.7°) compared with 132.5° for (1). This conformation results in subsequent distortion within the $\left(\mathrm{OSO}_{3}\right)$ group for (2) where the angle between $\mathrm{N}(21)-\mathrm{O}(11)$ and

(1)

(2)

Figure 2 Newman projections down the $\mathrm{O}(11)-\mathrm{S}(1)$ vector for $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}$ (1) and $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ (2)
$\mathrm{S}(1)-\mathrm{O}(12)\left(27.0^{\circ}\right)$ is considerably smaller than the value of 62.5° for (1) (Figure 2). For both compounds, reasonably regular staggered conformations are observed
for the oxygens of sulphonate groups about the $\mathrm{N}-\mathrm{S}$ vector.

The potassium cations are surrounded by seven $[\mathrm{K}(1)]$ and six $[\mathrm{K}(2)]$ oxygens from sulphonate groups (Figure 3) with $\mathrm{K} \cdots \mathrm{O}$ distances less than $3.1 \AA$ [range 2.701$3.008 \AA$, mean $2.831(3) \AA$]. This mean compares closely

Figure 3 Perspective view of the packing in the cell viewed perpendicular to the ac plane
with those found for $\mathrm{K}_{3}\left[\mathrm{~N}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}^{16}(2.863 \AA)$ and $\mathrm{K}_{2}\left[\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2}\right]{ }^{13}(2.89 \AA)$. Full details of the potassium environments are provided in Table 4. Only one close $\mathrm{H} \cdots \mathrm{O}$ contact interpreted as a hydrogen bond could be found $[\mathrm{H}(21) \cdots \mathrm{O}(12)(\bar{x}, \bar{y}, 1-z), 2.30(4) \AA]$.

Vibrational Investigation.-The isolated $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}$ ion is devoid of symmetry $\left(C_{1}\right)$ and hence the 27 normal modes of vibration (symmetry species A) are both i.r. and Raman active. Approximate descriptions of these modes in terms of internal co-ordinate contributions are given in Table 5. Considerable mixing of these motions is expected in the actual normal modes. In the crystal, all atoms occupy general positions and hence factor-

Table 4
Cation environment about $\mathrm{K}(1)$ and $\mathrm{K}(2)$ indicating $\mathrm{K} \cdots \mathrm{O}$ contacts $[r(\mathrm{~K}-\mathrm{O})](\AA)$ less than $3.1 \AA$. The other entries in the matrices are the angles $\left({ }^{\circ}\right)$ subtended by the two numbered atoms at the potassium

(a) $\mathrm{K}(1)$							
	r	$\mathrm{O}(13)$	$\mathrm{O}\left(22^{1}\right)$	$\mathrm{O}\left(23^{1}\right)$	$\mathrm{O}\left(24{ }^{11}\right)$	$\mathrm{O}\left(14{ }^{11 \mathrm{I}}\right)$	$\mathrm{O}\left(\mathbf{1 4}^{\mathbf{1 2}}\right)$
O(12)	2.926(3)	49.71(7)	81.14(9)	122.33(8)	72.96(10)	137.79(10)	126.89(9)
$\mathrm{O}(13)$	$2.801(3)$		130.79(9)	154.49(9)	82.91(10)	129.97(9)	77.18(9)
$\mathrm{O}\left(22^{1}\right)$	2.755 (3)			48.96(9)	80.09(9)	86.00 (9)	151.93(10)
$\mathrm{O}\left(23{ }^{\text {I }}\right.$)	3.008(4)				71.82(9)	73.66 (9)	105.54(10)
$\mathrm{O}\left(24^{\text {II }}\right)$	2.751 (3)					143.59(11)	104.88(9)
$\mathrm{O}\left(14^{\text {III }}\right.$)	$2.759(3)$						73.68 (8)
$\mathrm{O}\left(14^{1 /}\right)$	2.769(3)						
(b) $\mathrm{K}(2)$							
	r	O(23)	$\mathrm{O}\left(24^{\mathrm{v}}\right)$	$\mathrm{O}\left(\mathbf{2 2}^{\mathbf{v 1}}\right)$	$\mathrm{O}\left(12^{\text {v11 }}\right)$	$\mathrm{O}\left(11^{\text {IV }}\right.$)	
O(13)	$2.904(3)$	76.07(8)	146.82(10)	74.06(8)	141.96(9)	79.36(8)	
$\mathrm{O}(23)$	2.701 (3)		105.76(9)	111.40(10)	94.24 (9)	137.46(9)	
$\mathrm{O}\left(24^{\mathbf{v}}\right.$)	$2.845(3)$			121.33(8)	$71.18(9)$	77.91 (9)	
$\mathrm{O}\left(222^{\mathbf{v I}}\right)$	2.776(3)				75.73(8)	94.18 (9)	
$\mathrm{O}\left(12^{\mathrm{VII}}\right)$	2.958(3)					128.62(8)	
$\mathrm{O}\left(11^{\text {IV }}\right.$)	2.846(3)						

Roman numeral superscripts refer to the following transformations of the asymmetric unit:
$\mathrm{I}(x, y, z-1) ; \operatorname{II}\left(\frac{1}{2}-x, \frac{1}{2}+y, 1-z\right) ; \operatorname{III}\left(\frac{1}{2}-x, y-\frac{1}{2}, 1-z\right) ; \operatorname{IV}\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right) ; \mathrm{V}(1-x, \bar{y}, 2-z) ;$ VI $\left(\frac{1}{2}-x, \frac{1}{2}+y, 2-\right.$ $z) ; \operatorname{VII}\left(\frac{1}{2}+x, \frac{1}{2}-y, 1+z\right)$
group analysis gives the vibrational representation shown in Table $6(a)$ (acoustic modes omitted). The A_{g} and B_{g} modes are Raman active only whereas the A_{u} and B_{u} modes are i.r. active only. The correlation

Table 5
Approximate internal co-ordinate contributions to the vibrational modes of $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}\left(C_{1}\right)$ and $\mathrm{O}_{3} \mathrm{SON}-$ $\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}\left(C_{s}\right)$

$\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}$	$\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$	
A		$\mathrm{N}-\mathrm{H}$ stretch
A	$A^{\prime}+A^{\prime \prime}$	$\mathrm{N}-\mathrm{S}$ stretches
A	A^{\prime}	$\mathrm{N}-\mathrm{O}$ stretch
3A	$3 A^{\prime}+3 A^{\prime \prime}$	(N)S-O stretches
3 A	$2 A^{\prime}+A^{\prime \prime}$	(O)S-O stretches
A	A^{\prime}	$\mathrm{S}-\mathrm{O}(\mathrm{N})$ stretch
A		HNS deformation
A		HNO deformation
	A^{\prime}	NS_{2} deformation
A	$A^{\prime}+A^{\prime \prime}$	SNO deformations
A	A^{\prime}	NOS deformation
3 A	$3 A^{\prime}+3 A^{\prime \prime}$	(N) SO_{3} deformations
3 A	$2 A^{\prime}+A^{\prime \prime}$	(O) SO_{3} deformations
$2 A$	$2 A^{\prime}+2 A^{\prime \prime}$	(N) SO_{3} rocks
$2 A$	$A^{\prime}+A^{\prime \prime}$	(O) SO_{3} rocks
A	$A^{\prime}+A^{\prime \prime}$	(N) SO_{3} torsions
A	$A^{\prime \prime}$	(O) SO_{3} torsion
A	$A^{\prime \prime}$	OSO_{3} torsion*

* About the $\mathrm{O}-\mathrm{N}$ bond.
between point, site, and unit-cell symmetry species is given in Table 7(a).
For an isolated $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ ion of C_{s} symmetry, the 36 normal modes of vibration belong to the symmetry species $20 A^{\prime}+16 A^{\prime \prime}$. Both species are i.r. and Raman active. Approximate descriptions of these modes are compared with those of $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}$ in Table 5. Crystals of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ have the space symmetry $I 2 / c$ (standard space group $C 2 / c$) with eight formula units per monoclinic unit cell. ${ }^{2}$ The oxygen atoms of one type of water molecule $\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]$ lie on twofold rotation axes (C_{2} sites) whereas all other atoms are on general sites. Therefore, factor-group analysis gives the vibrational representation shown in Table 6(b). Also, the correlation between point, site, and unit-cell symmetry species is shown in Table $7(b)$. The i.r. and Raman spectra of polycrystalline $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ and $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ at 77 K are shown in Figures 4 and 5 respectively. The observed frequencies (including those for the ${ }^{15} \mathrm{~N}$ and ${ }^{2} \mathrm{H}$ derivatives) and their assignments are given in Table 8. Frequencies observed for aqueous solutions of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right], \mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SON}\right.$ -

Table 6
Vibrational representations for (a) $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$

$$
\text { and (b) } \mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}
$$

(a) Γ (internal modes) $\quad 27 A_{g}+27 B_{g}+27 A_{u}+27 B_{u}$ Γ (rotatory modes) $\quad 3 A_{g}+3 B_{g}+3 A_{u}+3 B_{u}$ Γ (translatory modes) $\quad 9 A_{g}+9 B_{g}+8 A_{u}+7 B_{u}$
(b) $\Gamma\left[\right.$ internal $\mathrm{OS}_{3} \mathrm{ON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-} 36 A_{g}+36 B_{g}+36 A_{u}+36 B_{u}$ modes]
$\begin{array}{ll}\Gamma \text { (internal } \mathrm{H}_{2} \mathrm{O} \text { modes) } & 5 A_{g}+4 B_{g}+5 A_{u}+4 B_{u} \\ \Gamma \text { (rotatory modes) } & 7 A_{g}+8 B_{g}+7 A_{u}+8 B_{u}\end{array}$
$7 A_{g}+8 B_{g}+7 A_{u}+8 B_{u}$
$16 A_{g}+17 B_{g}+15 A_{u}+15 B_{u}$
$\left.\mathrm{DSO}_{3}\right]$, and $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ are also given in Table 8. Symmetry species given in the table refer to vibrations of the $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}^{3-}$ ion.
$N-H$ Modes. The $\mathrm{N}-\mathrm{H}$ stretching-mode assignment for $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ is straightforward $[v(\mathrm{H}) / v(\mathrm{D})=$ 1.35]. The $1433 \mathrm{~cm}^{-1}$ band in the aqueous solution i.r. spectrum is assigned to the NHS deformation on the basis of its isotopic (D) frequency ratio (1.41) and by analogy with the frequency of the substantially HNS bending mode of hydroxylamine- N-sulphonate, K$\left[\mathrm{HONHSO}_{3}\right]\left(1450 \mathrm{~cm}^{-1}\right) .{ }^{19}$ These assignments are in agreement with those reported. ${ }^{1}$ Bands at ca. $1060 \mathrm{~cm}^{-1}$ in the polycrystalline spectrum which shift to $c a .820 \mathrm{~cm}^{-1}$ on deuteriation $[v(\mathrm{H}) / v(\mathrm{D})=1.30]$ can then be assigned to the HNO deformation. The i.r. band ($1061 \mathrm{~cm}^{-1}$) assigned to this mode was attributed to $\mathrm{S}-\mathrm{O}$ stretching. ${ }^{1}$

Skeletal stretching modes. In the aqueous solution Raman spectrum of the trisulphonate, four bands are observed in the $700-1000 \mathrm{~cm}^{-1}$ region which may only be ascribed to the skeletal stretching modes, $v(\mathrm{~N}-\mathrm{O})\left(A^{\prime}\right)$, $v[\mathrm{~S}-\mathrm{O}(\mathrm{N})]\left(A^{\prime}\right), v(\mathrm{~N}-\mathrm{S})\left(A^{\prime}\right)$, and $v(\mathrm{~N}-\mathrm{S})\left(A^{\prime \prime}\right)$. Three of these bands $\left(930,757\right.$, and $708 \mathrm{~cm}^{-1}$) are definitely polarized and hence the feature of uncertain polarization at $820 \mathrm{~cm}^{-1}$ may confidently be assigned to the anti-

Table 7
Correlation schemes for (a) $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ and
(b) $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$

symmetric $\mathrm{N}^{-\mathrm{S}}$ stretch $\left(A^{\prime \prime}\right)$. Both A_{u} and B_{u} components are observed in the polycrystalline i.r. spectrum and a frequency shift of $25 \mathrm{~cm}^{-1}$ is observed on ${ }^{15} \mathrm{~N}$ substitution. The $757 \mathrm{~cm}^{-1}$ band is assigned to the symmetric $\mathrm{N}-\mathrm{S}$ stretch $\left(A^{\prime}\right)$, which is expected to occur at a lower frequency than the antisymmetric mode [cf. $\left.\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-16}\right]$. The $708 \mathrm{~cm}^{-1}$ band, which appears as a doublet in the polycrystalline i.r. spectrum has a counterpart in the i.r. spectrum of $\left[\mathrm{NH}_{3}\right]\left[\mathrm{OSO}_{3}\right]\left(712 \mathrm{~cm}^{-1}\right)^{1}$ and is assigned to $\mathrm{S}^{-} \mathrm{O}(\mathrm{N})$ stretching by analogy with the assignment made for the $\mathrm{S}-\mathrm{O}(\mathrm{S})$ stretching modes of disulphate, $\mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}\left(v_{\text {sym }} 730, v_{\text {asym }} 790 \mathrm{~cm}^{-1}\right) .{ }^{20}$ The $\mathrm{S}-\mathrm{O}(\mathrm{S})$ bond length of $\mathrm{K}_{2}\left[\mathrm{~S}_{2} \mathrm{O}_{7}\right][1.645(5) \AA]^{21}$ is similar to that found for $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}[1.644(2) \AA]^{2}$ and $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right][1.632(3) \AA]$. Therefore, the $930 \mathrm{~cm}^{-1}$ band, which splits into two components in the poly-
crystalline Raman spectrum $\left(A_{g}, B_{g}\right)$, is assigned to the $\mathrm{N}-\mathrm{O}$ stretch. This assignment is supported by a shift of $17 \mathrm{~cm}^{-1}$ on ${ }^{15} \mathrm{~N}$ substitution.

Bands in the $700-1000 \mathrm{~cm}^{-1}$ region of the disulphonate spectrum are assigned by analogy with those
$\left(\mathrm{SO}_{3}\right)_{\mathbf{2}^{3-}}$ ion may, for the purpose of the following discussion, be considered to be comprised of a disulphonate $\left[-\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}\right]$ and a monosulphonate $\left(-\mathrm{OSO}_{3}\right)$ fragment. Two polarized bands (1062 and $1091 \mathrm{~cm}^{-1}$) are observed in the $\mathrm{S}-\mathrm{O}$ stretching region for this species and are

Figure 4 Infrared ($400-4000 \mathrm{~cm}^{-1}$) (a), Raman (b), and far-i.r. (c) spectra of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ at 77 K
discussed above. The $\mathrm{S}-\mathrm{O}(\mathrm{N})$ stretch, which appears as a doublet at $732-742 \mathrm{~cm}^{-1}\left(A_{u}, B_{u}\right)$ in the i.r. spectrum of the solid, shifts by $8-9 \mathrm{~cm}^{-1}$ on ${ }^{15} \mathrm{~N}$ substitution. On deuteriation the shift is greater (ca. $17 \mathrm{~cm}^{-1}$), probably because of coupling with the DNO deformation. The $\mathrm{N}-\mathrm{S}$ stretch, which splits into two components (792$\left.810 \mathrm{~cm}^{-1}\right)\left(A_{g}, B_{g}\right)$ in the polycrystalline Raman spectrum, shifts by $6 \mathrm{~cm}^{-1}$ on ${ }^{15} \mathrm{~N}$ substitution. The skeletal stretching mode assignments are in agreement with those proposed ${ }^{1}$ although these workers did not assign symmetry species to any vibrations.
$S-O$ (Sulphonate) stretching modes. The $\mathrm{O}_{3} \mathrm{SON}$ -
accordingly assigned to A^{\prime} modes. Also, the very weak band at $1043 \mathrm{~cm}^{-1}$ and the intense band at $1046 \mathrm{~cm}^{-1}$ in the Raman and i.r. spectra respectively of the solid may be assigned to an A^{\prime} mode since all $\mathrm{S}-\mathrm{O}$ stretches below $1100 \mathrm{~cm}^{-1}$ in the disulphonate $\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}\left(C_{2 v}\right)^{16}$ and the monosulphonate $\mathrm{NH}_{2} \mathrm{SO}_{3}^{-}\left(C_{s}\right)^{22}$ are totally symmetric. The remaining six $\mathrm{S}-\mathrm{O}$ stretches of $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ $\left(2 A^{\prime}+4 A^{\prime \prime}\right)$ are crowded together in the $1200-1300$ cm^{-1} region and hence no distinction can be made between the polarized and depolarized components in the aqueous solution spectrum. However, the six modes can be distinguished in the polycrystalline spectrum and the
two at lowest frequency are tentatively assigned to the A^{\prime} modes. One of the latter gives a doublet in the i.r. and the mode of highest frequency gives doublets in both the i.r. and Raman. The assignment of the bands to the six S-O stretches of $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ is straight-
rocking modes [cf. $\mathrm{NH}_{2} \mathrm{SO}_{3}^{-}\left(C_{s}\right): \delta\left(\mathrm{SO}_{3}\right) 586\left(A^{\prime}\right)$, $599\left(A^{\prime \prime}\right), 504 \mathrm{~cm}^{-1}\left(A^{\prime}\right) ; \rho\left(\mathrm{SO}_{3}\right) 403\left(A^{\prime \prime}\right), 363 \mathrm{~cm}^{-1}$ $\left.\left(A^{\prime}\right)\right] .{ }^{22}$ Also, modes involving mainly skeletal deformations are expected to occur below those involving mainly SO_{3} group motion, as in the case of the stretching

(c)

Figure 5 Infrared ($400-4000 \mathrm{~cm}^{-1}$) (a), Raman (b), and far-i.r. (c) spectra of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ at 77 K
forward. In the polycrystalline spectrum, two of these give doublets in the i.r. and two give doublets in both the i.r. and Raman. For both species, all bands in the $1000-1300 \mathrm{~cm}^{-1}$ region have been assigned to $\mathrm{S}-\mathrm{O}$ stretches. ${ }^{1}$

Other modes of the anionic species. The SO_{3} and skeletal bending and the SO_{3} rocking modes are located below $700 \mathrm{~cm}^{-1}$. Although considerable vibrational coupling between these vibrations is expected, modes having predominantly SO_{3} bending character probably occur at higher frequencies than predominantly SO_{3}
modes. Aqueous solution polarization data could be obtained for less than half of the modes below $700 \mathrm{~cm}^{-1}$ for both species and hence some bands are tentatively assigned to particular symmetry species by analogy with the spectrum of $\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-} .{ }^{16}$

In the $450-700 \mathrm{~cm}^{-1}$ region of the polycrystalline trisulphonate spectrum, bands ascribable to the full complement of nine SO_{3} deformations are observed. Three of these can be assigned symmetry species on the basis of their polarizations [522 $\left.\left(A^{\prime}\right), 545\left(A^{\prime \prime}\right), 594\left(A^{\prime \prime}\right)\right]$. The $522 \mathrm{~cm}^{-1}$ band gives doublets in both the i.r. and Raman

Table 8
Observed frequencies and assignments for the $\mathrm{O}_{3} \mathrm{SONHSO}_{3}{ }^{2-}, \mathrm{O}_{3} \mathrm{SONDSO}_{3}{ }^{2-}$, and $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ ions, and polycrystalline $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$ and $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and their ${ }^{15} \mathrm{~N}$ and ${ }^{2} \mathrm{H}$ derivatives at 77 K ($\mathrm{p}=$ polarized, dp $=$ depolarized $)$

Table 8 (Continued)
 from $v(\mathrm{O}-\mathrm{H})\left(A^{\prime}\right)(\mathrm{HDO})$.
spectra of the solid. This band, and those at 461 and $671 \mathrm{~cm}^{-1}$ in the Raman spectrum of the solid, correspond to $\mathrm{N}\left(\mathrm{SO}_{3}\right)^{3-}$ bands at $529\left(A_{1}\right), 456\left(B_{1}\right)$, and $687 \mathrm{~cm}^{-1}$ $\left(A_{1}\right)$ respectively * and therefore may be assigned to symmetric (A^{\prime}) modes of the disulphonate fragment. The remaining two symmetric modes arise from the $-(\mathrm{O}) \mathrm{SO}_{3}$ group. Bands at 614,574 , and $567 \mathrm{~cm}^{-1}$ in the i.r. spectrum of $\left[\mathrm{NH}_{3}\right]\left[\mathrm{OSO}_{3}\right]\left(C_{s}\right)$ have been ascribed to SO_{3} deformations but symmetry species have not been assigned. ${ }^{1}$ However, the $\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ bands at 622 and $565 \mathrm{~cm}^{-1}$ in the Raman spectrum of the solid are tentatively given to the A^{\prime} modes. The frequencies of bands assigned to $A^{\prime \prime}$ modes (545, ca. 580, 594, ca. 610 cm^{-1}) are similar to other $\delta\left(\mathrm{SO}_{3}\right)$ modes of $\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}$ $\left[545\left(B_{2}\right), c a .580\left(A_{2}\right), 610 \mathrm{~cm}^{-1}\left(B_{2}\right)\right]$ and $\left[\mathrm{NH}_{3}\right]\left[\mathrm{OSO}_{3}\right]$ ($574 \mathrm{~cm}^{-1}$). The highest frequency $A^{\prime \prime}$ mode gave doublets in both the i.r. and Raman spectrum of the solid. In all, nine Raman and six i.r. features belonging to six SO_{3} deformations were observed in the spectrum of polycrystalline $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right]$.
The Raman band at $430 \mathrm{~cm}^{-1}$ in the trisulphonate spectrum has a counterpart in the $\left[\mathrm{NH}_{3}\right]\left[\mathrm{OSO}_{3}\right]$ spectrum ($442 \mathrm{~cm}^{-1}$) and is given to both the A^{\prime} and $A^{\prime \prime}$ rocking modes of the $-(\mathrm{O}) \mathrm{SO}_{3}$ group. The assignment of the polarized band at $298 \mathrm{~cm}^{-1}$ and the depolarized band at $332 \mathrm{~cm}^{-1}$ to $2 A^{\prime}$ and $A^{\prime \prime} \mathrm{SO}_{3}$ rocking modes respectively is straightforward. The former gives a doublet and a singlet in the Raman and two doublets in the i.r. spectrum of the solid, while the latter gives a doublet in the Raman.

[^2]Assignments made for the remaining $A^{\prime \prime}$ rocking mode of the trisulphonate, the four rocking modes of the disulphonate, and the skeletal deformation modes of both species are based mainly on a comparison of the spectra. The assignment of the i.r. band at $181 \mathrm{~cm}^{-1}$ to the NS_{2} deformation of the trisulphonate is consistent with the comparable mode of $\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}{ }^{3-}\left(190 \mathrm{~cm}^{-1}\right)$. No assignment is made for the SO_{3} or OSO_{3} torsional modes, which are expected to occur below $50 \mathrm{~cm}^{-1}$. All bands below $700 \mathrm{~cm}^{-1}$ have been assigned to SO_{3} deformations. ${ }^{1}$
Internal water modes of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$. Bands are assigned to the internal modes of $\mathrm{H}_{2} \mathrm{O}$ on the basis of their isotopic (D) frequency shifts. In the $\mathrm{O}-\mathrm{H}$ stretching region, four Raman and four i.r. bands are observed. The two bands of lower frequency in each spectrum are tentatively given to $\mathrm{H}_{2} \mathrm{O}(2)$ modes (A_{1} and B_{2}) on the basis of the greater involvement in hydrogen bonding than $\mathrm{H}_{2} \mathrm{O}(1) .{ }^{2}$ The hydrogen atoms of the latter, related by a crystallographic two-fold axis through the molecule, are involved in weak bifurcated hydrogen bonds with $\mathrm{H}-\mathrm{O}\left(\mathrm{SO}_{3}\right)$ distances of 2.30 and 2.37 \AA. For $\mathrm{H}_{2} \mathrm{O}(2)$ however, one hydrogen atom forms a normal hydrogen bond $\left[\mathrm{H}-\mathrm{O}\left(\mathrm{SO}_{3}\right)\right.$ distance $2.02 \AA$] while the other is involved in a very weak bifurcated bond [$\mathrm{H}-\mathrm{O}\left(\mathrm{SO}_{3}\right)$ distances 2.49 and $2.46 \AA$].
The two i.r. features observed in the HOH deformation region persist in the $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{D}_{2} \mathrm{O}$ spectrum where the concentration of the $\mathrm{H}_{2} \mathrm{O}$ species is estimated to be $\mathbf{4} \mathrm{mol} \%$. Significant correlation coupling cannot occur at this concentration and hence these bands may be ascribed to different types of $\mathrm{H}_{2} \mathrm{O}$ molecules. The
higher frequency component is assigned to $\mathrm{H}_{2} \mathrm{O}(2)$ on the basis of its greater involvement in hydrogen bonding.
In the O^{-D} stretching region, five Raman and seven i.r. bands are observed. However, owing to incomplete deuteriation, some of these are probably due to the HDO species. Therefore, the assignment of bands in this region is assisted by the changes which occur for samples having varying degrees of deuteriation.

The i.r. spectra of partially deuteriated samples of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ at 77 K in the $\mathrm{O}-\mathrm{D}$ stretching region are shown in Figure 6. In the spectrum of the least deuteriated sample (a) there are three features (2650 , 2641 , and $2580 \mathrm{~cm}^{-1}$) which can only be ascribed to the

(b)

(c)

Figure 6 Infrared spectra (KBr discs) of partially deuteriated $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ at 77 K in the $\mathrm{O}-\mathrm{D}$ stretching region
isotopically dilute HDO species ($7.7 \mathrm{~mol} \%$). The $\mathrm{D}_{2} \mathrm{O}$ concentration in this sample is $0.1 \mathrm{~mol} \%$. The presence of three bands is indicative of three types of HDO molecules in this sample and hence three types of hydrogen atoms in $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$. With further deuteriation $[(b)$ and (c)], four new bands are observed. These bands increase in intensity relative to those of HDO and are accordingly assigned to $\mathrm{D}_{2} \mathrm{O}$ modes.

Lattice modes. 16 lattice vibrations of $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\right.$ $\left.\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ are found below $200 \mathrm{~cm}^{-1}$. Some of the
lower lying modes may have some SO_{3} or OSO_{3} torsional character. Above $200 \mathrm{~cm}^{-1}$, the assignment of i.r. bands to the wagging $\left(B_{1}\right)\left(486 \mathrm{~cm}^{-1}\right)$ and rocking modes $\left(B_{2}\right)$ ($355 \mathrm{~cm}^{-1}$) of $\mathrm{H}_{2} \mathrm{O}(1)$ and to the rocking mode ($407 \mathrm{~cm}^{-1}$) of the more strongly bound $\mathrm{H}_{2} \mathrm{O}(2)$ molecule is based on their isotopic (D) frequency ratios, 1.36, 1.29, and 1.36 respectively. The $\mathrm{H}_{2} \mathrm{O}(2)$ rocking mode is also observed in the Raman spectrum. The $\mathrm{H}_{2} \mathrm{O}(2)$ wagging mode is not observed, probably because of masking by bands in the $550-600 \mathrm{~cm}^{-1}$ region. However, the corresponding $\mathrm{D}_{2} \mathrm{O}$ mode is observed in both the i.r. ($440 \mathrm{~cm}^{-1}$) and Raman (ca. $450 \mathrm{~cm}^{-1}$) spectra. The twisting modes $\left(A_{2}\right)$ are not observed. The shoulder at $348 \mathrm{~cm}^{-1}$ in the i.r. spectrum of the deuteriated sample is assigned to the $\mathrm{HDO}(2)$ rocking mode (A^{\prime}) since it is approximately midway between those of $\mathrm{H}_{2} \mathrm{O}(2)$ and $\mathrm{D}_{2} \mathrm{O}(2)$. Of the 93 lattice modes predicted for $\mathrm{K}_{3}\left[\mathrm{O}_{3} \mathrm{SON}\left(\mathrm{SO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, 20 are observed. For $\mathrm{K}_{2}\left[\mathrm{O}_{3} \mathrm{SONHSO}_{3}\right], 19$ of the predicted 45 lattice modes are observed.

The authors wish to thank the Australian Research Grants Committee for funds to purchase the i.r. and Raman spectrometers and the University of Western Australia for the use of X-ray and computing facilities. R. A. J. acknowledges the award of a Commonwealth Postgraduate Research Scholarship. G. S. thanks the Queensland Institute of Technology for leave to carry out the project.
[9/1501 Received, 21st September, 1979]

REFERENCES

${ }^{1}$ M. A. Sarukhanov, O. A. Nazarova, and N. A. Parpiev, Uzbek. khim. Zhur., 1975, 19, 12.
${ }_{2}$ G. M. Brown and O. A. W. Strydom, Acta Cryst. Sect. B., 1977, 33, 1591.
${ }^{3}$ F. Raschig, Ber. Deut. Chem. Ges., 1923, 56, 206.
${ }^{4}$ F. Raschig, Chem. Zentralbl., 1924, 6, 446.
${ }^{6}$ J. P. Candlin and R. G. Wilkins, J. Chem. Soc., 1961, 8, 3625.
${ }^{6}$ J. R. Hall and R. A. Johnson, J. Mol. Structure, 1978, 48,
${ }^{7}$ V. Seidl and O. Knop, Canad. J. Chem., 1969, 47, 1361.
${ }^{8}$ F. Raschig, Chem. Zentralbl., 1924, 6, 447.
${ }^{9}$ D. T. Cromer and J. B. Mann, Acta Cryst. Sect. A, 1968, 24, 321.
${ }^{10}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

11 D. T. Cromer, Acta Cyyst., 1965, 18, 17.
12 J. R. Hall, R. A. Johnson, C. H. L. Kennard, and G. Smith, J.C.S. Dalton, $1980,149$.
${ }_{13}$ P. G. Hodgson, F. H. Moore, and C. H. L. Kennard, J.C.S. Dalton, 1976, 1443.

14 R. L. Sass, Acta Cryst., 1960, 13, 320.
${ }_{15}$ V. Schomaker and D. P. Stevenson, J. Amer. Chem. Soc., 1941, 63, 37.
${ }_{16}$ 'J. R. Hall, R. A. Johnson, C. H. L. Kennard, G. Smith, B. W. Skelton, and A. H. White, J.C.S. Dalton, 1980, 1091.
${ }_{17}$ J. V. Tillack and C. H. L. Kennard, J. Chem. Soc. (A), 1970, 1637.
${ }_{18}$ N. C. Baenziger, R. F. Belt, and C. V. Goebel, Inorg. Chem., 1967, 6, 511.
${ }^{19}$ M. A. Sarukhanov and N. A. Parpiev, Russ. J. Inorg. Chem., 1974, 19, 480.
${ }_{20}$ G. E. Walrafen, D. E. Irish, and T. F. Young, J. Chem. Phys., 1962, 37, 662.
${ }_{21}$ H. Lynton and M. R. Truter, J. Chem. Soc., 1960, 5112.
${ }^{22}$ R. S. Katiyar, Indian J. Pure Appl. Phys., 1969, 7, 10.

[^0]: * For details see Notices to Authors No. 7, J.C.S. Dalton, 1979, Index issue.

[^1]: * Systematic name: peroxoamidosulphuric acid.

[^2]: * A_{1} and B_{1} modes become A^{\prime}, and A_{2} and B_{2} modes become $A^{\prime \prime}$ when the symmetry of $\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}^{3-}\left(C_{2 n}\right)$ is lowered to C_{4}. The representation for $\delta\left(\mathrm{SO}_{3}\right)$ of $\mathrm{N}\left(\mathrm{SO}_{3}\right)_{2}^{3-}$ is $2 A_{1}+A_{2}+B_{1}+2 B_{2}$.

