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A Non-empirical Appraisal of the Angular-overlap Model for Transition-

metal Complexes

By Jonathan Tennyson and John N. Murell,” School of Molecular Sciences, University of Sussex, Brighton

BN19QJ

Non-empirical SCF molecular-orbital calculations of the d-orbital energies in the complexes [MnFg_ ,Cl]*~
(i = 1—6) and distorted [MnF¢]*~ (k = 2 or 4) have been made within a valence-electron approximation. These
energies have been shown to be accurately modelled by a one-electron angular-overlap Hamiltonian. The
angular-overlap parameters for Cl and F have a relationship which is similar to that determined from experiment for

some chromium(lll) complexes.

DEsPITE the success of ligand-field theory in correlating
the properties, particularly spectroscopic, of transition-
metal complexes the theory has largely been confined to
high-symmetry structures: octahedral, tctrahedral, and
to a smaller extent tetragonal and square planar.
Notwithstanding the importance of these structurcs
they often have less interesting physical propertics,
particularly magnetic, than those of lower symmetry.
Ligand-field theory itself is not well suited for exten-
sion to low-symmetry complexes. The number of para-
meters required to express the full spherical harmonic
components of the ligand field is greater than the
number of determinable energy differences amongst the
d orbitals. For example, C,, symmetry requires ninc
parameters to represent those components of the ligand

such calculations cannot generally be done within the
current limits of computer time with sufficient accuracy
to reproduce experimental results.

An advantage of ab imitio calculations is that struc-
tures arc not restricted by experimental availability.
Moreover, the resulting energies obtained from such
calculations may always be completely assigned on the
basis of their orbital wavefunctions and not guecssed
from the nature of spectral appearance or correlation
within families. This suggests an alternative way to
evaluate the a.o.m. which is with a series of ab initio
calculations, some but not all of which could be compared
with experiment. This procedure is summarised in the
Scheme.

Although we can at present make only crude ab initio

Comparison

Angular Full comparison

of a complete Ab
overlap - »

set of structures
model

initio

calculations

of structures
experimentally
e

Experiment

available

SCHEME

field which have non-zero d-d matrix elements, whercas
there are only five d-orbital energies to measure.

An alternative approach is to identify the perturbing
potential with individual ligands rather than as com-
ponents of the collective potential of the whole ligand
structure. Although this approach might appear to
require more parameters it has the advantage that these
may be transferred between complexes within restricted
classes, thus increasing the data from which they may be
evaluated. This is essentially the approach introduced
first by Yamatera %2 and McClure # which has evolved
into the so-called angular-overlap model (a.o.m.). The
method has been frequently reviewed.t

Unfortunately, the analysis of low-symmetry struc-
tures is still difficult in the a.o.m. because one generally
has insufficient data for full parameterisation. This
insufficiency arises, for example, from the imperfect
resolution of electronic spectra and the failure to syn-
thesise and isolate key complexes.

Ab initio calculations provide, in principle, a basis for
deciding that a spectral observation is consistent with
an assuimmed structure but give little in the way of
physical explanation of spectral patterns. [n practice

calculations on transition-metal complexes compared to
what is currently possible on light-atom molecules, it is
not unreasonable to assume that if crude ab nitio
calculations confirm the general principles of the a.o.m.
then accurate ab znitio calculations would do likewise.
The precise values of the angular-overlap parameters
deduced by such comparisons would of course depend on
the quality of the calculations.

In this paper we compare angular-overlap and ab
tnitio calculations on two series of complexes. The
first is the series [Mn[, ,CL)* (8 =2 or 4, ¢ = 1—6).
The complexes are assumed to have octahedrally directed
bonds (are orthoaxial). The second is the series [MnFg]+~
(£ = 2 or 4), in which the metal-ligand bond directions
are displaced from octahedral.

CALCULATIONS ON ORTHOAXIAL COMPLEXES

[MnX,]?*" is a @® system and in an octahedral field the
ground state is *4,,. Excited doublet states are sufficiently
high in energy that the ground state is also a quartet in all
lower-symmetry structures that we examined. [MnX]*~
is d®> and in a weak octahedral field the ground state is
64,,. The ground states of both [MnF}*~ and [MnClg*
are known to have this designation and it is reasonable to
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assume that all systems we considered of lower symmetry
are sextet states.

To make the calculation computationally inexpensive
we have chosen a non-empirical valence-electron model?
rather than full ab initio calculations. The model has been
fully described in previous papers and used for predictive
purposes.®® Because all the complexes have the same
number of valence orbitals the convergence of the SCI°
procedure for the whole series can be started from the
converged vectors of a high-symmetry member of the
series, and this gave a significant saving in computer time.

Metal-halogen bond lengths were taken from the experi-
mental values of [MnFg]2~ and [MnClg]?™ in K,[MnX,]: 10:11
Mn—F 1.74, Mn—Cl 2.28 A, They were assumed constant
for all compounds including the d® complexes; this assump-
tion enabled us to use a common set of integrals for d* and
ds5 calculations.

To further limit the computational requirements we
restricted the orbital basis to a minimal description of the
halogen ligands. It is not too expensive to take a larger
basis for the metal, for example, choosing d orbitals at the
double-zeta level, but such an unbalanced basis set may
lead to a charge distribution which is far from the correct
value. Preliminary calculations showed that with a
double-zeta d basis the diffuse component of the 3d orbital
was compensating for a relatively poor description of the
ligands. The basis used is described in Table 1. We are

TABLE 1

Summary of the basis *

Atom type Core orbitals Valence orbitals
Mn 1s, 2s, 2p STO-3G 3s, 3p STO-3G
3d 5G
4s, 4p 1G
F 1s STO-3G 2s STO-3G
2p 4G
Cl 1s, 25, 2p STO-3G 3s, 3p STO-3G

* STO-3G using exponents of E. Clementi and D. L.
Raimondi, J. Chem. Phys., 1963, 38, 2686; 5G, compact part
of the double-zeta basis of P. J. Hay, J. Chem. Phys., 1977,
66, 4377; 1G, single Gaussian with exponent 0.32 after J.
Demuynck, A. Veillard, and V. Waulgren, . Amer. Chem.
Soc., 1973, 95,5563, 4G, four-Gaussian fit to the Hartree—
Fock 2p atomic orbital (R. F. Stewart, J. Chem. Phys., 1969,
50, 2485.

making no claim that this is optimal for its size for the
systems studied but we believe it has a reasonable com-
promise between balance and accuracy for our purposes.

Examination of the orbital wavefunctions showed that
the singly occupied orbitals for 4% systems were 959%,
composed of d functions and the same was true of the singly
occupied orbitals and two lowest virtual orbitals in the @*
systems.

Figurc 1 shows the orbital energies calculated for the
series [MnF,; ,CL;]*" in a way that brings out the orbital
corrclations in the seriecs. The occupied-virtual splitting
in the d* ions is much larger than the corresponding splitting
in d® and this is a property of the SCF Hamiltonian. To
obtain a t,—e¢, splitting for the @’ case that can be directly
compared to experiment it would be necessary to make a

Figure 1 Calculated orbital energics for the series [MnlI7g—,Cl}4~
transformed according to equation (1): & = 2 (a, b) or 4(c, d);
£(6) — I£(0) = 0.0067 (a), —0.0352 (b), —0.1275 (c), or
—0.2037 E,, (d). The lines which pass through or close to
calculated points have been inserted to bring out more clearly
the pattern between the calculated orbital energies
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separate calculation on a configuration with the ¢, orbital
occupied.

We shall separately consider the behaviour of the ¢; and
t,, sets of both ion types. A f,,set is defined as the orbitals
that originate as 4, in octahedral symmetry and which are
split in lower symmetries. Within each set we make a
linear transformation such that the orbital energies of the
two octahedral ions are equal. This can be achieved by
defining an energy E’ as in equation (1) where E(¢) is an

E'(@) = E@i) + [(3 — 9)/6][E(6) — E(0)] ()

orbital energy of a complex with ¢ chlorine ligands. There
will be one such transformation for each of the four sets.
Energy differences for isomers within a set are unaffected
by the transformation. The calculated values of E’(i) are
shown in Figure 1.

The symmetry apparent in Figure 1 leads one to expect
that the orbital energies can be represented by an empirical
Hamiltonian of simpl: form, possibly a one-electron
Hamiltonian. Points to be noted are: (a) the symmetry
centre shown by each #,, and ¢, orbital set at the degenerate
(e) orbital for the fac-(MnF,Cl]#" structure; () the existence
of near degeneracies such as those in the #,, orbital set
between b, and b, orbitals for ¢is-[MnX,Y,*", and a, and
e, orbitals of ¢is- and trans-[MnX,Y,]¥"; (¢) the splittings
of both the t,, and ¢, are twice as large for frans-[MnX,Y, ]+
as for [MnX,Y)}*"; (d) that the f,, orbital set forms a
parallelogram grid [shown particularly in Figure 1(d)];
and (e) the mirror planes in the horizontal and vertical axes
through the symmetry centre of the ¢, sets.

MODEL HAMILTONIANS

Before turning to the angularly distorted structures, we
establish a model one-electron Hamiltonian whose eigen-

H = T§_ Ak (2)
Al = dp|Ald,s> = e, (3)
Ajy = {dn|Aldy) = ¢, (4)

Ay = Ay AVdy> = e, (5)

Ay = (dry|Aldpy> = € (6)

Ay = {dyp_p|Aldar 2> = e (7)
A% = FO (6;,¢1) A'FD (64, %) (8)

values simulate the calculated orbital energies of the last
section and which is consistent with the basic tenets of the
angular-overlap model. We assume that the Hamiltonian

31 4 3cos20) 0
(34/2)sin¢gsin26 cos¢pcost

@ = | (31/2)cospsin20 —singcoso
(3t/4)sin24(1 — cos20) cos2¢sind
(3t/4)cos24(1 — cos26) —sin2¢sing

is the sum of separate operators A¥ for each ligand (k)
[equation (2)] and that A¥ is invariant to rotation about the
M-X¥ bond (we only consider linearly ligating ligands).
Thus the 5 X 5 d orbital matrix of any A* can be diagonal-
ised to o, w(2), and 8(2) components. This allows the effect
of an individual ligand to be parameterised by three matrix
elements.

* To conform with convention these are given the symbol e,

which we trust will not be confused with the group-theory
symbol.
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Taking M—X! to define the z direction, the matrix of Alis
diagonal with elements (3)—(7).* The matrix AF will
therefore be obtained from 4! by the matrix transformation
(8) where F(V is the orthogonal matrix known as the
angular-overlap matrix [equation (9)]. For example, for a
ligand on the x axis [ligand 2 with polar co-ordinates
(r/2, 0)], application of (9) gives (10), and for ligand 3 on the
¥ axis we obtain (11). As the d-orbital basis is of even

[ 1(es + 3es) 0 0 0 — (34 (eq — c8)]
0 es 0 0 0
A? = 0 0 [ 0 0 (10}
0 0 0 Cx 0
| — (3 /4)co—cs) O 0 0 1(3c, + co) ]
[ }es -+ 3es) 0 0 0 (3 {eo — c5) ]
0 Cx 0 [}] 0
A% = 0 0 cs 0 0 (11)
0 0 1] [ l]
L (34/4)(co —e5) O 0 0 1(3co + co)

inversion symmetry, elements of A* are the same for ligands
along the positive and negative directions of a Cartesian

axis.
If the matrix / is constructed for an octahedral complex
[(tyy) = 4e, -+ 2e;

I(e,)

(12)

= 3e, + 3des (13)

from the 4% matrices defined above, then its eigenvalues
areasin (12) and (13). The splitting between the two levels
is as in (14).

Ayt = 3e, — 4e, + €; (14)

For a mixed-ligand complex [MnF_;Cl;}*" the eigenvalues
can be expressed in terms of e, for Cl and F ligands or the
difference between them if any two members of the series
are compared. We thus define a set of parameters (15) in

fy = ey(Cl) — e,(F) where A = o, 7, or 3 (15)

terms of which we can represent all such differences. If
however we scale our energies according to the same formula
as (1) then the eigenvalues of H’ [equation (16)] can Dbe

H'(i) = H (@) + [(3 — 9)/6][H(6) — 1{(0)]  (16)

expressed in terms of two parameters: {', = f, — f5 for the
e, set and f', = f; — f5 for the f,; set. The splittings
expressed in these units are relative to mean values of
i(2, + f5) and (3i/2)(f, + f5) for the /4,; and e, orbital sets
respectively and are given in Table 2.

—(31/218in20 0 (31/4)(1 — cos20)
singcos29 — cosgsind — singsin26

cos$cos26 singsint — Jcosgsin20 (9
$sin24sin26 cos2¢pcosh 1sin24(3 + cos29)
bcos2¢sin20 —sin2¢$cosl 1c032¢4(3 + cos2b)

We note that as we have the absolute values for the
orbital energies it is possible to determine all three f,
parameters whereas only information about the splittings
is required to get the two i’y parameters. Experimentally
it is usually only possible to obtain information about the
splittings and not the absolute energies. Thus e, para-
meters [equation (17)] are generally deduced from experi-
ment.

e’y =¢ey —e;where A =corm

()
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PARAMETER FITTING

In contrast to the usual experimental situation, from
calculation we have more data than parameters: 38
distinct orbital energies for each (MnF,_;,Cl;}* series to fit
three f, parameters. We can thus adopt a least-squares

TABLE 2
Coefficients of the f’, parameters for all complexes con-

sidered: A = o for the ¢; set and A = = for the /,, set.
The eigenvalues have been identified by the d-orbital

Cartesian equivalent, although for c¢is and mer
complexes there is mixing of these
i 0 1 2 2 3 3 4 4 5 6
Isomer cis trans fac wmer cis trans
22 0} —-L 1 0 @342 § -1 —} 0
2 -2 0 —1} : -1 0 —(34/2) —} 1 3 0
xy 0 —% —f —¢ 0 1 § & : 0
¥z 0 1 —1 t 9 0 1 - -1 0
ys o % % 0 -1 -3 -5 -1 0
fit using suitable differences between members of the

series.  Since the equations relating parameters and energies

are linear this fitting can be accomplished analytically.
From the transformed energies (11) optimum values of

", and 1’ are calculated and each of the means provides a

J.C.S. Dalton

separate fitting to f5. In fact the separate fittings give
almost the same value for fs (0.003 4E;, and 0.003 6F;, for
the dinegative ions and —0.026 0E}, and —0.025 8E,, for the
tetranegative ions). We have therefore used an average
in each case; the optimum f, parameters are given in Table
3.

A comparison of the calculated and model orbital energies
is shown in Figure 2. The poorest fitting is for the #,, set of

TABLE 3

Optimised f, parameters (in E}) * for the series
[MnF_CL,)* (i = 1—6)

fo fa fs
ko= —0.0156 —0.0001 0.0035
k— 4 —0.0425 —0.0339 —0.0259

* Throughout this paper: 1E, = 2 626 k] mol™®,

the dinegative complexes [Figure 2(h)] and this is to be
expected from I'igure 1(h) which has a less perfect symmetry
than the others; however, we note the greatly expanded
energy scale of Figure 2(h) compared to the others.

From Table 3, f, is much larger than f, and {5 as is
expected. Tt must be remembered that these parameters
represent the difference between Cl and IF ligands and we are
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Ficure 2
k = 2 (a, b) or 4(c, d).

Comparison of the calculated (ab initio) and model orbital energies (in I£),) obtained fromn optimised parameters (Table 3):
The lines at 45° are to emphasize where points of an exact fit should lie


http://dx.doi.org/10.1039/DT9800002395

1980

led to conclude that there is a larger difference in ¢ metal-
ligand interaction between these ligands than there is
between n and & interaction. Whether the term ‘iuter-
action’ can be replaced by ‘ bonding’ is arguable. Since
there are no d orbitals on the ligands there is no § bonding in
the normal sense, but a § electrostatic effect is present.

THE EFFECT OF ANGULAR DISTORTIONS

To examine the predictions of the angular-overlap model
for bond-angle distortion we have studied the change in
orbital energies of [MnFg*~ (£ = 2 or 4) when the two z-
axis ligands are displaced to polar angles (0, ¢) and (x — 0. ¢)
respectively. All Mn—I* bond lengths were kept constant.
The lowest symmetry of the distorted complex is C,.
Calculations were made for 6 = 5 and 10° with ¢ = 0,
15, 30, and 45° (values of ¢ outside this range are related by
symmetry).

Ior all values of ¢ the orbital energies in the e, and £, sets
were found to vary as sin? over the range of § examined.
We therefore show in Table 4 the energies relative to the

TABLE 4
Calculated orbital-energy differences (in  I£}) between
distorted (with 6 = 10°) and undistorted [MnF J*".
The eigenvalues are the Cartesian components of the
dominant d orbital; for ¢ = 45° the ¢, components
are yz — xz, xy, and yz 4 xz respectively

é/° 0 15 30 45
(a) B = 2 2* —0.0042 —0.0042 —0.0041 —0.0041
¥ — y*  0.0052 0.0051 0.0050 0.0049
by £ =2 yz 0.0032 0.0031 0.0028 0.0027
xy 0.0050 0.0049 0.0049 0.0049
xz 0.0119 0.0120 0.0122 0.0123
(¢) k=4 :* —0.0080 —0.0080 —0.0080 —0.0080
x* — yr  0.0005 0.0003 0.0002 0.0002
(d) kh =4 yz —0.0012 —0.0013 —0.0014 —0.0015
xy 0.0003 0.0003 0.0003 0.0003
xz 0.0045 0.0046 0.0047 0.0048

undistorted structure for 0 = 10° only. The most striking
feature of these results is that the dependence on ¢ is very
weak.

Looking at the results in the spirit of the a.0o.m. described
in Model Hamiltonians, the perturbation Hamiltonian
(i.e. the difference between H for the distorted and un-
distorted structures) for the displaced structure is, from (8),
given by equation (18). From (9) the matrix H’(9, ¢) can
be shown to have the non-zero elements (19)—(24) which

H(8, ¢) = @) (B, §)ALFO(0, §) +
Fm — 0, A FO(r — 0, §) — 241 (18)

H'y = —3(5 + 3cos20)(1 — cos20)e’, + sin®20 e’, (1Y)
H’yg = H'yy = (34/8)(1 — cos20)(1 + 3cos20) —

(33/2)sin220 e’ (20)

H'yy — —2sin® ¢, (21)

H’yy = $sin220 e’, — 2sin220 e, (22)
H’yy = 2sin%0 ¢, (23)

H’gs = 3(1 — cos20)®e’, + 3sin?20¢’, (24)

depend on the e’y parameters defined by (17). The only
non-zero off-diagonal element is H’;; = (z2|H’|x% — ¥
which is at first sight surprising because for a general angle
¢ the matrix should be symmetry factorised into 3 x 3
(symmetry A4’) and 2 x 2 (4”) blocks. The angular-
overlap Hamiltonian (for linearly ligating ligands) therefore
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lias a higher synimetry within a d-orbital basis than the full
Hamiltonian.

We note the following properties of H’. (i) The elements
have no dependence on ¢. (i3) The orbital energies can
be shown to have a sin?0 dependence for small values of 6.
The diagonal ¢, block of H’ depends on sin?0 or sin22
(which is approximately 4sin?§ for small 8). For the ¢,
block the trace of the 2 X 2 matrix is as in equation (25)
and the determinant is as in (26). It follows that the
cigenvalues which obey equation (27) will depend on sin20.

T o= (27, — 3e’)sin220 (25)
D = - 3sin%f(e’,)? (26)
A TA+4+ D=0 (27)

(#27) The trace of H” (the average energy of the d orbitals) is
independent of (0, ¢).

Points (¢) and (4¢) are consistent with the calculated
results shown in Table 4, but point (#i2) is not. The net
shift of the orbital energies is not predicted by the a.o.m.
and we deduce that it arises from a charge redistribution on
the complexes as they are distorted. A Mulliken popul-
ation analysis of the orbitals confirms this and shows an
electron shift from the ligands to the metal which is pro-
portional to sin?6.

In order to fit the changes in calculated orbital energics
with angular-overlap parameters it is therefore necessary
to introduce a further parameter nsin®0 to accommodate
the shift in the sum of orbital energies discussed above.

This transforms [¢f. (19)—(24)] as in equation (28). Fitting
K = H'yj + 8 1sin®0 (28)

can then be achieved using the diagonal ¢,, block of K’ and
checked against the ¢, block. Table 5 gives the values for

TABLE 5
¢’y (F) and v parameters (in E}) as fitted for the ¢,, orbital
set of distorted [MnI7}*", and comparison between
calculated and fitted levels for the e, orbital sct using
these values; %, and A, are the roots of expression (27)

e’a e'n n
k=2 0.0663 0.0158 0.1380
k=4 0.0498 0.0141 —0.0279
MoF A (=22
— A N — -
Calc. Titted Cale. Fitted
k=2 —0.0060 —0.0054 0.0028 0.0026
k=4 —0.0075 —0.0079 0.0026 0.00:34

€'y, €, and 7. These parameters obey (27) for the ¢,
orbital set in a satisfactory manner.

COMPARISON WITH EXPERIMENT

By adding ¢’,(F) [equation (17)] and {’) |=¢",(Cl) —
e/a(IF)] it is possible to obtain values for ¢/,(Cl) as well as
e’A(F); these may be compared with experimental
results where available. Glerup et al.1? have determined
these parameters using the spectra of frans-{Cr(amine),-
A(B)]** (amine = NH; or pyridine; A, B = I, Cl-,
Br-, OH,, OH", e¢tc.) complexes. Although our para-
meters for manganese complexes are not directly trans-
ferable to chromium(rir) complexes a comparison is
nevertheless interesting as one would expect ratios
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between parameters to be similar. Table 6 gives such a
comparison. Although our parameters are approxim-
ately double those obtained for Cr!!! the ordering and
relative magnitude are in good agreement.

TABLE 6

Angular-overlap parameters in E;, (l1£, = 2.159 x 10°
cm™) from this work and derived experimentally 12 for

Crlir
Mntv Mnl! Critt

¢’o(Cl) 0.0472 0.0332 0.0252
e'=(Cl) 0.0122 0.0061 0.0040
¢o(IF) 0.0663 0.0498 0.0336
e'n(I7) 0.0158 0.0141 0.0077

Glerup ef al1? also consider a scheme similar to ours for
analysing the experimental spectra of the series [Cr-
{OH,)q_:(NH,);]3* (¢ = 1-—6) because spectral data for
ten isomers were available. However, they concluded
that their fitting was unreliable as the water ligand
appears to change its mode of ligation between members
of the series.

CONCLUSION

Contrary to our expectation when starting this project
we have found that the d-orbital energies obtained from
non-empirical SCIF molecular orbital calculations can be
modelled accurately by the angular-overlap model.
The only modification that we have found necessary to
achicve a fit between the two sets of energies was to add
a parameter representing charge redistribution for the
distorted [MnFg}#* structures.

The SCF calculations allow one to make a more
detailed analysis of the a.o.m. than does experiment

J.C.S. Dalton

because absolute values of the parameters (A = o, =, or
8) can be obtained; from experiment one normally has
only sufficient information to obtain the differences
e,=-¢e, —e;and e, = e, — e5. Our calculations show
that there is no justification in equating e, with e’,,
t.e. in neglecting es. We found that the difference in
es between F and Cl is of similar magnitude to the differ-
ence in e, values.

Finally we recognize that our calculations have pro-
vided a test for the a.o.m. only for complexes in which
their is little metal-ligand covalent bonding. Un-
fortunately covalent bonding ligands are computation-
ally more demanding because they are necessarily
polyatomic and at the present time a series of calculations
of the type we have made using CN- ligands, say, would
be difficult to justify.

[0/107 Reccived, 21st fanuary, 1980]
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