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A Non-empirical Appraisal of the Angular-overlap Model for Transition- 
metal Complexes 
By Jonathan Tennyson and John N. Murell,' School of Molecular Sciences, University of Sussex, Brighton 

Non-empirical SCF molecular-orbital calculations of the d-orbital energies in the complexes [MnF,-,CI,]*- 
( i  = 1-6) and distorted [MnFGlk- (k = 2 or 4) have been made within a valence-electron approximation. These 
energies have been shown to be accurately modelled by a one-electron angular-overlap Hamiltonian. The 
angular-overlap parameters for CI and F have a relationship which is similar to that determined from experiment for 
some chromium (111) complexes. 
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DESPITE the success of ligand-field theory in correlating 
the properties, particularly spectroscopic, of transition- 
metal complexes the theory has largely been confined to 
high-symmetry structures: octahetlral, tctraliedral, and 
to a smaller extent tetragonal and square planar. 
Notwithstanding the importance of these structures 
they often have less interesting physical properties, 
particularly magnetic, than those of lower symmetry. 

Ligand-field theory itself is not well suited for exten- 
sion to low-symmetry complexes. The nunibcr of para- 
meters required to express the full spherical harmonic 
components of the ligand field is greater than tlie 
number of determinable energy differences amongst the 
d orbitals. For example, C,, symmetry requires nine 
parameters to represent those components of tlic. ligantl 

such calculations cannot generally be done within the 
current limits of computer time with sufficient accuracy 
to reproduce experimental results. 

An advantage of ab ini t io  calculations is that struc- 
tures arc: not restricted by experimental availability. 
Illorcover, the resulting energies obtained from such 
calculations may always be completely assigned on the 
basis of tlieir orbital wavefunctions and not guessed 
from tlie nature of spectral appearance or correlation 
within fainilies. This suggests an alternative way to 
evaluate the a.0.m. which is with a series of ah initio 
calculations, some but not all of which could be compared 
with cxperiment. This procedure is summarised in the 
Sclienic. 

Although we can a t  present makc only crude ah ini t io  
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field which have non-zero d-d matrix elements, whereas 
there are only five d-orbital energies to nicasure. 

An alternative approach is to identify tlie perturbing 
potential with individual ligaiids rather than as com- 
ponents of the collective potential of the whole ligand 
structure. Although this approach might appear to 
require more parameters i t  has the advantage that these 
may be transferred between complexes within restricted 
classes, thus increasing the data from which they inay be 
evaluated. This is essentially the approach introduced 
first by Yamatera l p 2  and McClure wliicli has evolved 
into the so-called angular-overlap model (a.0.m.). Tlic 
method has been frequently reviewed4 (; 

Unfortunately, the analysis of low-symmetry struc- 
tures is still difficult in the a.0.m. because one generally 
has insuf'ficient data for full parameterisation. This 
insufficiency arises, for example, from the imperfect 
resolution of electronic spectra and the failure to syn- 
thesise and isolate key complexes. 

A h  ini t io  calculations provide, in principle, a b;isis for 
deciding that a spectral observation is consistent with 
an assumed structure but give little in  the way of 
physical explanation of spectral patterns. I n  practice 

calculations on transition-metal complexes compared to 
what is currently possible on light-atom Inolecules, i t  is 
not unreasonable to assume that if crude ab initio 
calculations confirm the general principles of the a.0.m. 
then accurate ab ini t io  calculations would do likewise. 
The precise values of the angular-overlap parameters 
deduced by such comparisons would of course depend on 
tlie quality of the calculations. 

In this paper we compare angular-overlap and ab 
ini t io  calculations on two series of complexes. The 
first is the series [Mn17&Jk- (K = 2 or 4, i = 1-6). 
The complexes are assumed to have octahedrally directed 
bonds (are ortlioaxial). The second is the series [MnFJk- 
( k  = 2 or 4), in which the metal-ligand bond directions 
are displaced from octahedral. 

CALCULATIONS ON ORTHOAXIAL COMPLEXES 

[MnXJ2- is a d3 system and in an octahedral field the 
ground state is 4A 2g. Excited doublet states are sufficiently 
high in energy that the ground state is also a quartet in all 
lower-symnietry structures that we examined. [MnXGI4- 
is t P  and in a weak octahedral field the ground state is 
614 'I'he ground states of both [MnFGI4- and [MnCI,]*- 
are 1;nown to have this designation and i t  is reasonable to 

http://dx.doi.org/10.1039/DT9800002395


J.C.S. Dalton 
assume that all systems we considered of lower symmetry 
are sextet states. 

To make the calculation cornpu tationally inexpensive 
we have chosen a non-empirical valence-electron model 
rather than full ab initio calculations. Tlie niodel has been 
fully described in previous papers and used for predictive 
 purpose^.*^^ Because all the complexes have the same 
number of valence orbitals the convergence of the SCF 
procedure for the whole series can be started froni the 
converged vectors of a high-symmetry member of the 
series, and this gave a significant saving in computer time. 

Metal-halogen bond lengths were taken from the experi- 
mental values of [MnFJ2- and [MnCl,J- in K,[MnX,] : 
Mn-F 1.74, Mn-C1 2.28 A. They were assumed constant 
for all compounds including the d5 complexes; this assump- 
tion enabled us  t o  use a common set of integrals for @ ant1 
d5 calculations. 

To further limit the computational requirements wc 
restricted the orbital basis to a iiiiriimal description of the 
halogen ligands. It is not too expensive to take a larger 
basis for the metal, for example, choosing d orbitals a t  the 
double-zeta level, but such an unbalanced basis set may 
lead to a charge distribution which is far froin tlie correct 
value. Preliminary calculations showed that with a 
double-zeta d basis the diffuse component of the 3d orbital 
was compensating for a relatively poor description of the 
ligands. We are The basis used is described in Table 1 .  

TABLE 1 
Summary of the basis * 

Atom type Core orbitals Valence orbitals 
 MI^ IS, 2s, 2 p  STO-3G 3s, 31, STO-3G 

3d 6G 
4s, 4p 1G 

2P 4G 
F 1s STO-3G 2s STO-3G 

c1 IS, Bs, 2p STO-3G 3 ~ ,  3p STO-3G 
* STO-3G using exponents of E. Clementi and D. L. 

Raimondi, J .  Chem. Phys., 1963, 38, 2686; 5G, compact part 
of the double-zeta basis of P. J .  Hay, J. Chem. Phys., 1977, 
66, 4377; lG, single Gaussian with exponent 0.32 after J .  
Demuynck, A. Veillard, and V. Waulgren, J .  Amer. Chcnz. 
SOC., 1973, 95,5563, 4G, four-Gaussian fit to  the Hartree- 
Fock 2 p  atomic orbital (R.  F. Stewart, J .  Chenz. Pliys., 1969, 
50, 2485. 

making no claim that this is optimal for its size for the 
systems studied but we believe it has a reasonable corn- 
promise between balance and accuracy for our purposes. 

Examination of the orbital wavefunctions showed that 
the singly occupied orbitals for d5 systems were 95o/b 
composed of d functions and the same was true of the singly 
occupied orbitals and two lowest virtual orbitals in the d3 
systems. 

Figurc 1 shows the orbital energies calculated for the 
series [MnF,-iCli]k- in a way that brings out the orbital 
correlations in thc series. The occupied-virtual splitting 
in the d:$ ions is much larger than thc corresponding splitting 
i l l  (I5 and this is a property of the SCF Hatniltonian. To 
obtain ;L t,,--e,, splitting for tlie &j case that can be directly 
c-ompret l  to esperiinent i t  would be necessary to make a 

~~ 

F I G u m  1 Calculated orbital energies for the series [hZnT~,iCl,]k- 
trmisformed according to cquation (1) : k -: 2 (a, b) or 4 (c, d )  ; 
E ( 6 )  - S ( 0 )  - 0.0067 (fz), -0.0352 (b), -0.1875 ( r ) ,  or 
-0.2037 El, ( d ) .  Thc lines whicli pass through or close to 
c;tlculatcd points have been inserted to bring out more clearly 
the pattern between the calculated orbital energies 
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separate calculation on a configuration with the e, orbital 
occupied. 

We shall separately consider the behaviour of the e, and 
t,, sets of both ion types. A t,, set is defined as the orbitals 
tha t  originate as t,, in octahedral symmetry and which are 
split in lower symmetries. Within each set we make a 
linear transformation such that the orbital energies of the 
two octahedral ions are equal. This can be achieved by 
defining an energy E' as in equation (1) where E( i )  is an 

E'(i)  = E( i )  + [(3 - i ) / 6 ) [ E ( 6 )  - E(O)] (1) 

orbital energy of a coinplex with i chlorine ligands. There 
will be one such transformation for each of the four sets. 
Energy differences for isotners within a set are unaffected 
by the transformation. The calculated values of E'(i)  are 
shown in Figure 1 .  

The symmetry apparent in Figure 1 leads one to expect 
that  the orbital energies can be represented by an empirical 
Hamiltonian of simp1 : form, possibly a one-electron 
Hamiltonian. Points to be noted are: (a) the symmetry 
centre shown by each t,, and e ,  orbital set a t  the degenerate 
( e )  orbital for t1iefac-[MnF3Cl.Jk- structure; (b)  the existence 
of near degeneracies such as those in the t,, orbital set 
between b, and b, orbitals for cis-[MnX,Y,lk-, and a L  and 
ey orbitals of cis- and trans-[MnX,Y2Ik-; (c) the splittings 
of both the t Z p  and e ,  are twice ats large for i~ans-[MnX~Y,]~- 
as for [MnX,YIk'-; (d) that  the t,, orbital set forms x 
parallelogram grid [shown particularly in Figure I (d) ]  ; 
and (e) the mirror planes in the horizontal ancl vertical axes 
through the symmetry centre of the eg sets. 

MODEL HAMILTONIANS 

Before turning to the angularly distorted structures, we 
establish ;I niodel one-electron Hamiltonian whose eigen- 

.# = C:=lAk (2) 

(3) 

(4) 

A :  = (dz~]A1]dZ~> = e, 

4 2  = < 4 & q d , )  = c7-l 

values simulate the calculated orbital energies of the last 
section and which is consistent with the basic tenets of the 
angular-overlap model. We assume that the Hami1toiiia.n 

Taking M-X1 t o  define the z direction, the matrix of A1 is 
diagonal with elements (3)-(7).* The matrix Ak will 
therefore be obtained from A 1 by the matrix transforination 
(8) where F((I) is the orthogonal matrix known as the 
angular-overlap matrix [equation (9)]. For example, for a 
ligand on the x axis [ligand 2 with polar co-ordinates 
(7c/2, O ) ] ,  application of (9) gives ( lo) ,  and for ligand 3 on the 
y axis we obtain (11). As the d-orbital basis is of even 

i (e ,  + 3es) 0 0 0 - ( 3 / 4 ) ( ~ ,  - 4 1 (10) 

] ( 1 1 )  [ (3!/4)(c, - C6) 0 0 0 ~ ( 3 e u  + C6) 

0 es 0 0 0 
0 0 en 0 0 
0 0 0 c, 0 

-(3?/i)(c, - es) 0 0 0 I(Re, 1- C6) 

i(e, + 3es) 0 0 0 (3h/4)(eD -- vb) 
c, en 0 0 0 
0 0 er.9 0 0 
0 0 0 C', 0 

A2 -= 

AS = 

inversion syinnietry, eleiiients of A h  are the same for ligantls 
along the positive ant1 negative directions o f  ;L Cartesian 
axis. 

If the inatrix I 1  is constructed for an  octalwt1r;il coinplex 

!i(t2(J = 4e, t 2es ( '2)  

E(es)  = 3e, -+ 3es (13) 

from the ,4x̂  matrices defined above, then its eigenvalues 
are as in (12) antl (13). The splitting between tlie two levels 
is as in (14). 

A,,(.t = 3e, - 4e, + e6 (14) 

For a niised-ligantl coinples [ILSnF,-iCIJX'- the eigenvalues 
can be espressed in  ternis of eh for C1 and 1; ligards or the 
difference between them if any two members of the series 
are compared. We thus define a set of parameters (15) in 

f A  = e,(Cl) - eA(F) where A = 0, x ,  or 6 (15) 

terms of which we can represent all such differences. If 
however wc scale our energies according to tlie same formula 
as ( I )  then the eigenvalues of H' [equation ( I t ; ) ]  can h a  

ti'(i) = N ( i )  $- [(3 - i)/C,][H(G) - Z l ( O ) ]  ( 1 6 )  

espressecl in terms oi two paraineters: f', = f, - fs for the 
eq set antl f', = f, - fs for the t,, set. The splittirigs 
espressed in these units are relative to mean values of 
i(2fm 4- fs) and (3i/2)(fU + fs)  for the tZq and ey orbital sets 
respectively ancl are given in Table 2. 

($'I 

i ( 1  + 3cos20) 0 - (31 /21sin20 0 (31/4)(1 - ~ 0 ~ 2 0 )  
(31 /2) sinfpsin20 cosfpcoso sin4cos29 -cosqkinO - $sin+sin20 
(3*/2)cos$sin20 -sinfpcos0 cosfpcos20 sin+sintl - gcos+sin20 
(3t /4)sin24( 1 - cos28) cos2t$sin0 isin24sin20 cos2+cos0 .+sin2$(3 + cos23) 
(3k/i\cos2~$(1 - cos20) - sin2qkinO icos2fpsinf0 - sin2&osfj :-cosB+(R + c0;dU) 

(d )  = 

is the sum of separate operators Ak for each ligand ( k )  
[equation (2)3 and that Ak is invariant t o  rotation about the 
M-Xk bond (we only consider linearly ligating ligands) . 
Thus the 5 x 5 d orbital matrix of any Ak can be diagonal- 
ised to u, x ( 2 ) ,  and 6(2) components. This allows the effect 
of an individual ligand to  be parameterised by three matrix 
elements. 

* To conform with convention these are given the  synibol e ,  
which we trust  will no t  be confused with the  group-theory 

We note tha t  as we have tlie absolute values for the 
orbital energies i t  is possible to determine all threc f,+ 
parameters whereas only information about tlie splittings 
is required to get the two f'A parameters. E.rperiinentally 
i t  is usually only possible to obtain information about the 
splittings and not the absolute energies. 'I'hus elh para- 
meters [equation (17)1 are generally deduced from experi- 
n'ent. 

symbol. e',+ = eh - ea where A = 0 or x (17) 
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PARAMETER FITTING 

Tn contrast to the usual experimental situation, from 
calculation we have more data tllan parameters : 38 
distinct orbital energies for each [h'lnFfi-?Cli]i- series to fit 
three f,+ parameters. We can thus adopt a least-squares 

TABLE 2 
Coefficients of the f'h parameters for all complescs con- 

sidered: h = for the eg set and A = x for the I,, set. 
The eigenvalues have been identified by the d-orbital 
Cartesian equivalent, although for cis antl T ~ Y  

complexes there is mixing of these 
i 0 1 2 2 3 3 4 4 B G  
Tsomcr cis trans f a c  ~ P Y  cis trans 
- 2  0 g - g  1 0 (3412) 2J - 1  - 4  0 

0 
XY 

Y -  

fit using suitable differences between members of the 
series. Since the equations relating ptrameters antl energies 
itre linear t l i i5  fitting can be accoinplislied azn;tlyticnlIy. 

From the transformed energies ( 1  1 )  optimum values o f  
f', ant1 f', a re  c:ilcnlntetl and c;ic.h of t h c  iile:ins prolyides n 

XZ 

0 6 0  

't) 

0 
3 U 

0 
V 

c 

L 

separate fitting to fs. In fact the separate fittings give 
almost the Same value for fs  (0.003 4EIl and 0.003 6Eh for 
the dinegative ions and -0.020 OEh and -0.025 8Eh for the 
tetranegative ions). We have therefore used an average 
in each case; the optiniuni f h  parameters are given in Table 
3. 

A coinparison of the calculated and model orbital energies 
is shown in Figure 2. Tlie poorest fitting is for the t,, set of 

TABLE 3 
Optimised f,+ parameters (in Ell) * for the series 

[MnF,-iCIJk- (i = 1-6) 
fU fw fs 

k - ; 2  - 0.0156 - 0.0001 0.0035 
k - 4 - 0.0425 -0.0339 -0.0259 

* Thoughout this paper: lEh = 2 G26 kJ mol-1. 

the clinegative complexes [Figure 2 ( h ) ]  and this is to be 
expected from Figure 1 ( h )  which has a less perfect symmetry 
than the others; however, we note the greatly expanded 
energy scale of Figure 2(h)  compared to the others. 

ITroin Table 3, f u  is iiiuch larger than f, and fs as is 
cxpectetl. T t  must be reineniberecl that these parameters 
represent t l i c b  tliffrrencc Iwt\\ecn C1 and IT ligancls antl  we arc 

0 16 

U 

0 
Y V 

0 
V 

r - 
- 

0 56 Fitted 0 60 

1.20 

T3 

1-10 

l b l  

/ 
0 
0 

0 
0 

0.15 Fitted 

0 
0 

___t_ 

0 16 

E'IGIJKE 2 Comparison of the calculated ( a h  iuritto) and model w-bitd energies (in El)) obtained from optiniisetl parameters (Table 3) : 
k =I '2 ( a ,  b) or 4 (c, d ) .  The lines at 4.5" are to ernphahize where poiilts of ail t.uact tit should lie 
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led to conclude that there is a larger difference in 0 nietal- 
ligand interaction between these ligands than there is 
between x and 6 interaction. Whether the term ‘ iiitcr- 
action ’ can be replaced by ‘ bonding ’ is arguable. Since 
there are no d orbitals on the ligands there is no 6 bonding in 
the normal sense, but a. 6 electrostatic efTect is present. 

THE EFFECT OF ANGULAR DISTOKTIONS 

7’0 examine tlie predictions of the angul;Lr-ovt:rlap niodel 
for bond-angle distortion we have studied tlie c.1i;~nge in 
orbital energies of [MnFJk- ( h  = 2 or 4) when tlie two 2- 

axis ligands are displaced to polar angles ( O , $ )  and (x - 8. 4) 
respectively. A11 Mn-I.; bond lengtlls were kept constant. 
The lowest symmetry of the distorted complex is C,,. 
Calculations were niade for 0 = 5 and 10” with rjb = 0, 
15, 30, aiid 45” (values of 6) outsidc this range are related hy 
symmetry). 

For all values of 6) the orbital energies in the eB antl f2? sets 
were found to vary as sinW over the range of 0 esatiiined. 
\Ve tlierefore sliow in Table 4 the energies relative to tlic 

TABLE 4 
Calculated orbital-energy differenccs (in El,)  bctwcen 

distorted (with 0 = 10”) and undistorted [h11iI;,]~ -. 
The eigenvalues are the Cartesian conipoiients of the 
dominant d orbital; for rjb = 45” the t,, compoiients 
are yz  -- xz,  xy, and y :  + xz respectively 

$I0 0 15 30 45 
( a )  k = 2 2’ -0.0042 -0.0042 -0.0041 -0.0041 

x2 - y2 0.0052 0.0051 0.0050 0.0049 
( b )  k = 2 .yz 0.0032 0.0031 0.0028 0.0027 

XY 0.0050 0.0049 0.0049 0.0049 
X 9  0.0119 0.0120 0.0122 0.0123 

( G )  k = 4 z2 - 0.0080 - 0.0080 - 0.0080 - 0.0080 

( d )  k = 4 YZ -0.0012 -0.0013 -0.0014 -0.0015 
,y2 - y2 0.0005 0.0003 0.0002 0.0002 

XY 0.0003 0.0003 0.000:~ 0.000:3 
X 2  0.0045 0.0046 0.0047 0.0048 

undistorted structure for 0 = 10” only. The most striking 
feature of these results is tliat tlie dependence on 4 is very 
weak. 

Looking a t  the results in the spirit of the a.0.m. described 
in Model Hamiltonians, the perturbation Hamiltonian 
( i . e .  the difference between H for the distorted and un- 
distorted structures) for the displaced structure is, from (8), 
given by equation (18). Froin (9) the matrix H’(0 ,  4) can 
be shown to have the non-zero elements (19)-(24) which 

W ( 0 ,  4)  = 3 9 0 ,  4)A‘F(”(0, 4)  + 
Rd)(x - 0, $ ) A  lF({l)(x - 0, 4) - 2A (18) 

(1:)) 

(34/2)sin220 e’,, (20 )  

Htza = -%in20 e‘, (21) 

(23) 

Hf44 = 2sin20 e’, (23) 

(24) 

I f f l l  = -!(.5 + 3cos20)(1 - ~ 0 ~ 2 0 ) ~ ’ ~  4- $sin220 e’n 
H’lj = H’31 = (3&/8)(l - ~ 0 ~ 2 0 ) ( 1  4- 3 ~ 0 ~ 2 0 )  - 

1fjs3 = $sin220 e‘, - 2sinW e’, 

H ’ ~ ~  = # ( I  - ~ 0 ~ 2 0 ) ~  e‘, + ;sin220 e’, 

clepnd on the e’,+ parameters defined by (17) .  The only 
non-zero off-diagonal element is H T l 5  = (z21H’lxz -- yz} 
which is a t  first sight surprising because for a general angle 
4 the matrix should be syninietry factorised into 3 x 3 
(symmetry A’) and 2 x 2 (A”) blocks. The angular- 
overlap Hamiltonian (for linearly ligating ligands) therefore 

hits a liiglier syiiimetry within a d-orbital basis than the f u l l  
Hamil tonian. 

(i) ‘The elements 
have no dependence on 4. (ii) The orbital energies can 
be shown to have a sin% dependence for small values of 0. 
The tliiLgonal t,, block o f  H’ depends on sn20 or sin220 
(wliicli is approxiiiiately 4sinW for siiiall 0) .  For the e ,  
bluck the trace of the 2 x 2 matrix is as in equation (25) 
;ind tlie deterininatit is as in (26).  It follows that the 
eigenvalucs which obey equation (27) will depend on sin“. 

We note the following properties of If’. 

(25) 

D = - 3sin4F)(e‘,)S (26) 

-. 1 ( c ~ e ’ ~  - $e’,)sin,20 

A2 - TA + 1) = 0 (2i) 

(iii) ’Hie trace ol’ ti‘ (the average encrgy of tlie d orbitds) is 
indepeiident 01 (0, 4).  

Points (i) antl (ii) are consistent with the calculated 
results sliown in Table 4, but point (iii) is not. The net 
shift of the orbital energies is not predicted by the a.0.m. 
and we deduce that i t  arises from a charge redistribution on 
tlie coniplexcs as they are distortctl. A Mulliken popul- 
ation analysis of tlie orbitals confirms this and shows an 
electron shift from the ligands to the rnctal which is pro- 
portional to sin20. 

In  ordcr t o  fit tlic changes in calculated orbital energies 
11 it11 angular-overlap parameters it is tlierefore necessary 
to introduce ;L further paranicter -qsin20 to dccoiiiiiiodate 
the shift in the sum of orbital energies discussed above. 
This transfornis [~f. (11))-(24)] as in equation (28).  Fitting 

Kri j  = H’ 13 . + 6,, -qsin20 (28) 
can tlieii be achieved using the cliagorial t,, block of K’ and 
checked agaiiist tlie eg block. Table 5 gives the values for 

TAULE 5 
e’h (F) and q parameters (in El,) as fitted for thc t,, orbital 

sct of distorted [MnI;,lk--, and coin parison between 
calculated and fitted levels for the eg orbital set using 
these values; A, and A, are the roots of expression (27) 

e’, e‘, rl 
h = ; ’  0.066:l 0.0158 0.1380 
k = 4  0.0408 0.0141 -0.0279 

( -’A,&) 
-7 rph____-- 

1, -1 
-A_--_ 7 

Fitted 
J< = 2 -0.0060 -0.0054 0.0028 0.002 6 
IZ = 4 -0.0075 -0.007‘3 0.0026 0.0034 

e’u, efn, antl q .  
orbital set in a satisfactory manner. 

C A C .  Fittcd CdC. 

These parameters obey (27)  fur the c, 

COMPARISON WITH EXPERIMENT 

By adding e’A(F) [equation (17)] and f’^ I -_c)’,+(Cl) - 
e’,+(F)] it is possible to obtain values for e‘,(Cl) as well as 
e’,+(F) ; these may be compared with experimental 
results where available. Glerup et have determined 
these parameters using tlie spectra of trans-] Cr(amine),- 
A(B)Int (amine = NH, or pyridine; A ,  H = F, C1-, 
Br-, OH,, OH-, etc.) complexes. Although our para- 
meters for manganese complexes are not directly trans- 
ferable to chromium(rrr) complexes a comparison is 
nevertheless interesting as one would expect ratios 
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between parameters to be similar. Table 6 gives such a 
comparison. Although our parameters are approxim- 
ately double those obtained for Crlll the ordering and 
relative magnitude are in good agreement. 

TABLE ti 

Angulsr-overlap parameters in El, ( l l i i ,  = 2.159 x lo5 
cm-l) froni this work and derived experimentally l2 for 
CrlII 

Mn" CrllI MnIV 

e:,(Cl) 0.0472 0.033 2 0.0252 
e,,(CI) 0.0122 0.0061 0.0040 

e'n ( F) 0.0158 0.0141 0.0077 
e O ( W  0.0663 0.0498 0.0336 

Glerup et al.12 also consider a scheme similar to ours for 
analysing the experimental spectra of the series [Cr- 
(OH,)6-1(NH,)i]3+ (i = 1-6) because spectral data for 
ten isomers were available. However, they concluded 
that their fitting was unreliable as the water ligand 
appears to change its mode of ligation between members 
of the series. 

CONCLUSION 

Contrary to our expectation when starting this project 
we have found that the d-orbital energies obtained from 
non-empirical SCL; molecular orbital calculations can be 
niodellcd accurately by the angular-overlap rnodel. 
The only modification tha: wc have found necessary to 
achieve a fit between the two sets o f  energies was to add 
a parameter representing charge redistribution for the 
distorted [MnF,]" structures. 

The SCF calculations allow one to make a more 
detailed analysis of the a.0.m. tlian does experiment 

because absolute values of the parameters eA(A = 0,  x ,  or 
8) can be obtained; from experiment one normally has 
only sufficient information to obtain the differences 
e', = e, - es and e', = en - es. Our calculations show 
that there is no justification in equating eA with e'A, 
i.e. in neglecting e6. We found that the difference in 
ea between F and C1 is of similar magnitude to the differ- 
ence in e, values. 

Finally we recognize that our calculations have pro- 
vided a test for the a.0.m. only for complexes in which 
their is little metal-ligand covalent bonding. Un- 
fortunately covalent bonding ligands are computation- 
ally more demanding because they are necessarily 
polyatomic and at  the present time a series of calculations 
of the type we have made using CN- ligands, say, would 
be difficult to justify. 
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