Studies on Transition-metal Nitrido- and Oxo-complexes. Part 6.¹ Nitrido-bridged Complexes of Osmium and Ruthenium

By Jonathan P. Hall and William P. Griffith,* Inorganic Chemistry Research Laboratories, Imperial College, London SW7

The new complexes $[Os_3N_2(NH_3)_8(OH_2)_6]CI_6$, $[Os_3N_2(NH_3)_8(OH_2)_6]CI_7$, and $[Ru_3N_2(NH_3)_8(OH)(OH_2)_5]CI_5$ are reported. On the basis of the resonance Raman and i.r. spectra of normal, ²H-, and ¹⁵N-substituted forms of the complexes, structures analogous to that found in 'ruthenium red,' $[Ru_3O_2(NH_3)_1]CI_6$, are proposed. Related structures are proposed for $[Os_3N_2(NH_3)_6(OH)_4(OH_2)_2]CI_2$, $[Os_3N_2(NH_3)_4(OH)_8(OH_2)_2]$, $K_4[Os_3N_2(CN)_{10}-(OH_2)_4]$, and $K_4[Os_3N_2(CN)_8(OH)_4(OH_2)_2]$. The possible application of $[Os_3N_2(NH_3)_8(OH_2)_6]CI_6$ as a cell staining reagent is noted. All the complexes may be regarded as containing $M_3N_2^{6+}$, $M_3N_2^{7+}$, or $M_3N_2^{8+}$ cores.'

THE trimeric oxo-bridged complex ruthenium red, $[Ru_{3}O_{2}(NH_{3})_{14}]Cl_{6}\cdot 4H_{2}O$ has long been known,² although this formulation has only recently been established by chemical³ and single-crystal X-ray⁴ studies. The complex is widely used for specific staining of cell walls in optical and electron microscopy,⁵ and will also specifically bind to those sites in tissue which normally attract calcium ions.⁶ The present work arose from our attempts to prepare and characterise an osmium analogue of ruthenium red; since osmium has a greater electronscattering power than ruthenium, such an analogue should be superior to ruthenium red as a cytological reagent for electron microscopy. We were, however, unable to prepare $[Os_3O_2(NH_3)_{14}]^{6+}$, but instead a series of related nitrido-bridged species were made, at least one of which, $[Os_3N_3(NH_3)_8(OH_2)_6]^{6+}$, does indeed have staining properties. We report here the preparation and likely structures of these osmium complexes, and also report a new nitrido-bridged complex of ruthenium.

RESULTS AND DISCUSSION

(A) Nitrido-bridged Complexes of Osmium.—Binuclear nitrido-bridged complexes of osmium(IV), e.g. $[Os_2-NX_8(OH_2)_2]^{3-}$ (X = Cl or Br) and $[Os_2N(NH_3)_8X_2]^{n+}$ (X = Cl, Br, I, NCS, N₃, NO₃, or H₂O) are well established.^{7,8} Trinuclear species have been little investigated, however. Reaction of the material known as 'Claus' salt' [made by reaction of osmium tetraoxide (OsO₄) and aqueous ammonia and formulated as 'OsO₂· 2NH₃·OH₂'] ^{9,10} with HX gives salts of $[Os_3N_2(NH_3)_3-X_{11}]^{3-}$ (X = Cl or Br).¹¹ Reactions of OsO₄ with liquid ammonia gives an amorphous material H₂₁N₇-O₉Os₃ ¹² formulated as Os₃N₂O₂(NH₃)₅(OH)₇ ¹³ or Os₃N₃- (NH₃)₄(OH)₉.⁷ Recently, Gautier has reported an uncharacterised polynuclear material made from OsO₄ and aqueous ammonia which is effective at staining acid-hydrolysed DNA in tissue.¹⁴

(i) Complexes containing the $Os_3N_2^{6^+}$ core. Ruthenium red can be made by aerial oxidation of a solution of hydrated ruthenium trichloride³ or $[Ru(NH_3)_5Cl]^{2^+ 15}$ in aqueous ammonia. We find that similar treatment of anhydrous $OsCl_3$ gave no reaction, but aeration of aqueous ammoniacal solutions of OsO_4 , $[OsCl_6]^{2^-}$, or $[Os(NH_3)_5Cl]Cl_2$ gives a deep violet species which by analogy with ruthenium red we call 'osmium violet'. The most convenient method of preparation is the anaerobic treatment of $Na_2[OsCl_6]$ with aqueous ammonia under pressure at 95 °C.

The complex is only slightly soluble in water, but is more soluble in 0.1 mol dm⁻³ aqueous acetate or cacodylate solutions [the latter buffer, $AsMe_2O_2^-$, is commonly used in cytology] at pH 7-8 to give deep violet solutions. Because of the low solubility in water we were unable to obtain reliable conductivity or molecular weight data. Elemental analyses are in agreement with the formulation $[\mathrm{Os}_3\mathrm{N}_2(\mathrm{NH}_3)_8(\mathrm{OH}_2)_6]\mathrm{Cl}_6,$ and that the chlorine is ionic, as indicated by the fact that it is precipitated by Ag[NO₃], and that chlorine-free thiosulphate and pyrophosphate salts may be obtained. Determination of the ammonia content by a modified Kjeldahl procedure ^{12,16} showed that only four-fifths of the total nitrogen is present as NH₃. Metal oxidationstate determinations [by oxidation of the osmium in the complex to $\operatorname{osmium}(v_1)$ with $\operatorname{VO}_3^{-17,18}$ gave a value of 4.2 ± 0.3 . Oxidation with neutral potassium permanganate gave variable titration results: both OsO₄ and $[OsO_3N]^-$ are produced. X-Ray photoelectron spectroscopy (x.p.s.) gave Os $4f_{\frac{1}{2}}$ and $4f_{\frac{3}{2}}$ binding energies of 53.0 and 53.4 eV relative to C 1s of 285.0 eV (for $[Os^{IV}_2N (NH_3)_8Cl_2]Cl_3$ the $4f_{\frac{2}{3}}$ and $4f_{\frac{2}{3}}$ energies we find to be 53.1 and 55.4 eV, and for trans-Na₂[Os^{VI}O₂(OH)₄] 56.0 and 58.1 eV respectively), again suggesting an oxidation state of +1v. The use of x.p.s. spectroscopy in assigning oxidation states in osmium complexes has recently been demonstrated.¹⁹ Polarographic studies on the complex in 0.1 mol dm⁻³ sodium acetate showed no oxidation or reduction at the dropping mercury electrode (+0.3 to)-1.8 V versus standard calomel electrode).

The i.r. spectrum of the complex (see Table) shows bands near 1 100 cm⁻¹ which shift some 30 cm⁻¹ to lower frequency on ¹⁵N-substitution. We assign them to asymmetric vibrations of Os-N-Os-N-Os units; similar bands and isotopic shifts are observed in $[Os_2N(NH_3)_8$ - $X_2]^{3+7}$ and in $[Os_3N_2(NH_3)_3X_{11}]^3$,¹¹ and the bands due to co-ordinated NH₃ are close to those observed in these complexes. No bands due to co-ordinated chloroligands were observed, nor bands due to co-ordinated NH or NH₂ ligands.²⁰ The intense purple colour of the complex arises from the strong electronic absorption at 590 nm (ε 13.95 × 10³ dm³ mol⁻¹ cm⁻¹), and this prompted us to attempt to record resonance Raman spectra using excitation at 468.2, 520.8, 530.9, 568.2, and 647.1 nm from a krypton-ion laser. As with ruthenium red, which has a strong electronic absorption at 537 nm (ε 69.9 × 10³ dm³ mol⁻¹ cm⁻¹),¹⁵ a strong resonance Raman spectrum was observed. Excitation profiles for the observed bands show a maximum near 595 nm, suggesting that this is indeed the transition responsible for the resonance enhancement. In solution the strongest bands are polarised (ρ , the depolarisation ratio, is close to 0.3 suggesting ²¹ that these are symmetric axial modes). The main Raman bands are at 1 100, 792, 460, 287, and 222 cm⁻¹. On the assumption that these include essentially axial modes, those at 460 and 287 cm⁻¹ may be assigned to symmetric v[Os-N-

 (NH_3)] and $\delta(N-Os-N)$ modes respectively (similar bands are observed in $[Os(NH_3)_6]^{3+}$ with similar isotopic shifts,²² and bands in these regions are also seen in the i.r. spectrum of solid osmium violet and may be assigned to the corresponding asymmetric modes). The bands at 1 100 and 222 cm⁻¹ may then be assigned to symmetric vibrations of the Os₃N₂ unit, the former involving mainly a motion of the nitrido-ligands so that there is a shift on ¹⁵N-substitution; and the latter involving motion of the metal atoms, hence its immobility on isotopic substitution. The band at 790 cm⁻¹ may involve some ammine rocking $\rho(NH_3)$ character, though the small shift on ²H-substitution is puzzling. The main features of the resonance Raman spectrum are similar to those of ruthenium red.^{15,23}

Infrared and Raman bands (cm⁻¹) of osmium and ruthenium nitrido-bridged complexes a

				. ,						0	•		Other
Complex $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_6$	b	$\nu(M_3N_2)$				ν(MN), ν(MO), ν(MC)				δ(NMN)		prominent bands	
		1 075m 1 100m (0.25) 1 078s	1 040m	1 020m	212vs 222s (0.25)	555m	500w 511w (0.31) 510w	475w	466m 460m (0.26)	385m 380w	267m 287m (0.32)	270m	900m, 780vs 835w, 792vs (0.33) 865m
$[\mathrm{OS}_3\mathrm{N}_2(\mathrm{N}^*\mathrm{H}_3)_8(\mathrm{O}^*\mathrm{H}_2)_6]\mathrm{Cl}_6$		1 095m		1 015m	212VS				402W	380W	ZƏ4 S		900m, 785s, 580w
$[\mathrm{Os}_{8}^{15}\mathrm{N}_{2}(^{15}\mathrm{NH}_{3})_{8}(\mathrm{OH}_{2})_{6}]\mathrm{Cl}_{6}$		1 048m 1 055s	1 025s		212vs	558m		470w	468m	385w	262s	obsc.	900m, 761m 850m, 770m
$[\mathrm{Os_3N_2(\mathrm{NH_3})_8(\mathrm{OH_2})_6]Cl_7}$	с b, с	1 091s 1 105m <i>1 090s</i>	1 018m 1 025w <i>1 020m</i>		222m	510m	475m 478m	470m	440w 444w	335w 330m	272s 282s	27 3 s	793vs 802s, 600m 965m, 833m,
$[\mathrm{Os_{3}N_{2}(N^{2}H_{3})_{8}(O^{2}H_{3})_{6}]Cl_{7}}$	C	1 095s <i>1 100m</i>	1 020w 1 020m		212vs		460m 450m			328m	256s	250m	550m 790vs 863m, 790m, 550m
$[\mathrm{Os}_3{}^{15}\mathrm{N}_8({}^{15}\mathrm{NH}_3)_8(\mathrm{OH}_2)_6]\mathrm{Cl}_7$	C	1 064s	980w 1 055s	968m	obsc.	490m	445w 470m					260m	788s, 577m 845w, 750m, 525m
$[\operatorname{Ru}_3\operatorname{N}_2(\operatorname{NH}_3)_8(\operatorname{OH})(\operatorname{OH}_2)_5]$ Cl ₅	- d b, d	1 060m 1 060m	1.0.40-		315s 315s (0.40)	470s 480s (0.23)	40 5	410s 415s (0.24)	390s (0.25)	351s 350s (0.46)	265s	979-	795m, 665m 760m, 690m (0.58), (0.35)
$\substack{[{\rm Ru}_3{\rm N}_2({\rm N}^2{\rm H}_3)_8({\rm O}^2{\rm H})({\rm O}^2{\rm H}_2\\{\rm Cl}_5$) ₅]- b, d	1 050m	1 0405		335s	470m	41 <i>3</i> m	410s	373s			2005	810m, 540m 750s, 635m, 290m
$K_4[Os_3N_2(CN)_{10}(OH_2)_4]$ ·4H	e e			1 030m	228s	520m				465s			2 150s, 2 132s, 2 105m, 812s, 750m,
	b, e			1 035m	234s	524m				460s			2 157 (p), 2 149w (p), 2 135w (dp), 840w, 800w,
		1 120s	1 040vs				475m						350w, 120vs 2 130s, 2 105s, 2 085m, 2 047vs, 2 038w, 905w, 830w,
K ₄ [Os ₃ N ₂ (CN) ₈ (OH) ₄ (OH ₂)	2] C		1 080s	993s				467s					750m, 550m 2 140, 2 110s, 2 078m, 2 065s, 2 040w, 2 020w, 755m, 608s, 420w, 370w
		1 170s	1 070vs		960s			46 5s					2 122s, 2 042s, 785w, 555m

^a Data on solids for excitation at 568.2 nm unless otherwise stated. Infrared bands are italicised; all other data are Raman, depolarisation ratios (ρ) in parentheses below corresponding wavenumber. obsc. = obscured. ^b Data on aqueous solutions. ^c Excitation at 468.2 nm. ^d Excitation at 647.1 nm. ^c Excitation at 530.9 nm.

The vibrational spectra, oxidation state data, and composition of the complex lead us to suggest a trinuclear structure (I) involving osmium(IV), in accordance

with the observed diamagnetism of the complex, and the fact that the complex can be prepared from $[Os^{IV}Cl_{\theta}]^{2-1}$ and aqueous ammonia under anaerobic conditions. The sites of water and ammonia ligands can not be determined (all attempts to obtain crystals of the complex suitable for X-ray study have failed), but the known lability of the central four ammonia ligands relative to the ten terminal ligands in the related ruthenium red complex ²⁴ leads us to suggest tentatively that water molecules may co-ordinate to the central osmium atom. Furthermore, the rarity of i.r.-Raman coincidences suggests a centro-symmetric structure such as (I). A weak Raman band at 385 cm⁻¹ (unaffected by ¹⁵Nsubstitution, but dropping to 380 cm⁻¹ on ²H-substitution) may well be a stretching v(Os-O) vibration of transaquo ligands. Although formulation of the complex as a mixed oxidation-state species (e.g., Os^{II}-Os^{VI}-Os^{II}) is possible, this seems unlikely since the x.p.s. $4f_3$ and $4f_3$ peaks are sharp and in positions expected for osmium(IV).

(ii) Other $Os_3N_2^{6+}$ species. Preparation of the bromoanalogue of osmium violet using $[OsBr_6]^{2-}$ and ammonia gave $[Os_3N_2(NH_3)_8(OH)(OH_2)_5]Br_5$; its vibrational spectra are very similar to those of osmium violet. The species prepared by Cogliati and Gautier ¹⁴ is ill defined, but our analyses suggest $[Os_3N_2(NH_3)_6(OH)_4(OH_2)_2]Cl_2$ as a possible formula; again, this has a similar i.r. spectrum to the other ammine complexes. The compound is diamagnetic, as expected for the above formulation as an $Os_3N_2^{6+}$ core species.

Reaction of osmium violet $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_6$ with hot concentrated potassium cyanide solution gives a brown-black salt $K_4[Os_3N_2(CN)_{10}(OH_2)_4]$ ·4H₂O, containing the cation (II). The i.r. spectrum shows bands

in the CN stretching region (ca. $2\ 100\ \text{cm}^{-1}$), in addition to those near $1\ 100\ \text{cm}^{-1}$ attributed to bridging nitride ligands, but no vibrations attributable to co-ordinated ammine ligands. The electronic spectrum has strong

bands at 460, 510, and 640 nm and a resonance-enhanced Raman spectrum was observed for very dilute aqueous solutions (ca. 10⁻³ mol dm⁻³; excitation at 468.2 and 530.9 nm). The Raman bands at 1.035 and 234 cm⁻¹ are likely to be the counterparts of those at 1 100 and 222 cm⁻¹ for osmium violet; they also have depolarisation ratios close to 0.3. Three bands are observed in the C=N stretching region for the solutions, two being polarised and one depolarised. This, and the comparative rarity of coincidence of Raman and i.r. bands, suggests that a centrosymmetric structure is likely. We tentatively suggest the D_{4h} structure for which two polarised (a_{1g}) and two depolarised (b_{1g}, e_g) modes are expected. It has been noted that π -acceptor ligands such as CO and CN⁻ will co-ordinate trans to bridging nitride ligands, as in trans-[Ru₂NCl₈(CO)₂]³⁻ and [Ru₂N-(CN)₁₀]^{5-.11}

(iii) Complexes containing the $Os_3N_2^{7+}$ and $Os_3N_2^{8+}$ cores. During the preparation of osmium violet, a brown material analysing as $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_7$ was obtained; this again has similar vibrational spectra to $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_6$, but is slightly paramagnetic $(\mu_{eff.} 0.87 \text{ B.M.*} \text{ per trimer unit})$, and titrations with VO_3^- indicate an overall oxidation state of 4.4 ± 0.2 . The x.p.s. spectrum gives Os $4f_2^-$ and $4f_2^-$ binding energies of 53.2 and 55.6 eV, both slightly higher than those for osmium violet and consistent with a slightly higher oxidation state than IV. It may thus be regarded as containing the $Os_3N_2^{7+}$ core.

The reaction of OsO_4 with aqueous ammonia gives the black 'Claus' salt ',^{9,10} a diamagnetic material.¹¹ The i.r. spectrum of this has features in common with the other amine complexes described here, and the analyses are consistent with a formulation $[Os_3N_2(NH_3)_4(OH)_{8^-}(OH_2)_2]$. The x.p.s. spectrum gives Os $4f_{\frac{1}{2}}$ and $4f_{\frac{5}{2}}$ binding energies of 54.4 and 56.2 eV, suggesting a somewhat higher overall oxidation state than +1V.

Reaction of 'Claus' salt' with hot aqueous K[CN] gives $K_4[Os_3N_2(CN)_8(OH)_4(OH_2)_2]$. This brown species gives only a very weak, non-resonance Raman spectrum. Both Claus' salt and this *cyano-complex* derived from it may be regarded as containing the OsN₂⁸⁺ core.

(B) The $\operatorname{Ru_3N_2}^{6+}$ Core Complex $[\operatorname{Ru_3N_2(NH_3)_8(OH_2)_6}]$ -Cl₆.—The binuclear species $[\operatorname{Ru_2NX_8(OH_2)_2}]^{3-}$ and $[\operatorname{Ru_2N(NH_3)_5X_2}]^{n+}$ (X = Cl, Br, I, NCS, N₃, or H₂O) are well established,⁷ and the crystal structure of K₃[Ru₂-NCl₈(OH₂)₂] has been determined.²⁵ No trinuclear species of ruthenium have been reported, though a material H₃₃N₁₁O₁₂Ru₄ has been made from ruthenium tetraoxide (RuO₄) and liquid ammonia.²⁶

During studies on the preparation and cytological properties of ruthenium red, Luft ²⁷ noted the presence of an impurity which he named ' ruthenium violet ', and which had staining properties similar to those of ruthenium red. We have prepared this complex and find it to analyse as $[Ru_3N_2(NH_3)_8(OH)(OH_2)_5]Cl_5$, so that it is closely related to osmium violet, $[Os_3N_2-$

* B.M. = Bohr magneton $\approx 0.927 \times 10^{-23}$ A m².

 $(\rm NH_3)_8(\rm OH_2)_6]Cl_6$, and like the latter, it is diamagnetic. The complex is sufficiently soluble to permit conductivity measurements: the conductance at infinite dilution, 780 Ω^{-1} cm² mol⁻¹ in water at 25 °C, is comparable with that of other 5:1 electrolytes (e.g. $[\rm Ru_2N(\rm NH_3)_8^ (\rm OH_2)_2]^{5+}$, 801 Ω^{-1} cm² mol⁻¹). The vibrational spectra of normal and ²H-substituted ruthenium violet are listed in the Table; again, resonance enhancement of the Raman spectrum at 530.9, 568.2 and 647.1 nm is observed by virtue of the electronic transition at 620 nm (ε 1.29 × 10⁴ dm³ mol⁻¹ cm⁻¹) and the main bands may be assigned in a similar fashion to the other nitrido-complexes already described.

(C) Cytological Properties of Osmium Violet.*—Staining of barley leaf and root cells by osmium violet is comparable with that found for ruthenium red; membranes, chromatin, nucleoli, and ribosomes gained intensity relative to other cell constituents. In the absence of additional staining the intensity of the osmium images appeared somewhat greater than that of the ruthenium image.

EXPERIMENTAL

Octa-amminehexa-aquodi- μ -nitrido-triosmium(IV) Hexachloride, $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_6$, 'Osmium Violet'.—Method 1. A saturated solution of $Na_2[OsCl_6]$ ·nH₂O (2.0 g, 3.6 mmol) was added to combined solutions of ammonium chloride (6.6 g, 0.12 mol) and sodium hydroxide (4.0 g, 0.1 mol) in 40 cm³ of water. The mixture was heated in a closed pressure bottle on a steam bath for six hours, the black solid filtered from the cooled solution and washed

with water, ethanol, and ether. Yield 47%. *Method* 2. A solution of Na₂[OsCl₆]·*n*H₂O (5 g, 9 mmol) in hydrochloric acid (0.25 mol dm⁻³, 75 cm³) and ethanol (15 cm³) was refluxed for three hours, and the brown solution treated with concentrated ammonia solution (0.880, 100 cm³) with stirring at 75 °C in air for 4 h. Sufficient ammonia was added to offset losses. Yield of product 15%.

Method 3. The complex $[Os(NH_3)_5Cl]Cl_2$ (prepared as previously described ²⁸) (1.0 g, 3.2 mmol) was stirred in air with aqueous ammonia (0.880, 50 cm³) and warmed to 75 °C for three hours. Ammonia was added to offset losses. Yield 35%.

Method 4. Osmium tetraoxide (5.0 g, 20 mmol) was warmed with concentrated hydrochloric acid (15 cm³), water (25 cm³), and ethanol (10 cm³) for 40 h. The resulting dark green solution was evaporated to half-volume and excess ammonia solution (0.880, 100 cm³) added and the mixture stirred at 60 °C for 5 h with further addition of ammonia to offset losses. Total yield of product, 25%(Found: H, 3.2; Cl, 18.9; N, 14.0; O, 9.7; Os, 54.1. H₃₆Cl₆N₁₀O₆Os₃ requires H, 3.4; Cl, 20.2; N, 13.3; O, 9.1; Os, 54.1%).

Ammonia was analysed by a Kjeldahl procedure by boiling the sample with 45% sodium hydroxide solution and collecting the NH₃ in saturated boric acid solution ^{12,16} (Found: NH₃, 13.9%). $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_6$ requires NH₃, 12.9%).

The ²H and ¹⁵N forms of the salt were made by method 1

* Tests carried out by Dr. C. Sargent, Imperial College.

using $[N^{2}H_{4}]Cl$, Na $[O^{2}H]$, and ${}^{2}H_{2}O$, or $[{}^{15}NH_{4}]Cl$ (98.6% ${}^{15}N$) respectively.

Magnetic data: $\chi - 2.9 \times 10^{-9} \text{ m}^3 \text{ kg}^{-1}$ at 294 K, giving $\mu_{\text{eff.}}$ 0.64 B.M. per trimer unit. Electronic spectra (recorded in 0.1 mol dm⁻³ sodium acetate solution measured from 250—850 nm): maxima at 330 (ϵ 6.9 \times 10³); 590 (ϵ 14.0 \times 10³); 710 nm (ϵ 12.5 \times 10³ dm³ mol⁻¹ cm⁻¹). Infrared spectra (ammine modes): 3 360s, 3 110vs v(NH), 1 603vs $\delta_{\text{asym}}(\text{NH}_3)$, 1 322s $\delta_{\text{sym}}(\text{NH}_3)$, 740 $\rho(\text{NH}_3)$; in deuteriate 2 360s, 2 290vs, 1 240m, 1 000s, 700ms cm⁻¹.

Octa-amminepenta-aquohydroxodi- μ -nitrido-triosmium(IV) Pentabromide, $[Os_3N_2(NH_3)_8(OH)(OH_2)_5]Br_5$.— This complex was made from $[NH_4]_2[OsBr_6]$ (3.0 g, 4.3 mmol), ammonium bromide (12.5 g, 0.13 mol), and sodium hydroxide (4.2 g, 0.1 mol) by method 1 above. Yield of black material, 40% (Found: H, 2.7; Br, 28.4; N, 11.3; Os, 46.9. $H_{35}Br_5N_{10}O_6Os_3$ requires H, 2.2; Br, 32.2; N, 11.3; Os, 46.0%). Infrared spectrum (solid state): 3 400 v(OH), 3 220s, 3 150s v(NH), 1 610s $\delta_{asym}(NH_3)$, 1 310s $\delta_{sym}(NH_3)$, 1 105s, 1 020m v(Os_3N_2), 835m $\rho(NH_3)$ cm⁻¹. Octa-amminehexa-aquodi- μ -nitrido-triosmium

Heptachloride, $[Os_3N_2(NH_3)_8(OH_2)_8]Cl_7$.—This was extracted, following evaporation to low volume, from the solutions remaining from the above methods 1—4 after precipitation of osmium violet; method 2 gives the best yield, 1.5 g of product from 5.0 g of $Na_2[OsCl_6]\cdot nH_2O$.

It can also be made by the reaction of $Na_2[OsCl_6] \cdot nH_2O$ (1.5 g, 2.7 mmol) and ammonia solution (0.880, 25 cm³), warmed in a sealed pressure bottle on a steam bath for 6 h. The brown-black solid was filtered off, washed with ammonia solution, and dried *in vacuo*. Yield 10% (Found: H, 2.9; Cl, 21.7; N, 12.6; O, 9.4; Os, 52.1. $H_{36}Cl_7N_{10}O_6Os_3$ requires H, 3.2; Cl, 22.8; N, 12.9; O, 8.8; Os, 52.3%). Ammonia (by Kjeldahl procedure as above) (Found: NH₃, 13.1. $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_7$ requires NH₃, 12.5%). The isotopically enriched ²H and ¹⁵N forms were made from $K_2[OsCl_6]$ and N²H₃ in ²H₂O, and from $Na_2[OsCl_6] \cdot nH_2O$ and ¹⁵NH₃ respectively.

Magnetic data: $\chi - 2.0 \times 10^{-9}$ m³ kg⁻¹ at 294 K gives $\mu_{eff.}$ 0.84 B.M. per trinuclear unit. Electronic spectrum (recorded in 0.1 mol dm⁻³ sodium acetate solution, 250—850 nm): maxima at 320 (ε 5.3 \times 10³) and 380 nm (ε 6.4 \times 10³ dm³ mol⁻¹ cm⁻¹). Infrared spectra (ammine modes): 3 400vs v(OH), 3 240vs, 3 170vs v(NH₃), 1 615s, $\delta_{asym}(NH_3)$, 1 345s, 1 310s $\delta_{sym}(NH_3)$, 833m $\rho(NH_3)$; in deuteriate: 2 340s, 2 260s, 1 250m, 863m, 790m, 550 cm⁻¹.

Tetra-amminediaquo-octahydroxodi-µ-nitrido-triosmium

 $[Os_3N_2(NH_3)_4(OH)_8(OH_2)_2]$ ('Claus' sall').—Concentrated aqueous ammonia (0.880, 150 cm³) was added to OsO₄ (3.6 g, 1.4 mmol in 100 cm³ of water) and the mixture refluxed for 2 d. The black precipitate was filtered off and dried *in vacuo*. Yield 90% (Found: H, 2.4; N, 10.0. H₂₄N₆O₁₀Os₃ requires H, 2.9; N, 10.0%). Infrared spectrum: 3 380s, 3 160s, 1 620m, 1 335m, 1 090s, 965vs, 530s cm⁻¹.

Hexa-amminediaquotetrahydroxodi- μ -nitrido-triosmium(IV), $[Os_3N_2(NH_3)_6(OH)_4(OH_2)_2]Cl_2$ —This was made from OsO₄ as described previously ¹⁴ (Found: H, 2.9; Cl, 6.3; N, 12.6. H₂₆Cl₂N₄O₆Os₃ requires H, 3.0; Cl, 8.1; N, 12.8%). Determination of NH₃ by the modified Kjeldahl procedure (Found: NH₃, 10.6. $[Os_3N_2(NH_3)_6(OH)_4(OH_2)_2]Cl_2$ requires NH₃, 11.6%). Magnetic data: $\chi - 3.5 \times 10^{-9}$ m³ kg⁻¹ at 294 K giving μ_{eff} 0.38 B.M. per trinuclear unit. Infrared spectrum: 3 360s v(OH), 3 100vs v(NH), 1 580s

 $\delta_{asym}(NH_3)$, 1 320vs $\delta_{sym}(NH_3)$, 1 010s, 970m $\nu(Os_3N_2)$, 715m $\rho(NH_{3}).$

Tetrapotassium Tetra-aquodecacyanodi-µ-nitrido-triosmate(IV) Tetrahydrate, $K_4[Os_3N_2(CN)_{10}(OH_2)_4]\cdot 4H_2O$. The complex $[Os_3N_2(NH_3)_8(OH_2)_6]Cl_6$ ('osmium violet') (0.35 g, 0.33 mmol) was dissolved in potassium cyanide solution (2 g, in 5 cm^3 water), and the mixture stirred and heated under reflux for 7 h. The brown solution was added when cold to methanol (20 cm³), the brown precipitate filtered off, and washed with methanol followed by diethyl ether. It was recrystallised by dissolving in water (20 cm³) and adding methanol (ca. 10 cm³) until the solution was turbid on cooling. Yield of black product, 20% (Found: C, 9.7; H, 1.4; K, 12.7; N, 14.6; O, 11.2. C₁₀H₁₆K₄N₁₂O₈Os₃ requires C, 10.4; H, 1.4; K, 13.5; N, 14.5; O, 11.0%). Electronic absorption spectrum (in water): 370 (ϵ 4.3 \times 10³), 510 (ϵ 6 \times 10³), 640 nm (4.1 \times 10³ dm³ mol⁻¹ cm⁻¹).

Tetrapotassium Diaquo-octacyanotetrahydroxodi-µ-nitridotriosmate, $K_4[Os_3N_2(CN)_8(OH)_4(OH_2)_2]$.—The complex [Os₃N₂(NH₃)₄(OH)₈(OH₂)₂] (' Claus' salt ') (1 g, 1.2 mmol) was dissolved in potassium cyanide solution (2.5 g, in 75 cm³ water), and the mixture heated under reflux for 7 h. The brown solution was added when cold to methanol (150 cm³), the brown precipitate filtered off, and washed with methanol followed by diethyl ether. The product was recrystallised from water-methanol. Yield of dark brown product, 60% (Found: C, 8.9; H, 1.0; K, 13.9; N, 13.7. C₈H₈K₄N₁₀O₆Os₃ requires C, 9.0; H, 0.8; K, 14.7; N, 13.1%).

Octa-amminepenta-aquohydroxodi-µ-nitrido-triruthenium(IV), $[Ru_3N_2(NH_3)_8(OH)(OH_2)_5]Cl_5$, 'Ruthenium

Violet'.--Hydrated ruthenium trichloride (2 g, 8 mmol) was refluxed with HCl (0.25 mol dm⁻³, 40 cm³) and ethanol (10 cm^3) for 3 h and left to cool. It was then treated with concentrated ammonia (0.880, 100 cm³) and the mixture kept at room temperature in air for 1 d. More ammonia (100 cm³) was added and the mixture allowed to stand overnight. Yield of blue-black product, 20% (Found: H, 4.4; Cl, 25.5; N, 18.2; O, 12.3. $H_{35}Cl_5N_{10}O_6Ru_3$ requires H, 4.7; Cl, 23.6; N, 18.6; O, 12.8%). Isotopically enriched (²H) ruthenium violet was made by evaporating to dryness in vacuo a solution in ${}^{2}H_{2}O$.

Magnetic Data: $\chi -2.02 \times 10^{-9}$ m³ kg⁻¹ at 296 K, giving µeff. 0.80 B.M. per trinuclear unit. Electronic absorption spectrum: 385 (ε 7 × 10³), 495 (ε 9.1 × 10³), 620 (ε 12.9 \times 10³), 750 nm (ε 19.9 \times 10³ dm³ mol⁻¹ cm⁻¹). Conductivities: measurements over the concentration range $4 imes 10^{-5}$ to $6 imes 10^{-6}$ mol dm⁻³ gave the limiting conductance Λ^0 780 Ω^{-1} cm² mol⁻¹ in water at 25 °C. Values of Λ^0 for comparable ions are 801 Ω^{-1} cm² mol⁻¹ for $[Ru_2N(NH_3)_8]$ $(OH_2)_2$ ⁵⁺ 5(Cl⁻) and 1 030 Ω^{-1} cm² mol⁻¹ for [Ru₃O₂- $(NH_3)_{14}]^{6+} \cdot 6(Cl^{-}).$

Raman spectra (60-1 200 cm⁻¹) were run on a Spex Ramalog 5 instrument with a krypton-ion laser, using solids as pressed KBr discs or aqueous solutions, both being spun in the beam to avoid thermal decomposition.

Infrared spectra (200-4 000 cm⁻¹) were measured as liquid paraffin mulls between caesium iodide plates on a Perkin-Elmer 597 instrument. Conductivity measurements were made on a Wayne-Kerr A.C. Bridge. Electronic spectra (250-800 nm) were measured on a Perkin-Elmer 402 instrument. X-Ray photoelectron spectra were measured on a Vacuum Generators ESCA 3 instrument.

We thank Dr. C. Sargent for staining tests using osmium violet, ruthenium violet, and ruthenium red, and Mr. S. Bean of Johnson, Matthey Ltd. for x.p.s. measurements. We acknowledge the loan of osmium and ruthenium from Johnson, Matthey Ltd., and the S.R.C. for a research studentship (to J. P. H.).

[0/295 Received, 20th February, 1980]

REFERENCES

- ¹ Part 5, A. J. Nielson, M. Schröder, and W. P. Griffith, J.C.S. Dalton, 1979, 1607.
 - ² A. Joly, Compt. rend. Acad. Sci., 1892, 114, 291.
- ^a J. M. Fletcher, B. F. Greenfield, C. J. Hardy, D. Scargill, and J. L. Woodhead, *J. Chem. Soc.*, 1961, 2000.
 ⁴ M. A. A. F. de C. T. Carrondo, W. P. Griffith, J. P. Hall,
- and A. C. Skapski, Biochim. Biophys. Acta, 1980, 627, 332. ⁵ P. R. Blanquet, Histochemistry, 1976, 47, 63.

 - ⁶ K. C. Reed and F. L. Bygrave, *Biochem. J.*, 1974, 140, 143. ⁷ M. J. Cleare and W. P. Griffith, *J. Chem. Soc.* (A), 1970,
- 1117. ⁸ M. J. Cleare, F. M. Lever, and W. P. Griffith, Adv. Chem.
- Ser., 1971, 98, 54. ⁹ C. Claus, Bull. Acad. Petersburg, 1863, 6, (3), 175.

 - ¹⁰ J. J. Berzelius, Pogg. Ann., 1829, 15, 215.
 ¹¹ W. P. Griffith and D. Pawson, J.C.S. Dalton, 1973, 1315.
- ¹² G. W. Watt and E. M. Potrafke, J. Inorg. Nuclear Chem., 1961, 17, 248.
- ¹³ G. W. Watt and W. C. McCordie, J. Inorg. Nuclear Chem., 1965, 27, 2013.
- 14 R. Cogliati and A. Gautier, Compt. rend. Acad. Sci., 1973,
- **D276**, 3041. ¹⁶ J. R. Campbell, R. J. H. Clark, W. P. Griffith, and J. P. Hall, *J.C.S. Dalton*, 1980, 2228.
 - ¹⁶ L. Winkler, Z. angew. Chem., 1914, 27, 630
- 17 R. V. Casciani and E. J. Behrman, Inorg. Chim. Acta, 1978,

28, 69. ¹⁸ V. S. Syrokomskii, Doklady Akad. Nauk S.S.S.R., 1945, 46, 305.

¹⁹ D. L. White, S. B. Andrews, J. W. Faller, and R. J. Barrnett, Biochim. Biophys. Acta, 1976, 436, 577.
 ²⁰ D. J. Hewkin and W. P. Griffith, J. Chem. Soc. (A), 1966, 472.

²¹ J. san Filippo, P. J. Fagan, and E. J. DiSalvo, Inorg. Chem., 1977, 16, 1016.

²² W. P. Griffith, J. Chem. Soc. (A), 1966, 899.

- ²³ J. M. Friedman, D. L. Rousseau, G. Navon, S. Rosenfeld, P. Glynn, and K. B. Lyons, Arch. Biochem. Biphys., 1979, 193,
- 14.
 ²⁴ P. M. Smith, T. Fealey, J. E. Earley, and J. V. Silverton, Inorg. Chem., 1971, 10, 1943.
 ²⁵ M. Ciachanowicz and A. C. Skapski, J. Chem. Soc. (A), 1971,

1792.

26 G. Watt and W. C. McCordie, J. Inorg. Nuclear Chem., 1965, 27, 262.

27 J. H. Luft, Anat. Rec., 1971, 171, 347.

28 A. D. Allen and J. R. Stevens, Canad. J. Chem., 1972, 50, 3093; 1973, **51**, 92.