Solution Calorimetry of Nitrosonium Salts

By Arthur Finch,* Peter N. Gates, and Terence H. Page, The Bourne Laboratory, Royal Holloway College, Egham, Surrey TW20 0EX

The standard enthalpies of formation of crystalline [NO][ClO₄], [NO][HSO₄], and [NO]₂[S₂O₇] have been determined as 59.0, -680.3, and -1.041.0 kJ mol⁻¹ respectively, based on enthalpies of reaction with aqueous base. The discrepancies between these and some previously published values are discussed in terms of the competing neutralisation and disproportionation reactions of nitrous acid in aqueous medium.

ALTHOUGH many nitrosonium salts are well known, thermodynamic data are sparse and discrepant. In particular. (i) there are serious discrepancies between independent measurements of the standard enthalpy of formation of nitrosonium hydrogensulphate, [NO]- $[HSO_{4}]^{1,2}$ and (ii) there are errors of calculation and interpretation in an investigation of $[NO][ClO_4]$.³ The majority of measurements have involved degradative solution calorimetry in aqueous base. Under such conditions it is clear that nitrous acid is formed, at least transiently, via $NO^+ + OH^- \rightarrow HNO_2$, but its subsequent reaction is dependent on experimental conditions,⁴ e.g. pH. In some previous calorimetric work the consequences of this, and of reaction of oxygen with the liberated NO, have been largely ignored. Although simple neutralisation predominates in very strongly basic media the contribution from disproportionation is nevertheless significant. In this paper we report detailed enthalpy measurements and post-calorimetric analyses, under oxygen-free conditions, on three salts, $[NO][HSO_4]$, $[NO][ClO_4]$, and $[NO]_2[S_2O_7]$, using 0.1 mol dm⁻³ Na[OH]. Appropriate values of standard enthalpies of reaction and formation are calculated and compared with reported values.

EXPERIMENTAL

Preparations.—The salt [NO][ClO₄] was prepared by a laboratory scale modification of a patented industrial process.⁵ Perchloric acid (70%, 8.5 cm³) was added dropwise to a stirred solution of fuming nitric acid (15 cm³) and N₂O₄ (30 cm³) cooled in an ice-salt bath. The precipitated [NO][ClO₄] was filtered off and dried *in vacuo* at ambient temperature over anhydrous magnesium perchlorate (Found: Cl, 27.3; NO, 23.15. Calc. for ClNO₅: Cl, 27.4; NO, 23.15%). The salt [NO][HSO₄] was prepared according to the method of Richards and Woolf ² which is essentially a modification of a reported method ⁶ (Found: NO, 23.65; S, 25.35. Calc. for HNO₅S: NO, 23.6; S, 25.2%). The salt [NO]₂[S₂O₇] was prepared from SO₂ and N₂O₄ in a sealed tube according to Jones *et al.*⁷ (Found: NO, 25.35; S, 27.15. Calc. for N₂O₉S₂: NO, 25.4; S, 27.2%).

Calorimetry.—Enthalpies of reaction in 100 cm³ of 0.1 mol dm⁻³ aqueous sodium hydroxide solution were measured at 298.2 K under oxygen-free nitrogen using a solution reaction calorimeter constructed in these laboratories and fully described elsewhere.⁸ The aluminium lid of the calorimeter was coated on the underside with a film of Teflon to avoid chemical attack by oxides of nitrogen. The performance of the calorimeter was checked repeatedly by

measuring the enthalpy of neutralisation of tris[(hydroxymethyl)amino]methane in an excess of 0.1 mol dm⁻³ HCl.

Post-calorimetric Nitrogen Analysis.—Following measurement of the enthalpy of reaction, NO was displaced from the calorimeter and calorimetric fluid using a current of oxygenfree nitrogen gas. Nitrite was determined directly in an aliquot by titration with K[MnO₄].⁹ Total nitrate and nitrite in an aliquot of solution were determined using Devarda's method.⁹ The small-scale decomposition did not permit direct measurement of the volume of NO gas. This was calculated from the total nitrate and nitrite assay and the nitrogen content of the sample decomposed. The experimental value for the NO: NO₃ mol ratio, which is at variance with the theoretical value of 2:1, reflects the low precision of the nitrate analysis. However the derived ratio is well within the limits of experimental error of the titrimetric procedure.¹⁰

RESULTS AND DISCUSSION

Hydrolysis of Nitrous Acid.—The basic hydrolysis of a nitrosonium salt, [NO]X, may be considered in terms of competing neutralisation and disproportionation reactions. Consider that a mol fraction x of the transient HNO₂ is neutralised [equations (1)—(4)]. Hence in the

$$3[\text{NO}]X + 3\text{OH}^{-} \longrightarrow 3\text{HNO}_2 + 3X^{-} \qquad (1)$$

$$3xHNO_2 + 3xOH^- \longrightarrow 3xH_2O + 3xNO_2^-$$
 (2)

$$3(1-x)HNO_2 \longrightarrow (1-x)HNO_3 + (1-x)H_2O + 2(1-x)NO$$
 (3)

$$(1 - x)HNO_3 + (1 - x)OH^- \longrightarrow$$

 $(1 - x)NO_3^- + (1 - x)H_2O$ (4)

absence of adventitious oxygen the overall degradation of nitrosonium salt [NO]X in aqueous base is represented by equation (5). Thus, measurement of the standard

$$3[NO]X(c) + 2(2 + x)OH^{-}(aq) \longrightarrow [3X^{-} + 3xNO_{2}^{-} + (1 - x)NO_{3}^{-}](aq) + 2(1 - x)NO(g) + (x + 2)H_{2}O$$
(5)

enthalpy of reaction, $\Delta H_{\rm R}^{\circ}$, and analytical determination of the coefficient x, defines the system thermodynamically.

An obvious simplification results if values for $\Delta H_{\rm R}^{\circ}$ are measured under identical conditions for a series of compounds, such that the value of x remains constant. Thus, the measured differences in the respective enthalpies of reaction of two compounds [NO]X and [NO]Y may be expressed as $\Delta H_{\rm f}^{\circ}$ [NO]Y(c) $-\Delta H_{\rm f}^{\circ}$ [NO]X-(c) $+\Delta H_{\rm f}^{\circ}$ X⁻(aq) $-\Delta H_{\rm f}^{\circ}$ Y⁻(aq). Hence if the value TABLE 1

Enthalpies of reaction of [NO]X (X = ClO_4 or HSO_4) and $[NO]_2[S_2O_7]$ with 0.1 mol dm⁻³ Na[OH] at 298.2 K

-			•	*/	-				-
[NO][ClO ₄]/g	n *	–ΔH _R ⇔/ kJ mol ⁻¹	[NO][HSO4]/ g	n *	j	ΔH _R ⇔/ kJ mol ⁻¹	[NO] <u>3</u> [S ₂ O ₇]/ g	n *	ΔH _R ⇔/ kJ mol ⁻¹
0.1717	4 173	110.79	0.1130	$6\ 224$		209.68	0.1044	$6\ 259$	441.29
0.1358	$5\ 276$	110.83	0.0949	7411		209.26	0.0948	6 893	439.28
0.1240	5 777	109.20	0.1208	5822		207.01	0.1040	6 283	444.78
0.1311	5 464	108.53	0.1030	6 829		207.47	0.0848	7 706	437.84
0.0869	8 248	108.99	0.1404	$5\ 010$		210.23	0.1227	5 326	449.32
0.1494	4 796	109.79	0.0927	7 587		211.39	0.1366	4 784	440.79
0.1575	4548	109.58	0.0988	7 119		210.35			-
0.1540	4 651	109.62							
Mean ∆H _R kJ mol ⁻¹	$r_{1}^{\circ} = -109$	$.58\pm0.75$	Mean ΔH _R kJ mol ⁻¹	$e^{0} = -20$	0 9.33 <u>-</u>	⊢ 1.46	Mean ∆H _R kJ mol⁻	$e^{0} = -442.$	21 ± 4.39
		*	Mal makin (m. 1)	of		*****			

Mol ratio (n:1) of water to nitrosonium ion.

TABLE	2
-------	---

NO₂⁻ level in solution after decomposition of NO⁺ salts

		~			-			
[NO][HSO ₄]/ mmol	NO2 ⁻ / mmol	х	[NO] ₂ [S ₂ O ₇]/ mmol	NO2 ⁻ / mmol	x	[NO][ClO ₄]/ mmol	NO ₃ -/ mmol	x
0.959	0.819	0.854	0.440	0.626	0.712	1.437	1.084	0.755
1.346	1.138	0.846	0.520	0.747	0.719	1.014	0.775	0.764
1.967	1.631	0.829	0.578	0.818	0.707	1.371	1.050	0.766
1.472	1.177	0.800				2.100	1.559	0.742
						1.715	1.290	0.752
	< <i>x</i>	$\rangle = 0.84$			$\langle x \rangle = 0.71$			$\langle x \rangle = 0.76$

of the standard enthalpy of formation of any one salt is established, values for others may be calculated. Unfortunately, the nitrite analyses listed in Table 2 show that significantly different, but reproducible, values of xare derived from degradations of the different salts under identical conditions. Thus, separate equations [(6)-(8)] are given for each compound, following detailed potassium manganate(VII) titrations; experimental details are given elsewhere.¹⁰ Values of $\Delta H_{\rm f}^{\circ}$ for each

$$[NO][ClO_4] \\ \Delta H_{\rm R}^{\rm o} = -22.01 - 37.7x - \Delta H_{\rm f}^{\rm o}[NO][ClO_4]({\rm c}) \quad (6)$$

[NO][HSO₄]

$$\Delta H_{\rm R}^{\,\Theta} = -858.1 - 37.7x - \Delta H_{\rm f}^{\,\Theta} [\rm NO] [\rm HSO_4] (c) \quad (7)$$

$$\Delta H_{\rm R}^{\rm e} = -1\,429.7 - 75.3x - \Delta H_{\rm f}^{\rm e} [\rm NO]_2[S_2O_7](c) \quad (8)$$

compound, calculated using experimental data from Tables 1, 2, and 3 and ancillary data from Table 4, are compared with reported values in Table 5.

Comparison with Reported Values.—(i) $[NO][ClO_4]$. Cruse *et al.*³ have reported a calorimetric study, using basic hydrolysis and supplemented by careful postcalorimetric analyses; Richards and Woolf² have noted and corrected an error of calculation. A careful study of the analytical data, however, shows clearly that the

TABLE 3

 $NO: NO_3^-$ mol ratio following the decomposition of NO^+ salts by aqueous base

	$X = ClO_4$	$X = ClO_4$	$X = HSO_4$
[NO]X/g	0.2719	0.2220	0.2500
[NO]X/mmol	2.100	1.715	1.967
$NO_3^- + NO_2^-/mmol$	1.760	1.440	1.760
NO2~/mmol	1.559	1.290	1.631
NO ₃ -/mmol	0.201	0.150	0.129
NO/mmol	0.340	0.275	0.207
$-\Delta H_{\rm R}^{\Theta}/{\rm kJ} {\rm mol}^{-1}$	109.41	108.74	208.99
NO : NO mol ratio	1.70:1	1.83:1	1.60:1

degradative reaction was not reproducible, and that separate values of $\Delta H_f^{\circ}[\text{NO}][\text{ClO}_4](\text{c})$ were calculated from each calorimetric run: the overall reaction, on which the recalculation was made, viz. $9\text{NO}^+ + 16\text{OH}^- \rightarrow 6\text{NO}_2^- + \text{NO}_3^- + 2\text{NO} + 8\text{H}_2\text{O}$, does not in fact represent the decomposition. Recalculation, using equation (5) and updated ancillary data, yields a value for $\Delta H_f^{\circ}[\text{NO}][\text{ClO}_4](\text{c}) = 65.15 \text{ kJ mol}^{-1}$, in modest agreement with that reported here, viz. 59.0 kJ mol}^{-1}.

TABLE 4

Ancillary thermochemical data

Compound	$-\Delta H_1^{\circ}/kJ \text{ mol}^{-1}$	Ref.
NO(g)	-90.21 ± 0.21	12
$NO_2^{-}(aq)$	104.60 ± 4.18	12
$NO_3^{-}(aq)$	207.19 \pm 0.46	12
SO_4^2 (aq)	909.27 ± 0.00	12
$ClO_4^{-}(aq)$	129.33 ± 0.43	a
Cl ⁻ (aq)	167.08 ± 0.00	a
OCl-(aq)	109.72 ± 4.18	ь
HNO ₂ (aq)	119.24 ± 4.18	12
$H_2SO_4(1)$	811.28 ± 0.10	с
OH-(aq)	230.02 ± 0.00	12
$H_2O(l)$	$\textbf{285.83} \pm \textbf{0.00}$	12

^a J. D. Cox, ^t Halogen Compounds, ^c CATCH Tables, University of Sussex, 1972. ^b J. E. McDonald, J. P. King, and J. W. Cobble, J. Phys. Chem., 1960, **64**, 1345. ^c F. M. Rossini, D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe, Nat. Bur. Stand. (U.S.) Circ., U.S. Govt. Printing Office, Washington D.C., 1952, no. 500.

TABLE	5
-------	---

Thermochemical data for nitrosonium salts

Compound	$-\Delta H_t e/k \text{J} \text{ mol}^{-1}$	Ref.
$[NO][ClO_{4}]$ (c)	- 59.0	This work
	-65.2	3 corrected
	165.7	3
$[NO][HSO_A]$ (c)	680.3	This work
	687.8	1
	764.4	2
$[NO]_{9}[S_{9}O_{7}]$ (c)	1 041.0	This work
	1 058.6	12
	1 191.6	11
	1 152.3	2

(ii) $[NO][HSO_4]$. Two independent values are available.^{1,2} That of Kunin,¹ based on measurements of the enthalpy of dissolution of $[NO][HSO_4]$ in aqueous sulphuric acid of varying concentrations, is in excellent agreement with that reported here (-687.8 cf. -680.3 kJ)mol⁻¹), derived from basic hydrolysis studies and calculations involving (5) and (7). The very different value of Richards and Woolf,² $\Delta H_{f}^{\bullet}[NO][HSO_{4}](c) = -764.4$ kJ mol⁻¹, depends on measurements involving oxidative hydrolysis with alkaline hypochlorite, according to: $NO^+ + 2OH^- + OCI^- \longrightarrow NO_3^- + CI^- + H_2O.$ This assumes that NO_3^- is formed entirely by oxidation of NO₂⁻, and that no disproportionation occurs. Exploratory experiments in this laboratory showed that after reaction of [NO][HSO₄] with OCl⁻ in an oxygen-free environment, NO was displaced from the calorimeter vessel. Clearly reaction of NO⁺ with base will proceed as in (1) to (4). If complete oxidation of NO_2^{-1} to NO_3^{-1} occurs then the overall reaction may be represented by: $3[NO][HSO_4] + (7 + 2x)OH^- + 3xOCI^- \rightarrow 3SO_4^{2-} + 3xCI^- + (5 + x)H_2O + 2(1 - x)NO + (1 + 2x)NO_3^$ and the reaction enthalpy given by $\Delta H_{\rm R}^{\rm o} = -897.7$ – 197.9x – ΔH_1° [NO][HSO₄](c). The magnitude of ΔH_R° is seriously affected by variations in x. Assuming, as a first approximation, that the extent of disproportionation is the same as in the absence of OCl⁻ and putting x = 0.84 and $\Delta H_{\rm R}^{\rm o} = -318.9$ kJ mol^{-1 10} then $\Delta H_{\rm f}^{\rm o}$ [NO][HSO₄](c) = \approx -703 kJ mol⁻¹ *i.e.* a change of *ca*. 60 k mol⁻¹ from the reported value.

(*iii*) $[NO]_2[S_2O_7]$. Three independent studies have been reported: in 1928 Briner *et al.*¹¹ and also Vaughan,^{12,13} using aqueous base and, more recently, Richards and Woolf² using alkaline hypochlorite oxidation. The enthalpy of reaction reported by Vaughan, -447.7 kJ mol⁻¹, is in very good agreement with that from the present study, -441.8 kJ mol⁻¹. Recalculation using recent ancillary data, leads to a value

of $\Delta H_1^{\circ}[NO]_2[S_2O_7] = -1.058.6 \text{ k} \text{ mol}^{-1}$ in excellent, although possibly fortuitous, agreement with the value of -1 041.0 kJ mol⁻¹ reported here. Since no consideration was taken of disproportionation it is unlikely that oxygen-free calorimetric conditions were employed.

Values reported by Richards and Woolf for $\Delta H_{f}^{\Theta}[NO]$ - $[HSO_4](c)$ and $\Delta H_1^{\circ}[NO]_2[S_2O_7](c)$ were justified by the consistency of two derived values of $\Delta H_{f}^{\bullet}[NO][SO_{3}F]$ -(c),² calculated from separate measurements of enthalpies of solution of [NO][HSO₄](c) and [NO]₂[S₂O₇](c), respectively, in fluorosulphonic acid. These derivations require a value for the enthalpy of solution of $H_2S_2O_7$, in fluorosulphonic acid, and it is apparently assumed that this is equal to the sum of the enthalpies of solution of $H_2SO_4(l)$ and of $SO_3(l)$ in fluorosulphonic acid. This is not supported by an analysis of the available data, which suggests a difference of ca. 25 kJ.

We thank the S.R.C. for financial support (to T. H. P.).

[0/376 Received, 7th March, 1980]

REFERENCES

- ¹ T. I. Kunin, J. Appl. Chem. (U.S.S.R.), 1954, 27, 237.
- ² G. W. Richards and A. A. Woolf, J. Chem. Soc. (A), 1968,
- 470. K. Cruse, G. Huck, and H. Möller, Z. anorg. Chem., 1949, 259, 173.
- A. Perret and R. Perrot. Compt. rend., 1931, 193, 937.
- ⁵ R. Marquie, French P. 1,471,198/1967 (Chem. Abs., 1967, 67, 75006)
- ⁶ F. Feher, 'Handbook of Preparative Inorganic Chemistry,' ^a C. Jones, W. Price, and H. Webb, J. Chem. Soc., 1929, 312.
 ^a S. J. Peake, Ph.D. Thesis, University of London, 1976.
 ^b R. Belcher and A. J. Nutten, 'Quantitative Inorganic Ambumatic Particument to Particument the particular sector.
- Analysis,' Butterworths, London, 1960.
 - ¹⁰ T. H. Page, Ph.D. Thesis, University of London, 1978
- ¹¹ E. Briner, G. H. Lunge, and A. van der Wijk, Helv. Chim.
- ¹² G. Pilcher, 'Nitrogen Compounds,' CATCH Tables, University of Sussex, 1972.
 ¹³ R. Vaughan, Ph.D. Thesis, Johns Hopkins University,
- Baltimore, 1928.