J.C.S. Dalton

Assignment of Vibrational Spectra of some Dialkylamido-derivatives of Boron

By George Davidson* and Stephen Phillips, Department of Chemistry, University of Nottingham, Nottingham NG7 2RD

A number of inconsistencies and errors in previous vibrational assignments for molecules containing B-NR₂ groups have been corrected. This was achieved by studying the i.r. and Raman spectra of $B(NR_2)_3$, $B[N(CH_2)_4]_3$, $B(NR_2)_2$ Br, and $B_2(NR_2)_4$, where R = Me or Et. The antisymmetric BN stretches were always above 1 500 cm⁻¹, with the symmetric BN stretches near 1 350 cm⁻¹. The value of $\nu(B-B)$ in the diboron compounds was ca. 1 230 cm⁻¹. In $B(NR_2)_3$ there is extensive vibrational coupling between the NR_2 groups.

We have recently reported the assignment of vibrational wavenumbers for $E(NR_2)_3$, where E=P or As; R=Me or $Et.^1$ It was interesting to extend this work to analogous compounds containing boron instead of phosphorus or arsenic. The known tendency of B-N bonds to possess double-bond character might be expected to alter significantly the vibrational spectra.

A number of vibrational studies of dialkylamido-compounds of boron have been made, $^{2\text{-8}}$ but a close study of these revealed that the vibrational assignments were incomplete or contradictory. The two chief contradictions concerned the B–N stretching wavenumber in B(NR₂)₃, and the B–B stretching wavenumber in B₂(NR₂)₄. The former was assigned 3 to $607~\text{cm}^{-1}$ (ν_{sym} BN₃) and $1~379-1~393~\text{cm}^{-1}$ (ν_{asym} BN₃; $^{10}\text{B}^{-11}\text{B}$ isotopic splitting). The B–B stretch in B₂(NMe₂)₄ was assigned to a value of ca. $580~\text{cm}^{-1}$. These should be compared with B–N stretching wavenumbers of $1~370~\text{cm}^{-1}$ (ν_{sym} BN₂) and $1~532-1~1555~\text{cm}^{-1}$ (ν_{asym} BN₂, $^{11}\text{B}^{-10}\text{B}$) in B(NMe₂)₂Cl, 7 and $\nu(\text{BB})$ for B₂Cl₄·2PH₃ (1 061 cm⁻¹). In addition, few detailed assignments were proposed for the internal NR₂ modes.

In order to remove these inconsistencies, and to obtain a valid comparison between the vibrational spectra of the boron and the phosphorus or arsenic dialkylamides, we have recorded and assigned the i.r. and Raman spectra of $B(NR_2)_3$, $B[N(CH_2)_4]_3$, $B(NR_2)Br$, and $B_2(NR_2)_4$, where R = Me or Et.

RESULTS

The observed i.r. and Raman spectra for the compounds studied are listed in Supplementary Publication No. SUP 22937 (15 pp.),† together with a summary of the proposed assignments The assignments of the most important modes are given in Tables 1—4, see the discussion below.

DISCUSSION

(i) Vibrational Analyses.—The molecular structure of $B(NMe_2)_3$ in the vapour phase has been determined by electron diffraction.¹⁰ The BN_3 unit and the three BNC_2 units are all planar, but the dimethylamido-groups are twisted by approximately 30° out of the BN_3 plane, giving an overall molecular symmetry of D_3 . It is reasonable to suppose that this symmetry will persist in

† For details see Notices to Authors No. 7, J. Chem. Soc., Dalton Trans., 1979, Index issue.

the liquid phase, and so for $B(NMe_2)_3$ a symmetry of D_3 will be used as the basis for the assignment.

The numbers and symmetry types of the vibrational modes for $B(NMe_2)_3$ will therefore be as follows: (a) BN_3 stretch: A_1+E ; (b) BN_3 in-plane deformation: E; (c) BN_3 out-of-plane deformation: A_2 ; (d) NC_2 stretch: A_1+A_2+2E ; (e) BNC_2 in-plane deformation: A_1+A_2+2E ; (f) BNC_2 out-of-plane deformation: A_1+A_2+2E ; (g) CH_3 stretch: $3A_1+3A_1+6E$; (h) CH_3 deformation: $5A_1+5A_2+10E$; and (i) CH_3 torsion: A_1+A_2+2E . The selection rules for A_3 symmetry predict the following spectroscopic activity: A_1 , Raman only (polarised); A_2 , i.r. only; E, i.r. and Raman (depolarised).

The predicted numbers of modes for the internal vibrations of the NMe₂ units given above will apply if there is significant vibrational coupling between the units. If they vibrate independently, then it is possible to use a 'local symmetry' approach, with C_{2v} symmetry for an effectively isolated NMe₂ group. This would result in the appearance of fewer bands, e.g. for the CH₃ stretches one would then only expect to see six bands $(2A_1 + A_2 + B_1 + 2B_2)$, all Raman active (two polarised) and five i.r. active. This should be compared with the nine Raman bands (three polarised) and nine i.r. bands (three not coincident with Raman features) predicted by the D_3 model. For $P(NMe_2)_3$ and $As(NMe_2)_3$ the 'local symmetry' approximation was sufficient, but with extensive delocalised π bonding expected in the BN_3 skeleton it is less likely to apply for $B(NMe_2)_3$.

For the more complex tris(dialkylamido)boranes we will not attempt such a detailed assignment of the vibrations for the ethyl groups or the methylene rings in $B(NEt_2)_3$ and $B[N(CH_2)_4]_3$ respectively. Skeletal modes, of $B(NC_2)_3$, will again be assigned assuming D_3 symmetry.

The molecular symmetry of $B(NMe_2)_2Br$ will be $C_{2\nu}$, and it is also expected that vibrations of the $B(NC_2)_2Br$ skeleton of the ethyl analogue will be assignable under that symmetry.

There have been no structural investigations on $B_2(NR_2)_4$, where R=Me or Et. The crystal and molecular structure of the cyclic analogue BB'-bis(dimethyl-1, 3-diaza-2-boracyclopentane) have been determined, however, showing an overall molecular symmetry of D_2 .¹¹ This symmetry will be assumed for $B_2(NR_2)_4$, although it is conceivable that the BNC_2 planes could be perpendicular to that of B_2N_4 , giving D_{2d} symmetry; an all-

1981 307

planar structure (D_{2h}) can be ruled out, as this would require the mutual exclusion rule to be obeyed, which clearly it is not.

As for B(NMe₂)₃, so for B₂(NMe₂)₄, it will be interesting to see whether there is evidence of coupling between NMe₂ groups.

(ii) Tris(dimethylamido)borane.—The highest wavenumber fundamentals are the CH_3 stretches, and it is these which will give the clearest indication as to the extent of coupling between the NMe_2 groups. The assignments will be made by analogy with those for $P(NMe_2)_3$, $As(NMe_2)_3$, and dimethylamine itself.8

The first point to notice, in comparison with e.g. P(NMe₂)₃, is the great complexity of the spectrum in this region. There are certainly more than the six fundamentals predicted for an isolated NMe₂ group, so that there must be significant interaction between the NMe₂ groups. The proposed assignment is given in Table 1.

Table 1 Assignment of NMe $_2$ modes in B(NMe $_2$) $_3$ (all figures in cm $^{-1}$)

			, ,		
CH ₃ stretches A ₁		2.893	CH ₃ deformation	ons A_1	1 488
A_1		2841	· ·	A_1	$1\ 337$
	A_1^1	$\frac{1}{2}$ $\frac{1}{791}$		A_1	1 319
				$\stackrel{1}{A}_{2}^{1}$	1 498
	A_2	2 912			
	A_2	2.830		A_{2}	1 403
	.12	2.778		A_{2}	
	E	2.987		E^{T}	1498
	E	2934		E	1 466
	E	2893		E	1 450
	E	2.869		E	1 438
	E	2841		E	1 411
	E			E	
CH ₃ rocks	A_1	1.030	NC, stretches	A_1	?1 030
b	A_1		-	A_2	962
	4,	1.123		E^{-}	1.065
	\mathcal{A}_{2}	1.099		E	908
	E^{-}	1222			
	\overline{E}	1 147	CH ₃ torsion	A_1	345
	E	1 108	· ·	A_{\bullet}^{1}	310
	\widetilde{E}	1 050		$2E^2$	345
	1.	1 000		-2	940

The polarisation properties and spectral activities of all of the bands are consistent with D_3 symmetry, with the exception that the Raman feature at $2.934~\rm cm^{-1}$, assigned as an E mode, is weakly polarised. One explanation of this could be the presence of a component due to the first overtone of the methyl deformation at $1.466~\rm cm^{-1}$. The only remaining comment to be made concerning the assignment is that we postulate two accidental degeneracies, at $2.893~\rm cm^{-1}$ (A_1+E) and $2.841~\rm cm^{-1}$ (A_1+E) .

It is convenient to consider all of the methyl internal vibrations before dealing with the skeletal modes. The methyl 'deformations' can be subdivided into the deformations proper and the CH₃ rocking modes. Table 1 shows that almost complete assignments are possible for all of these modes. It is clear that there are more fundamentals than can be accounted for in terms of an isolated NMe₂ unit (nine distinct wavenumbers for the deformations, seven for the rocks), providing confirmation of the existence of significant vibrational coupling.

The only remaining CH_3 vibrations are the torsions. Here a detailed assignment is impossible, but two bands are seen in the expected region [by analogy with e.g.

 $P(NMe_2)_3$], *i.e.* 310 cm⁻¹ (i.r. only, A_2) and 345 cm⁻¹ (Raman only, polarised, $A_1 + ?2E$).

Turning now to the skeletal modes, by analogy with other B–N compounds we believe that the antisymmetric BN₃ stretch is seen at 1 504 cm⁻¹ (11 B) and 1 518 cm⁻¹ (10 B), with the symmetric mode at 1 319 cm⁻¹ or 1 337 cm⁻¹. The latter are accidentally degenerate with CH₃ deformations. The present assignments are markedly different from those proposed by Becher,³ but consistent with other assignments for B–NR₂ compounds ⁴⁻⁷ and for borazines,^{12,13} in which the B–N bond lengths are very similar to that found for B(NMe₂)₃.¹⁰ Calculations by Finch *et al.*⁸ suggest that the symmetric BN₃ stretch (A_1) could be mixed extensively with symmetric CH₃ deformations.

Assignment of NC₂ stretches and CH₃ rocking modes, see above, to specific bands is not easy, as their wavenumber ranges overlap. Earlier workers have assigned NC₂ stretches over a wide spectral range, e.g. in B(N-Bun₂)₃ and B(NHMe)₃, Aubrey et al. 14 assigned them at 1 212 and 1 139 cm⁻¹ respectively, while Becher,⁵ for Me₂BNMe₂, preferred 1 111 and 987 cm⁻¹. Bearing in mind that the NC₂ stretches and the CH₃ rocks will be heavily mixed, and that the descriptions of modes in this region will be very approximate, we give the assignments listed in Table 2. The Raman band at 1 030 cm⁻¹ is the only definitely polarised band in this region, and it could be either the A_1 CH₃ rock or the A_1 NC₂ stretch; in P(NMe₂)₃ the symmetric NC₂ stretches are below 1 000 cm⁻¹, and so the 1 030 cm⁻¹ band is more likely to be the CH₃ rock.

By analogy with previous work on planar XY_3 units, we believe that the next mode to be assigned is the BN_3 out-of-plane deformation (A_2) . In BF_3 , 15 $C(NH_2)_3^{+,16}$ and $C(CH_2)_3^{-17,18}$ the equivalent mode lies in the range 700-800 cm⁻¹, with the in-plane deformation at lower wavenumbers (450-520 cm⁻¹). In $B(NMe_2)_3$ an i.r.-only band at 714 cm⁻¹ is an obvious candidate for the out-of-

Table 2 Assignments of $B(NC_2)_3$ modes in $B(NR_2)_3$, where R = Me or Et, or $R_2 = (CH_2)_4$ (all figures in cm⁻¹)*

		R = Me	R = Et	$R_2 = (CH_2)_1$
BN ₃ stretch	A_1	1 337/	1 347	1 298
9	•	$1\ 319^{'}$		
	E	1 518/	1.518	1.525/
		1 504		$1\ 496$
NC, stretch	A_1	?1 030	933)
-	\overline{A}_{2}	962	924	
	E^{-}	1.065	1 076 or	
			1 060	
	E	908	924	
BNC ₂ i.p. def.	A_1	604	626	
	A_2	686	679	see text
	E^{-}	359	388	
	E	276	311	
BNC ₂ o.o.p. def.	A_1	630	;	
	A_2	660	679	
	E^{-}	252	146	
	E	161	126	J
BN ₃ i.p. def.	E	492	472	435
BN ₃ o.o.p. def.	A_2	714	707	720

 \star i.p. def. = In-plane deformation, o.o.p def. = out-of-plane deformation.

plane mode, with the in-plane deformation at 492 cm⁻¹ (Raman-only, depolarised).

All of the remaining skeletal modes can be described as in-plane or out-of-plane BNC₂ deformations. Two i.r.-only bands, at 686 and 660 cm⁻¹, are A_2 modes, but no distinction can be made between in- and out-of-plane. An extremely strong, polarised Raman band at 604 cm⁻¹ is assigned as the symmetric in-plane BNC₂ deformation ('NC₂ scissors') of A_1 symmetry. Becher reported ³ a coincident i.r. absorption, contrary to the predictions of D_3 symmetry. Our experiments revealed that such an i.r. band only appeared if the sample had been held for long periods in the spectrometer. It was, therefore, due to a decomposition product.

The remaining assignments are summarised in Table 2. The two lowest-wavenumber features, at 252 and 161 cm⁻¹, can be described more accurately as an NC₂ wag and an NC₂ torsion respectively.

Thus we have achieved a reasonably complete vibrational assignment for B(NMe₂)₃, removing inconsistencies in previous assignments of skeletal modes, giving a more detailed assignment than hitherto of the NMe₂ modes, and revealing the existence of significant vibrational coupling between the NMe₂ units.

(iii) Tris(diethylamido)borane.—The increased complexity of the spectrum makes a detailed assignment much more difficult, especially for the NEt₂ internal modes. Tentative assignments are given in the Supplementary Publication for these, which will not be discussed further. Table 2, in addition to the results for B(NMe₂)₃, also summarises the proposed skeletal assignments for B(NEt₂)₃.

The BN₃ stretches are very close to those in B(NMe₂)₃ (the slightly higher values for the ethyl compound can be explained by coupling with CH₂ deformation modes), but it was not possible to observe the $^{11}B^{-10}B$ isotopic splitting. The NC₂ stretches are in the same region as in B(NMe₂)₃ but in this case the A_1 mode was seen, at 933 cm⁻¹. Where they can be assigned, the skeletal deformations are at very similar wavenumbers to those in the methyl compound.

(iv) Tris(pyrrolidino)borane.—A detailed vibrational analysis of free pyrrolidine has been carried out by Evans and Wahr ¹⁹ and this has been used to assign the corresponding modes here. They are summarised in the Supplementary Publication. Some of the skeletal modes are also listed in Table 2, but in this case the NC₂ stretches and the BNC₂ deformations will have become vibrations of the cyclic ligands, and cannot be assigned in the same way as for the other molecules.

The BN₃ stretches can be assigned to features in the same regions as in the $B(NR_2)_3$ molecules already described. The symmetric mode, of A_1 symmetry, at 1 298 cm⁻¹, however, shows an i.r. band coincident with the polarised Raman band. This may indicate a breakdown in D_3 symmetry for the tris(pyrrolidino)-derivative, although there are a number of CH_2 deformation modes in this region of the spectrum, and a plausible explanation of the i.r. band may be that is is an A_2 component of the

 $\mathrm{CH_2}$ twist, accidentally degenerate with the symmetric $\mathrm{BN_3}$ stretch.

At lower wavenumbers, although the internal pyrrolidino-vibrations give a complicated spectrum, there are i.r. bands in the regions expected for $\mathrm{BN_3}$ in-plane and out-of-plane deformations, at 435 and 707 cm⁻¹ respectively.

(v) Bromobis(dialkylamido)boranes.—Quite detailed assignments have been proposed for $B(NMe_2)_2Cl$.\(^7\) We will discuss the bromo-analogue, and the NEt_2 derivatives rather briefly, however, as some of our skeletal mode assignments differ from those for the chloro-compound, for which the Raman polarisation data were very incomplete.

The N_2BBr unit is expected to be planar, and the overall symmetry of the methyl compound will be $C_{2\sigma}$ if the BNC_2 units are coplanar with the N_2BBr plane, and C_2 if they are not. The assignment which we propose is consistent with $C_{2\sigma}$ symmetry. We will concentrate upon the assignments for the methyl compound, as the Raman data for the ethyl compound were much less complete, due to sample fluorescence.

The internal modes of the alkyl groups are all in the expected regions, and the assignments are summarised in the Tables in the Supplementary Publication. In both cases there were more bands than could be explained by an isolated NR_2 unit but the extent of vibrational coupling appeared to be less than for $B(NR_2)_3$, as less bands were resolvable.

The skeletal mode assignments are given in Table 3.

Table 3 Assignments of $B(NC_2)_2Br$ modes in $B(NR_2)_2Br$, where R = Me or Et (all figures in em^{-1})*

		R = Me	R = Et
A_1	BN ₂ stretch	1.349	1 338
_	NC ₂ stretch	921	985
	NC ₂ stretch	869	868
	BNC ₂ i.p. def.	605	597
	BNC ₂ i.p. def.	562	580
	BBr stretch	331	361
	N ₂ BBr i.p. def.	270	
.1,	BNC ₂ o.o.p. def.	241	?411
	N₂BBr o.o.p. def.	219 or 117	289
B_1	BN ₂ stretch	$1\ 532 - 1\ 555$	$1\ 519-1\ 543$
	NC ₂ stretch	1 064	1 078
	NC ₂ stretch	893	922
	BNC ₂ i.p. def.	589	566
	BNC ₂ i.p. def.	496	499
	N₂BBr i.p. def.	458	468
B_2	BNC ₂ o.o.p. def.	404	398
	BNC_2 o.o.p. def.	186	?
	N_2BBr o.o.p. def.	117 or 219	?

^{*} See footnote to Table 2.

In both compounds the antisymmetric BN_2 stretches gave clear ^{11}B and ^{10}B components, separated by over $20~\rm cm^{-1}$, at $1.532~\rm and~1.555~\rm cm^{-1}$ for $B(NMe_2)_2Br$. The symmetric BN_2 stretch in $B(NMe_2)_2Br$ was assigned as being accidentally degenerate with a CH_3 deformation at $1.349~\rm cm^{-1}$, while in the ethyl compound it gave a separate (i.r.) band at $1.338~\rm cm^{-1}$.

Our assignments of NC₂ stretches are in the same region as those of Goubeau *et al.*⁷ for B(NMe₂)₂Cl, except

that the band near $1\,075~\rm cm^{-1}$ in the latter (assigned earlier as an A_1 mode) corresponds to a depolarised feature at $1\,061~\rm cm^{-1}$ in $\rm B(NMe_2)_2Br$. This is, therefore, assigned as an antisymmetric mode (B_1) , with the A_1 modes at lower wavenumbers. Due to vibrational mixing of modes involving the NC₂ stretches and CH₃ rocks (in the methyl compound) or CH₂ deformations (in the ethyl compound) the positions of the features assigned as NC₂ stretches are somewhat different in the two compounds, as shown in Table 3.

The remaining skeletal vibrations are BNC₂ deformations (in-plane, $2A_1 + 2B_1$; out-of-plane, $A_2 + 2B_2$), N₂BBr deformations (in-plane, $A_1 + B_1$; out-of-plane, $A_2 + B_2$), and the BBr stretch (A_1) . Goubeau *et al.*⁷ assigned in-plane BNC₂ deformations in the range 300—400 cm⁻¹, but our values for B(NR₂)₃ are between 580 and 680 cm⁻¹, and we feel that the latter region is more appropriate here also. A weak, polarised Raman band at 605 cm⁻¹ is assigned as one in-plane BNC₂ deformation, with the other, the 'NC₂ scissors' mode, as the very strong, polarised Raman band at 562 cm⁻¹ (both had i.r. counterparts). The two antisymmetric (B_1) modes are at 589 cm⁻¹ (i.r. only) and 496 cm⁻¹ (i.r. and Raman depolarised).

The out-of-plane BNC₂ deformations are at 404 cm⁻¹ (i.r. only, B_2), 241 cm⁻¹ (Raman, A_2 , NC₂ wag), and 186 cm⁻¹ (Raman, B_2 , NC₂ twist). The last two are very close to the values in B(NMe₂)₃.

The BBr stretch would be expected to give a strong, polarised Raman band, and it is assigned to that at 331 cm⁻¹. This is consistent with the assignments of symmetric modes with BBr stretching character in BX_2Br (X = F, Cl, or I).²⁰

An antisymmetric, B_1 , in-plane N_2BBr deformation is thought to give rise to the weak, depolarised Raman band at 458 cm⁻¹, while the symmetric mode, A_1 , gives a polarised band at 270 cm⁻¹. The remaining skeletal deformations, out-of-plane N_2BBr deformations, give depolarised Raman bands at 219 and 117 cm⁻¹, but it is not possible to differentiate between the A_2 and B_2 modes in the absence of far-i.r. data.

The assignments of low-wavenumber skeletal modes in $B(NEt_2)_2Br$ are broadly in agreement with those for $B(NMe_2)_2Br$, but are very incomplete.

(vi) Tetrakis(dialkylamido)diboranes.—Crystallographic results on related compounds, and previous vibrational assignments (Becher et al., 4 Finch et al., 9), all suggest that the effective molecular symmetry is D_2 . There are significant gaps in the published vibrational studies, which also include some doubtful assignments. Chief among these are the placing of the highest wavenumber BN_2 stretch at ca. $1400~\rm cm^{-1}$ (contrary to many other assignments, and those discussed above), and of the B-B stretch near $580~\rm cm^{-1}$. The latter should be compared with the B-B stretching wavenumbers in the diboron tetrahalides B_2N_4 , $N_2 = N_2 + N_3 + N_4 + N_4 + N_5 +$

We will consider in detail only the methyl compound. In this case the ethyl groups lead to great complexity in the spectrum, and specific assignments are very difficult. Further, attention will be focused on the skeletal modes, i.e. those involving $B_2(NC_2)_4$. The alkyl internal modes can be assigned in general terms, and are indicated in the Tables in the Supplementary Publication. They show that vibrational coupling between the alkyl groups on different NR_2 groups is slight.

Skeletal modes for the methyl compound are listed in Table 4. In D_2 symmetry it is impossible, with the data

Table 4 $\label{eq:assignments} \mbox{Assignments of $B_2(NC_2)_4$ modes in $B_2(NMe_2)_4$ } \\ \mbox{(all figures in cm^{-1})}$

A	B ₂ N ₄ stretch	1 369	A BN, scissors	709
	BB stretch	1 236	NC, scissors	578
	NC, stretch	1 100	NC ₂ rock	375
	NC, stretch	967	NC, wag	261
	BN ₂ twist	786	NC ₂ twist	246
B	B ₂ N ₄ stretch	1525 - 1547	B NC ₂ scissors	615
	B ₂ N ₄ stretch	1 503-1 508	NC ₂ rock	565
	B ₂ N ₄ stretch	1 337	NC ₂ rock	364
	NC, stretch	1 061	NC ₂ rock	3
	NC ₂ stretch	1 049	BN ₂ wag	549
	NC ₂ stretch	1 018	BN ₂ wag	454
	NC ₂ stretch	889	BN_2 rock	320
	NC ₂ stretch	837	BN_2 rock	320
	NC ₂ stretch	829	NC ₂ twist	143
	BN ₂ scissors	694	NC ₂ twist	143
	NC ₂ scissors	641	NC ₂ twist	143
	NC ₂ scissors	629	NC_2 wags (3)	}

available, to differentiate between B_1 , B_2 , and B_3 modes, hence, the only distinction made is between A and ' B' modes.

Previous assignment 4,8 of an antisymmetric $\rm BN_2$ mode to $1\,412~\rm cm^{-1}$ is extremely unlikely, and we prefer to place the two modes (in-phase and out-of-phase $\rm BN_2$ antisymmetric stretches) as the two $^{11}\rm B^{-10}B$ doublets at $1\,525-1\,547~\rm cm^{-1}$ and $1\,503-1\,508~\rm cm^{-1}$, both i.r. only. The splitting between these two doublets is a measure of the vibrational coupling between the two $\rm BN_2$ units.

As such coupling occurs, we expect two bands derived from the BN₂ symmetric stretch (in-phase, A, and out-of-phase, B). These can be assigned to the polarised Raman band at 1 337 cm⁻¹, and the depolarised Raman band at 1 369 cm⁻¹ respectively. Both have weak i.r. counterparts, even though A modes are i.r. forbidden. This could indicate a slight breakdown in D_2 symmetry or, more likely, accidental degeneracy with a methyl deformation mode.

By analogy with diboron tetrahalides, the next fundamental should be $\nu(B\text{-}B)$. Careful comparison between the spectra of $B_2(\mathrm{NMe_2})_4$ and $B(\mathrm{NMe_2})_2\mathrm{Br}$ shows that the former contains a polarised Raman band at $1~236~\mathrm{cm^{-1}}$ which is absent from the latter. This is assigned to $\nu(B\text{-}B)$ in preference to the figure of $580~\mathrm{cm^{-1}}$ quoted previously. We will discuss below an alternative assignment for the latter band.

The NC_2 stretches will be mixed extensively with methyl rocks, and so assignments can only be tentative. The figures given in Table 4 are, however, consistent with those in related compounds.

A weak, polarised Raman band, with no corresponding i.r. feature, at $786~\rm cm^{-1}$ is assigned as the BN₂ twist (A

310 J.C.S. Dalton

symmetry). As with $\nu(B-B)$ this is absent from the spectrum of B(NMe₂)₂Br, where this motion corresponds to a molecular rotation.

A further polarised Raman band at 709 cm⁻¹ is thought to be the symmetric BN₂ scissors, while the antisymmetric analogue is at 694 cm⁻¹, i.r. only. NC₂ scissors vibrations occur at slightly lower wavenumber; features at 641, 629, and 615 cm⁻¹ are the modes of B symmetry, while the symmetric mode gives an extremely strong Raman band, polarised, at 578 cm⁻¹. This was previously assigned as $\nu(B-B)$, but the spectra of $B(NR_2)_3$ and B(NR₂)₂Br contain very similar features.

Depolarised Raman bands at 549 and 454 cm⁻¹ are assigned as BN₂ wags, while only one feature, a depolarised Raman band at 230 cm⁻¹ (i.r. at 318 cm⁻¹) can be assigned as BN₂ rocks (possibly the two modes expected, $B_1 + B_2$, are accidentally degenerate).

The remaining modes are NC_2 rocks (A at 357 cm⁻¹, two B modes possibly at 565 and 364 cm⁻¹), NC_2 wags (A at 261 cm⁻¹, no B modes detected), and NC₂ twists (A at 246 cm⁻¹, three degenerate B modes at 143 cm⁻¹).

Conclusion.—We have been able to make quite detailed vibrational assignments for $B(NR_2)_3$, $B[N(CH_2)_4]_3$, $B(NR_2)_2Br$, and $B_2(NR_2)_4$, where R = Me or Et. These have been more detailed and based on a larger amount of experimental data than previous studies. The three principal conclusions that can be drawn are as follows: (i) the BN₃ or BN₂ stretches are near 1 500 cm⁻¹ (antisymmetric) or 1 350 cm⁻¹ (symmetric) in all cases, in agreement with the known existence of B-N π bonding in such molecules; (ii) the B-B stretch in B₂(NR₂)₄ is above 1200 cm⁻¹, consistent with data on diboron tetrahalides; (iii) in B(NR₂)₃, but not in the other systems studied, there is extensive vibrational coupling between the NR₂ units, in contrast to the situation for $E(NR_2)_3$, where E = P or As, and R = Me or Et.

EXPERIMENTAL

All preparations were carried out under an atmosphere of pure dry argon, and all solvents were dried by distillation from Li[AlH₄] before use. The amines used were dried over K[OH] and redistilled before use.

The tris(dialkylamido)-derivatives were prepared by the method developed by Purdum and Kaiser,24 the bis(dialkylamido)-bromides by that of Brotherton et al.,25 and the $\mathrm{B}_2(\mathrm{NR}_2)_4$ by that described by Nöth and Meister 26 and Brotherton et al.25 Satisfactory C, H, and N analyses were obtained in all cases.

Infrared spectra were obtained using a Perkin-Elmer 521 spectrometer (250-4 000 cm⁻¹). Liquid-film samples were held between AgCl or CsI windows. The spectra were calibrated using known wavenumbers of CH₄, HBr, CO, NH₃,

and H₂O. All of the observed wavenumbers are accurate to ± 2 cm⁻¹ (± 5 cm⁻¹ for very weak and/or broad features).

A Cary 81 spectrometer, modified by Anaspec Ltd., was used to record the Raman spectra, the excitation source being a Spectra-Physics 164 argon ion laser (power output ca. 1 W at both 488.0 and 514.5 nm). Liquid samples were distilled directly into glass capillaries, of approximately 1 mm internal diameter, and polarisation measurements carried out by examining the spectrum with the incident light successively parallel and perpendicular to the axis of a polaroid analyser. Depolarisation ratios obtained were directly proportional to the true values. The spectra were calibrated by comparison with the spectrum of indene, and peak positions were accurate to within ± 2 cm⁻¹, or ± 5 cm⁻¹ for very weak and/or broad features.

[0/1149 Received, 21st July, 1980]

REFERENCES

- ¹ G. Davidson and S. Phillips, Spectrochim. Acta, 1979, A35,
- 141.
 ² H. J. Becher and J. Goubeau, Z. Anorg. Allg. Chem., 1952, **268**, 133.
 - ³ H. J. Becher, Z. Anorg. Allg. Chem., 1956, 287, 285.
- ⁴ H. J. Becher, W. Sawodny, H. Nöth, and W. Meister, Z. Anorg. Allg. Chem., 1962, 314, 226.
- ⁵ H. J. Becher, Spectrochim. Acta, 1962, 19, 575.
- ⁶ H. J. Becher and H. T. Baechle, Z. Phys. Chem., 1966, 48,
- 359.

 ⁷ J. Goubeau, E. Bessler, and D. Wolff, Z. Anorg. Allg. Chem., 1967, **352**, 285.
- ⁸ A. Finch, I. J. Hyams, and D. Steele, J. Mol. Spectrosc., 1965, 16, 103.
- ⁹ G. Schmid and L. Weber, Z. Naturforsch., Teil B, 1970, 25, 1083.
- 10 A. H. Clark and G. A. Anderson, Chem. Commun., 1969, 1082.
- ¹¹ H. Fusstetter, J. C. Huffman, H. Nöth, and R. Schaeffer, Z. Naturforsch., Teil B, 1976, 31, 1441.
- 12 W. Gerrard, E. F. Mooney, and H. A. Willis, Spectrochim. Acta, 1962, 18, 149.
- ¹³ W. Gerrard, H. R. Hudson, E. F. Mooney, I. M. Stripp, and
- H. A. Willis, Spectrochim. Acta, 1962, 18, 155.

 14 P. W. Aubrey, M. F. Lappert, and H. Pyszora, J. Chem. Soc., 1960, 5239,
- ¹⁵ L. P. Lindeman and M. K. Wilson, J. Chem. Phys., 1956, 24, 242.
- 16 C. L. Angell and N. Sheppard, Trans. Faraday Soc., 1957, 53,
- 589.

 17 G. Davidson and D. C. Andrews, J. Organomet. Chem., 1972, 43, 393.

 18 D. H. Finseth, C. Sourrisseau, and F. A. Miller, J. Phys.
- Chem., 1976, 80, 1248.
- ¹⁸ J. C. Evans and J. C. Wahr, J. Chem. Phys., 1959, **31**, 655. ²⁰ D. F. Wolfe and G. L. Humphrey, J. Mol. Struct., 1969, 3,
- J. R. Durig, J. W. Thompson, J. D. Witt, and J. D. Odom, J. Chem. Phys., 1973, 58, 5339.
 J. R. Durig, J. E. Saunders, and J. D. Odom, J. Chem.
- Phys., 1971, **54**, 5285.

 ²³ J. D. Odom, J. E. Saunders, and J. R. Durig, J. Chem. Phys., 1972, **56**, 1465.

 ²⁴ W. R. Purdum and E. M. Kaiser, J. Inorg. Nucl. Chem., 1974.
- 36, 1465.

 25 R. L. Brotherton, A. L. McCloskey, L. L. Peterson, and Π.
- Steinburg, J. Am. Chem. Soc., 1960, 82, 6242.
- ²⁶ H. Nöth and W. Meister, Chem. Ber., 1961, 94, 509.