1981 463

Reactivity of Tetra-n-butylammonium Di-μ-chloro-bis[bis(pentafluoro-phenyl)palladate(||)]. A General Method for the Synthesis of *cis* Isomers of Neutral and Anionic Palladium(||) Complexes

By Rafael Usón,* Juan Forniés, Pablo Espinet, Francisco Martínez, and Milagros Tomás, Department of Inorganic Chemistry, University of Zaragoza, Zaragoza, Spain

The reaction of $[NBu^n_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with L (L = N, P, As, or Sb donor ligand) leads to the synthesis of novel anionic palladium complexes of the type $[NBu^n_4][PdCl(C_6F_5)_2L]$, which react with L to give the neutral complexes $[Pd(C_6F_5)_2L_2]$. Both families of compounds are the *cis* derivatives. Moreover, replacement of Cl by SCN or CN, and of L (SbPh₃ or AsPh₃) by PPh₃, takes place without a change in configuration, giving again *cis* isomers.

The synthesis of the chloro-bridged binuclear compound $[\mathrm{NBu^n_4}]_2[\mathrm{Pd_2}(\mu\text{-}\mathrm{Cl})_2(C_6F_5)_4]$ with two C_6F_5 groups cisbonded to each palladium atom has recently been reported by us. It seemed reasonable to expect that cleavage of the bridge by neutral ligands would lead to a hitherto unknown type of anionic organopalladium(II) complex, $[\mathrm{NBu^n_4}][\mathrm{PdCl}(C_6F_5)_2L]$, and that the addition of further quantities of the ligand would give rise to the neutral compound $[\mathrm{Pd}(C_6F_5)_2L_2]$.

Moreover, if the geometry of the complexes is retained

phasizes the importance of the reaction path in influencing the configuration of the resulting complex.

RESULTS AND DISCUSSION

The (1:2) reaction of $[NBu^n_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with neutral ligands L [$L=PPh_3$, $PMPh_2$, PEt_3 , $P(OPh)_3$, $P(OMe)_3$, or $NH_2CH_2Ph]$, in acetone or methanol solution, gives rise to the cleavage of the chloro-bridges and to the formation of anionic mononuclear compounds [equation (1)] which react with further amounts of the same ligand

[NBuⁿ₄]₂
$$\begin{bmatrix} C_6F_5 & Cl & C_6F_5 \\ Pd & Pd & C_6F_5 \end{bmatrix}$$
 + 2L \rightarrow 2 [NBuⁿ₄][PdCl(C_6F_5)₂L]
(1)

during the reactions with L, the resulting complexes would also be the *cis* isomers. This feature would be of particular interest since most of the hitherto known organopalladium(II) complexes have had *trans* configurations.²

In fact, although in the unique case of $[PdMe_2L_2]$ the cis derivatives have initially been obtained, they gradually isomerize to give the trans form.³ Penta-fluorophenyl complexes of the types $[PdX(C_6F_5)L_2]$ and $[Pd(C_6F_5)_2L_2]^{4,5}$ are generally trans although in two cases $(L = PEt_3^6$ and $AsPh_3^4$) mixtures of the cis and trans compounds have been prepared, which, however, contain only small amounts of the former.

Evidence for several cis-[PdCl₂L₂] complexes in the solid state has been advanced.⁷ Some [PdCl₂L₂] complexes, which are trans in the solid state, form cis-trans equilibrium mixtures in solution, ⁷/₅, and it even seems that in all the tested solvents (except m-dichlorobenzene and deuteriochloroform) cis-[PdCl₂(PMePh₂)₂] is thermodynamically more stable than its trans isomer. ⁹ Nevertheless, the arylation of cis-[PdCl₂(PMePh₂)₂] with $Li[C_6F_5]$ leads to trans-[Pd(C_6F_5)₂(PMePh₂)₂]. ¹⁰

Our preparative method leads in each case to cispentafluorophenylpalladium(II) complexes. This em-

L (except NH_2CH_2Ph) or with L = pyridine (py), AsPh₃, or SbPh₃ to give neutral derivatives [equation (2)].

$$[NBu_{4}^{n}][PdCl(C_{6}F_{5})_{2}L] + L \xrightarrow{} [NBu_{4}^{n}]Cl + [Pd(C_{6}F_{5})_{2}L_{2}] \quad (2)$$

The latter can also be obtained directly by treating $[NBu^n_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with L in a 1:4 mol ratio.

In some cases (L = py, AsPh₃, or SbPh₃) the reaction cannot be interrupted at the formation of the anionic intermediate complex, and the less soluble neutral complex is obtained directly, whilst the solution contains some anionic $[PdCl(C_6F_5)_2L]^-$, together with some unreacted binuclear complex. However, reaction with $L = NH_2CH_2Ph$ always leads to the anionic intermediate, regardless of the excess of ligand used, since NH_2CH_2Ph is not capable of displacing the halogen to give the neutral complex.

Finally, not every ligand reacts according to equations (1) and (2). Thus, no reaction is observed with *e.g.* tetrahydrothiophen, tetrafluorophthalonitrile, and cycloocta-1,5-diene.

The analytical data, conductivities, melting points, and structurally relevant i.r. absorptions in the 750—800 cm⁻¹ region (see below) for the novel complexes are

listed in Table 1, whilst the reaction conditions for their syntheses are summarized in Table 2.

Structure.—The structural assignments are based on ³¹P n.m.r. and i.r. spectroscopy.

The ^{31}P n.m.r. spectra of the complexes of type $[Pd(C_6F_5)_2L_2]$ (L being a P donor) under conditions of

signal, thus indicating that equilibrium is not established in chloroform solution.

The i.r. spectra of the *cis* complexes of palladium and platinum $[Pd(C_6F_5)_2(L^-L)]$, $[Pt(C_6F_5)_2L_2]$, and $[Pt-(C_6F_5)_2(L^-L)]$ (C_{2v}) have been previously shown ⁵ to exhibit two bands in the 750—800 cm⁻¹ region whilst the

Table 1

Analytical data, melting points, conductivities, and some i.r. data for the complexes

	-	• •					I.r. data	
		F	ound • (%	5)				
	Complex	\overline{c}	H	N	$\Lambda_{ exttt{M}}/$ S cm 2 mol $^{-1}$	M.p. $(\theta_c/^{\circ}C)$	C_5F_5 (X-sensitive) ^b	$\nu(\mathrm{Pd}\mathbf{-X})$
(1)	cis-[NBu ₄][PdCl(C ₆ F ₅) ₂ (PPh ₃)]	55.45 (56.35)	5.55 (5.20)	1.35 (1. 4 0)	81	143 (decomp.)	788, 769 s	300m
(2)	cis-[NBu ₄][PdCl(C ₆ F ₅) ₂ (PMePh ₂)]	54.2 (53.6)	5.50 (5.55)	1.55 (1.50)	88	114	789, 769s	297m
(3)	cis-[NBu ₄][PdCl(C ₆ F ₅) ₂ (PEt ₃)]	49.4 (48.8)	6.10 (6.10)	1.65	105	137	785, 768s	291m
(4)	$\mathit{cis-}[\mathbf{NBu_4}][\mathbf{PdCl}(\mathbf{C_6F_5})_2\{\mathbf{P}(\mathbf{OPh})_3\}]$	53.9 (53.7)	5.05 (4.95)	1.40 (1.35)	90	98	c	302m
(5)	$cis\hbox{-}[\mathbf{NBu_4}][\mathbf{PdCl}(\mathbf{C_6F_5})_2(\mathbf{NH_2CH_2Ph})]$	50.1 (50.90)	4.95 (5.45)	3.20 (3.40)	104	108	788, 776s	295s
(6)	$\mathit{cis}\text{-}[\mathrm{NBu_4}][\mathrm{Pd}(\mathrm{CN})(\mathrm{C_6F_5})_2(\mathrm{PPh_3})]$	58.2 (58.1)	5.30 (5.25)	3.00 (2.50)	91	146	784, 774s	2 170m d
(7)	$\mathit{cis}\text{-}[\mathrm{NBu_4}][\mathrm{Pd}(\mathrm{SCN})(\mathrm{C_6F_5})_2(\mathrm{PPh_3})]$	55.9 (56.25)	4. 5 0 (5.10)	2.95 (2.80)	88	153 (decomp.)	783, 771s	2 114s ^d
(8)	$\mathit{cis}\text{-}[\mathrm{Pd}(\mathrm{C_6F_5})_2(\mathrm{PPh_3})_2]$	60.05 (59.75)	3.60 (3.10)	(2.00)	nil	159 (decomp.)	780, 771s (768)	
(9)	$cis\hbox{-}[\mathrm{Pd}(\mathrm{C_6F_5})_{2}(\mathrm{PMePh_2})_{2}]$	54.1 (54.25)	3.10 (3.10)		nil	185	780, 771s	
(10)	$\mathit{cis}\text{-}[\mathrm{Pd}(\mathrm{C_6F_5})_{2}(\mathrm{PEt_3})_{2}]$	43.15 (42.6)	4.15 (4.45)		nil	(decomp.)	(770) c	
(11)	$\mathit{cis}\text{-}[\mathrm{Pd}(\mathrm{C_6F_5})_2\!\{\mathrm{P(OPh)_3}\!\}_2]$	54.45 (54.35)	`3.00		nil	(decomp.) •	c	
(12)	$\mathit{cis}\text{-}[\mathrm{Pd}(C_6F_5)_2\{\mathrm{P}(\mathrm{OMe})_3\}_2]$	`31.9 ´	(2.80) 2.65		nil	(decomp.) 135	c	
(13)	$\mathit{cis}\text{-}[\mathrm{Pd}(\mathrm{C_6F_5})_2(\mathrm{AsPh_3})_2]$	(31.4) 55.25	(2.60) 2.95		nil	163	782, 772	
(14)	$cis-[Pd(C_6F_5)_2(py)_2]$	(54.75) 44.05	(2.85) 1.75	4.35	nil	(decomp.)	(770) 790, 780	
(15)	$\mathit{cis}\text{-}[\mathrm{Pd}(\mathrm{C_6F_5})_2(\mathrm{SbPh_3})_2]$	(44.1) 49.55 (50.25)	(1.65) 2.70 (2.60)	(4.70)	nil	(decomp.) 147 (decomp.)	(768) 782, 772 (771)	
		(50.25)	(2.60)			(decomp.)	(771)	

⁶ Calculated values are given in parentheses. ^b The corresponding absorptions for the *trans* derivatives are given in parentheses. ^c Assignment precluded due to the presence of internal vibration of L in this range. ^d $\nu(CN)$. ^c Literature value 153—154 °C.⁶

proton decoupling consist of a single and featureless signal due to the coupling with the $^{19}{\rm F}$ of the ${\rm C_6F_5}$ group. The δ values for cis and trans isomers differ by 3.4—7.5

Table 2
Reaction conditions for the preparation of complexes

		Reagen	t/mmol ⁴	Solvent/	Yield/
Complex	L	(A)	(B)	cm³	% '
(1)	PPh_3	0.190	0.381	30 %	63
(2)	$PMePh_2$	0.139	0.278	30 6	40
(3)	PEt _a	0.139	0.278	30 s	86
(4)	$P(OPh)_3$	0.139	0.278	30 p	86
(5)	NH ₂ CH ₂ Ph	0.104	0.626	30 s	58
(8)	PPh_3	0.139	0.557	30 s	7 5
(9)	$PMePh_2$	0.139	0.557	40 b	86
(10)	PEt ₃	0.139	0.835	70 €	56
(11)	$P(OPh)_3$	0.139	0.557	30 g	70
(12)	$P(OMe)_3$	0.310	1.242	60 °	52
(13)	$AsPh_3$	0.139	0.557	40 b	56
(14)	ру	0.139	0.557	40 b	70
(15)	$SbPh_3$	0.138	0.557	40 b	72

 $^{^{\}sigma}$ (A) [NBu_4]_2[Pd_2(\mu\text{-Cl})_2(C_6F_5)_4], (B) ligand L. b Acetone. $^{\sigma}$ Methanol.

p.p.m. (see Experimental section) and since the signals span no more than 1.5 p.p.m. at their bases, overlap does not occur. All our complexes show only a single

trans isomers (D_{2h}) show only one and this appears to be a useful feature for distinguishing them. These absorptions (X-sensitive mode) must be related to the skeletal symmetry of the entire molecule, ¹¹ and behave as $\nu(M-C)$ bands (A_1+B_1) i.r. active for the cis isomers, B_{2u} i.r. active for the trans ones).

Of those under discussion, only the anionic complexes $[NBu^n_4][PdCl(C_6F_5)_2L]$ are hitherto known derivatives of this type. They all show a double band around 800 cm⁻¹ in the i.r. Since the corresponding trans isomers are still unknown it is obviously not possible to compare the i.r. pattern. However for both symmetries (C_s for the cis isomers and C_{2v} for the trans isomers) group theory predicts two i.r.-active modes (2A' and $A_1 + B_1$ respectively). We assign the cis structure to our anionic complexes [(1)-(7)] because their reactions with L lead, in every case, to neutral cis isomers [equation (2)].

cis Isomers are also obtained on replacing the Cl⁻ of $[NBu_4^n][PdCl(C_6F_5)_2(PPh_3)]$ by CN⁻ or SCN⁻, and by treating cis- $[Pd(C_6F_5)_2L_2]$ (L = AsPh₃ or SbPh₃) with PPh₃.

Table 1 lists the two X-sensitive i.r. absorptions of the

1981 465

prepared complexes and the v(Pd-Cl) vibrations for the anionic derivatives along with the v(CN) vibrations of the cyano- and thiocyanato-complexes [(6) and (7)]. The internal standard ratio in the thiocyanato-complex (relative to salicylic acid) 12 is 0.56, which indicates Pd-S bonding of this group.

EXPERIMENTAL

The instrumentation and general experimental techniques were described earlier.1 Phosphorus-31 n.m.r. spectra were run on a JEOL PFT-100 spectrometer at 40.48 MHz with proton noise decoupling. Chemical shifts are reported on the δ scale (positive values to high frequencies) with respect to 85% orthophosphoric acid. The values for the cis and trans isomers of $[Pd(C_6F_5)_2L_2]$ are: $L = PPh_3$, 18.6 and 22.0; $L = PMePh_2$, 3.1 and 8.9; $L = PEt_3$, -4.3 and -9.5; L = P(OMe)₃, 121.5 and 116.5; L = P(OPh)₃, 104.3 and 96.8 p.p.m. respectively.

The complex $[NBu_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ was prepared as reported elsewhere. The trans-[Pd(C₆F₅)₂L₂] derivatives, used in comparing the 31P n.m.r. spectra with those of the cis isomers, were obtained by refluxing acetone solutions of $trans-[Pd(C_6F_5)_2(tht)_2]^1$ (tht = tetrahydrothiophen) with an excess of the ligand, L, and their purity checked by analysis.

The quantities of reagents and solvents used for the reactions and the yields obtained are summarized in Table 2.

Reaction of $[NBu_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with L (1: ca. 4), $L = PPh_3$ (8), $PMePh_2$ (9), PEt_3 (10), $P(OPh)_3$ (11), $P(OMe)_3$ (12), $AsPh_3$ (13), py (14), NH_2CH_2Ph (5), or $SbPh_3$ (15).—To an acetone or methanol solution of $[NBu_a]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ was added the respective ligand L in a roughly 1:4 mol ratio. The mixture was stirred at room temperature for 30-60 min and afterwards evaporated to dryness. The oily residue was dissolved in ethanol and the cis-[Pd(C₆F₅)₂- L_2] complexes [(8)—(15)] reprecipitated as white crystals.

The reaction of $[NBu_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with a large excess of NH2CH2Ph (1:8) leads only to the monosubstituted complex (5).

Reaction of $[NBu^n_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with L(1:2).—If the above reaction was carried out with smaller amounts of the ligands (1:2 mol ratio), evaporation of the solutions to dryness led again to oily residues which were treated with PriOH (ca. 10 cm3) and crystallized by partial evaporation [complex (1)]. For L = PMePh₂, treatment of the residue with n-butanol led to the crystallization of the neutral complex cis-[Pd(C₆F₅)₂(PMePh₂)₂] (10% yield), and addition of hexane to the n-butanol solution gave rise to the crystallization of complex (2). Complexes (3) (L = PEt₃) and (4) $[L = P(OPh)_3]$ were crystallized analogously.

If the reaction of the binuclear palladium complex with L = NH₂CH₂Ph (1:2 ratio) was carried out as above, addition of n-butanol to the residue led to the crystallization of 60% of the starting complex, whilst evaporation of the filtrate and addition of a few cm3 of hexane yielded complex

(5) (28% yield). Increasing the amount of NH₂CH₂Ph (1:5 mol ratio) and treating the residue with diethyl ether-hexane led to complex (5) (60% yield) but none of the disubstituted complex, cis-[Pd(C₆F₅)₂(NH₂CH₂Ph)₂], could be obtained, although the proportions of reagents were appropriate.

The reaction of $[NBu_4]_2[Pd_2(\mu-Cl)_2(C_6F_5)_4]$ with L =AsPh₃, py, or SbPh₃ (1:2 mol ratio) did not lead to isolation of the anionic mononuclear complexes, but gave mixtures of the unreacted starting compounds and the disubstituted neutral complexes. No reaction was observed between $[{\rm NBu^n}_4]_2[{\rm Pd}_2(\mu\text{-Cl})_2(C_6F_5)_4]$ and $[{\rm NBu^n}_4]Cl.$

 $cis-[NBu_4^n][PdX(C_6F_5)_2(PPh_3)], X = CN (6) \text{ or SCN } (7).$ A solution of complex (1) and K[CN] or K[SCN] (ca. 1:1.1 mol ratio) was stirred at room temperature [methanol, 30 min (6); acetone, 4 h (7)]. Evaporation of the solution to dryness and extraction of the residue with CH₂Cl₂ led, after evaporation almost to dryness and addition of diethyl ether, to complex (6) (45% yield). Partial evaporation of the solution after filtration and addition of n-butanolhexane gave (7) (74% yield).

Reaction of cis- $[Pd(C_6F_5)_2L_2]$, $L = AsPh_3$ (13) or $SbPh_3$ (15), with PPh₃.—A solution of complex (13) or (15) (0.25) mmol) in acetone (30 cm³) and PPh₃ (0.50 mmol) was stirred for 3 h at room temperature. Evaporation almost to dryness and addition of PriOH (15 cm³) gave complex (8) which was washed with n-hexane (yield ca. 80% in both cases).

We thank Dr. B. F. Taylor (University of Sheffield) for running the 31P n.m.r. spectra.

[0/1015 Received, 30th June, 1980]

REFERENCES

- ¹ R. Usón, J. Forniés, F. Martínez, and M. Tomás, J. Chem.
- Soc., Dalton Trans., 1980, 888.

 2 F. R. Hartley, 'The Chemistry of Platinum and Palladium,' Applied Science, London, 1977, p. 326; P. M. Maitlis, 'The Organic Chemistry of Palladium,' Academic Press, London, 1971, p. 70.

 ³ G. Calvin and G. E. Coates, J. Chem. Soc., 1960, 2008.

 ⁴ R. Usón, J. Forniés, R. Navarro, and M. P. Garcia, Inorg. Chim. Acta, 1974, 33, 69.
- ⁵ R. Usón, J. Forniés, J. Gimeno, P. Espinet, and R. Navarro, J. Organomet. Chem., 1974, 81, 115.
- ⁶ F. H. Hopton, A. J. Rest, D. T. Rosevear, and F. G. A. Stone, J. Chem. Soc. A, 1966, 1326.
- ⁷ (a) P. J. D. Park and P. J. Hendra, Spectrochim. Acta, Part A, 1969, 25, 909; (b) A. J. Cheney, B. E. Mann, B. L. Shaw, and R. M. Slade, J. Chem. Soc. A, 1971, 3833; (c) L. L. Martin and R. A. Jacobson, Inorg. Chem., 1971, 10, 1795; (d) S. O. Grimm and R. L. Keiter, Inorg. Chim. Acta, 1970, 4, 56; (e) R. Layton, D. W. Sink, and P. J. Durig, J. Inorg. Nucl. Chem., 1966, 28, 1965; (f) B. Crociani, T. Boschi, and U. Belluco, Inorg. Chem., 1970, ŽÓ21.
- ⁸ J. M. Jenkins and B. L. Shaw, J. Chem. Soc. A, 1966, 770;
 K. A. Jensen, Z. Anorg. Allg. Chem., 1936, 229, 225.
 ⁹ D. A. Redfield and J. H. Nelson, Inorg. Chem., 1973, 12, 15.
- 10 M. D. Raush and F. E. Tibbetts, J. Organomet. Chem., 1970,
- 21, 487.

 11 E. J. Maslowsly, jun., 'Vibrational spectra of Organometallic Compounds,' J. Wiley, New York, 1977, p. 438 and refs. therein.

 12 R. A. Bailey, T. W. Michelsen, and W. N. Mills, J. Inorg. Nucl. Chem., 1971, 33, 3206.