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Derivatives of the Energy Levels of a Molecular System with Respect to  
Parameters of the Hamiltonian, and Their Application to  Magnetic 
Susceptibility Calculations and Least-squares Fitting 
By Antony 8 .  Blake, Department of Chemistry, The University of Hull, Hull HU6 7RX 

Formulae are given for the first, second, and third partial derivatives, with respect to the parameters ai, of the 
eigenvalues of a matrix A? = (where Zi are Hermitian or real symmetric matrices), in terms of the eigenvalues 
and eigenvectors of A?. The matrix .%f may also include bilinear terms of the type aia,.W,j. If %' is the Hamiltonian 
matrix for a molecular system in a magnetic field, so that one of the ai is the applied field strength and the others 
represent features of the model such as crystal-field, spin-orbit coupling, and exchange parameters, these results 
can be used to obtain expressions for the paramagnetic susceptibility which are exact even at very low tempera- 
tures, within the limitations of the model and the accuracy with which the eigenvalues and eigenvectors of A? are 
known. The formulae can also be used to set up least-squares normal equations determining the values of the 
parameters that give the best f it to experimental susceptibility data (or other observed properties of the system), and 
to solve those equations iteratively. The formulae are likely to be especially useful whenever it is impossible, 
because of the complexity of the secular equation, to write explicit expressionsfor the energy levels and to calculate 
their derivatives by analytic differentiation, but the generality of the method may make it useful even when analytic 
differentiation is possible. Examples of its use in the least-squares fitting of magnetic susceptibility data are given. 

MAGNETIC susceptibility measurements continue to be 
widely used to investigate the ground states of transition- 
metal complexes, especially polynuclear complexes 
involving exchange interactions, the tendency in recent 
years being towards the use of very sensitive anisotropic 
measurement techniques a t  very low temperatures in 
order to elucidate the finer details of electronic structure.l 
In interpreting the results of such measurements, the 
experimenter usually has in mind a theoretical model 
involving one or more parameters, and wishes to find 
those values of the parameters that cause the predictions 
of the model to fit the experimental data as closely as 
possible, i.e. to niinimise the weighted sum of the squares 
of the differences between observed and predicted 
susceptibilities. Very often the model takes the form of a 
Hamiltonian A?, consisting of a sum of operators, which 
acts on a chosen set of basis functions to generate a 
matrix &' from which the properties of the model are to be 
calculated. 

Calculation of the magnetic susceptibility involves 
taking derivatives of the energy levels with respect to 
field strength. Provided an algebraic expression for the 
eigenvalues of 2 (including magnetic field effects) can be 
obtained, this presents no difficulty, but there are many 
cases of interest in which the secular equation of .%' does 
not factorise sufficiently to permit an analytical solution 
to the eigenvalue problem, and algebraic expressions for 
tlic energy levels then cannot be written. Similarly, 
calculation of the least-squares ' values of the para- 
meters (as distinct from their location by an exhaustive 
search) involves taking derivatives of the susceptibility 
with respect to the parameters, which again cannot be 
done algebraically if the secular equation does not 
factorise. In both cases the usual procedure has been to 
make approximations to  the derivatives (or sometimes, 
in the fitting problem, to perform a direct search of 
parameter space), but there are circumstances in which 
this approach is not wholly satisfactory. 

In this paper I discuss the accurate calculation of 
magnetic susceptibilities from the Hamiltonian matrix, 
and propose a new approach to the least-squares fitting 
problem for cases where the secular equation does not 
factorise adequately. The discussion is based on the 
observation that, subject to certain conditions, the 
derivatives of the eigenvalues of a matrix with respect 
to parameters in which it is linear can be expressed 
exactly, in closed form, in terms of its eigenvalues and 
eigenvectors. 

CALCULATION OF MAGNETIC SUSCEPTIBILITIES 
The magnetic moment operator for any molecular 

system can be shown to be equal to - 8%'/8H, where# is the 
Hamiltonian operator for the system in the presence of an 
applied magnetic field H.8 The moment in a state of 
energy E,, is thus - aE,/aH, and the bulk magnetic moment 
per mole for an assembly of such molecular magnets is 
given by equation ( l ) ,  where ( )T represents the canonical 
average at temperature T .  We shall assume that the 
sample is magnetically isotropic (extension to anisotropic 
materials is straightforward), and that M = 0 when H = 0. 

Mmol = -Ar* (BEIBH)  T 

] ( 1 )  [ C,f=P( - E , / W  
- - 'VA ;T,,(aE,,/aH)exP(--E,,llel') . - .. . . . . - 

The Faraday, Gouy, and vibrating-sample techniques 
measure Mm0l a t  a known field strength H ,  and thus yield 
experimental values of the absolute molar susceptibility 
xmol = &Imo,/H, equation (2) .  In certain induction tech- 

xmol = --\'A ( a E j a H )  T / H  (2) 

niques the quantity measured is the differential suscep- 
tibility ynlUl = BMm,l/BH, equation (3)  [obtained by differ- 
entiating ( 1 ) l . z  I t  is also possible to measure the sus- 

zmol = --iYA[(a'E/aH')T - 
( ( B E / % H ) a ) T / k T  f ( 8 E / a H ) , r 2 / k 7 ]  (3) 

ceptibility in the limit of zero applied field, Xmo10 = ~ . ~ ~ ~ o ,  
which is given by (3) with the third term omitted. 
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matrices calculated in some convenient common basis. 
Since the derivatives of the energy levels with respect 
to the ai are effectively perturbation coefficients for 
infinitesimal changes in the ui, they are given by expres- 
sions analogous to the formulae of non-degenerate 
perturbation theory. (The presence of the magnetic 
field ensures that Z has no degenerate eigenvalues, 
accidental coincidences apart.) Detailed derivations 
of the following results are given in Supplementary 
Publication No. SUP 23004 (7 pp.).* 

Let Q be the eigenvector matrix of 2, i.e. a unitary 
matrix constructed from the orthonormal column 
eigenvectors of 8, so that B = W1 is a diagonal 
matrix whose diagonal elements are the eigenvalues 
E,, of 2. Construct the matrices & C i )  = W1 2iG.V. 

(These will not in general be diagonal, though they will 
be Hermitian or real-symmetric.) Then the derivatives 

a3E,/8aiaaji3ak are given by equations ( 7 ) ,  (S), and (9), 
in which the terms with m = n or m' = fz are excluded 

Erii' = %E,/aai, En,'' = 8E,laaiaaJ, and Enijk"' = 

( 7 )  En&' = gnfl(i) 

E,ij" = 2 X  Re[ei,l,r~i)BI,,n(j)J/(Efl - E,,,) (8) 
m 

L' , l l , jB ., ~ 222 
m m' 

Instead of calculating the derivatives directly, i t  is 
common to  replace equation (2) by an  approximation 
known as the Van Vleck equation, ( 5 ) ,  based on an expan- 
sion of En as a power series in H ,  equation (4).4 Here 
Eno are the eigenvalues of the zero-field Hamiltonian and 
E,(") are perturbation coefficients for a calculation in which 
the interaction of the system with the applied magnetic 
field (the Zeeman term) is taken as a perturbation applied 
to the eigenstates of the zero-field Hamiltonian. Equation 
( 5 )  is obtained by neglecting all terms that would make 

En = Eno + E,(')H + E,cZ)H2 + . . . (4) 

depend on H (' paramagnetic saturation effects '), thereby 
implying (a )  that  the perturbation expansion can be 
terminated a t  second order, and (b )  that  all energy changes 
due to the field are small compared with k T .  When the 
applied field is vanishingly small, ( 5 )  reduces to (3)  and is 
exactly true, but in fields of a few thousand gauss (104 G = 1 
T) ,  such as are commonly used to measure paramagnetic 
susceptibilities, ( a )  and ( b )  may not be very good approxi- 
mations : the first-order energies E,,WH may be compar- 
able with some of the zero-field splittings (especially if the 
Hamiltonian includes weak or competing interactions), 
and a t  liquid-helium temperatures they will certainly not 
be small compared with I c T . ~ ~  Thus, in precise, low-temper- 
ature work a t  moderate fields it is desirable to use equation 
(2) or (3) rather than ( 5 ) .  

If the model is sufficiently simple for the secular equatioii 
of 3f' to factorise with no factor higher than quadratic, the 
energies En can be written as explicit functions of the para- 
meters and of the field strength, allowing the derivatives 
to be calculated exactly by algebraic methods. Often, 
however, it  is necessary to solve the eigenvalue problem 
numerically, and this has usually been done by diagonalising 
the zero-field matrix to obtain the and then calculating 
the derivatives ?E,,/aH as a truncated perturbation series 
En(1) + Eri2)H in a basis of zero-field eigenstates, as in the 
Van Vleck equation.6 No allowance is thus made for para- 
magnetic saturation effects. Alternatively, aZ<,,/8H has 
been estimated numerically by diagonalising the Haniilton- 
ian with the Zeeman term included, a t  two or three closely 
spaced values of H . 5  (In this method eigenvectors are not 
needed, but the time saved by omitting their calculation is 
likely to be used up in repeating the eigenvalue comput- 
ation.) As we shall see, however, if we take the Hamilton- 
ian matrix for an isolated magnetic system in a magnetic 
field and obtain its eigenvalues and eigenvectors by com- 
puter diagonalisation (in which, of course, i t  is as easy to 
include the Zeeman term as not), we can calculate aE,,/aH 
and azE,/aH2 exactly (limited only by the precision of the 
computer diagonalisation) and hence obtain the sus- 
ceptibility x or 2 of the model accurately a t  any field strength 
and temperature. 

DERIVATIVES OF THE EIGENVALUES OF A HAMILTONIAN 

Case A.-We assume that the Hamiltonian X is 
linear in a number of scalar parameters a,, so that in 
matrix form we have equation (6), where i f ,  are known 

r 

i = l  
2f = a i z i  (6) 

6, = 2 alE,,b' (10) 
r e 1  

from tile 5uiii>, autl I ) ,  ( v  = 1, 2 ,  or 3) selects one of the 
three cyclic perniutations of the indices zjk. We note 
also the relationship (10). 

Case B.-We shall also need to  consider the case where 
includes terms bilinear in  certain parameters, as in 

equation ( l l ) ,  where the matrices 9, are defined in 
" .  1 " 

(IB), Hi  and Hij being known matrices and c,j known 
constants, with c i i  = 0. (UJsually only one of the ci, 

is non-zero.) S f P  and &(i j )  = 
e-1 Y!j V ,  the derivatives are given by equations (7) to 
(9), modified by the substitution of 8(i) for &cij and by 
inclusion of the extra terms shown in equations (13) and 
(14). 

I f  we define 8 0  = 

We note also the relationship (15). 

E,ij"' = (8) + c:j&,,('j) (13) 

(14) 
Enijk"' = 

(9) + xPY(cij2:Re[bn,/,c"j)G;,,ck)]/(E,, - Em)} 
Y m 

* For details see Notices to Authors No. 7, J .  Chem. Soc., Dalton 
Trans., 1979, Index issue. 
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the most effective computer programs use a combin- 
ation of methods.1° Thus, it is clearly very desirable 
to be able to calculate the derivatives F l ,  and, if possible, 
F,,", which means calculating derivatives of the energy 
levels E,&. I have shown above how these derivatives 
may be accurately calculated even when the En can be 
obtained only by numerical diagonalisation of the 
Hamiltonian matrix. 

As a simple, hypothetical example of the application 
of these equations to a least-squares fitting problem, 
suppose that the observations S are of the energy levels 
themselves (perhaps obtained spectroscopically) for the 
Hamiltonian (6). The normal equations then take the 
quasi-linear form (19) (assuming equal weights for the 
observations), which could be solved immediately (i.e. 

zpi,aj - qi = 0 (19) 
i 

where plj = ~ c ? , $ V n , ( j )  and qi = zc?.$)S, 

without iteration) were it not for the fact that  the gn,,(i) 
are determined by the eigenvector matrix % and hence 
depend indirectly on the a,. Thus, it is still necessary 
to make an initial guess a t  the values of the parameters 
in order to calculate I, and then to proceed stepwise: 
solving for the ai, repeating the diagonalisation with the 
new a,, using the new 92 matrix to generate a new set of 
normal equations, and so on until constancy is attained. 
However, since in most eigenvalue problems a first-order 
perturbation of the eigenvalues (which depend directly 
on the ai) is associated with only a second-order pertur- 
bation of the eigenvectors, the implicit non-linearity of 
equations (19) is likely to be relatively small in its effect, 
so that we should expect convergence of this process 
(which amounts to refinement of the eigenvector matrix) 
to  be quite rapid even with relatively poor initial guesses. 
This expectation is borne out in a test described below. 

( b )  Fitting Susceptibility Data.-(i) Isotropic rase. 
When F is the magnetic susceptibility, the normal 
equations will be severely non-linear in the ai because 
of the exponential way in which the eigenvalues enter 
equation (1). Their solution by Wewton's method then 
requires the second derivatives of F ,  and because of the 
presence of aE,&/aH in (l), this means that third deriv- 
atives of the type a3E,/aHaaiaaj will be needed. (Fourth 
derivatives would be required to deal in this way with 
the differential susceptibility, but they are not considered 
here.) 

The process starts with the matrix JE", calculated from 
(6) with trial values of the ai, which is diagonalised 
numerically to obtain its eigenvalues En and eigen- 
vector matrix 1. The matrices cW) and the derivatives 
E,fj" and E,,ijk''' are calculated and used to obtain the 
values of F and those of its first and second derivatives 
with respect to  the fitting parameters ai a t  the experi- 
mental temperatures T p ,  and application of equations 
(18) then gives a new set of ai which should be closer to 
the true solution of the normal equations. These ai 
are the starting point for a second iteration which (since 
&'is itself a function of the ai) ought strictly to  begin with 

n n 

APPLICATION TO LEAST-SQUARES FITTING 
(a) General.-Let us suppose that we are measuring 

some physical property F which depends on the para- 
meters a,, a2, . . . , a7, and that we have a number of 
observed values S, of this property measured under 
conditions ( e g .  of temperature) such that they correspond 
to theoretical values Fp. Our aim is to find a set of 
values of the ai that  minimises the function p, equation 
(16) (wP being weights assigned to the observations). 

F (a,, a2, . . . , a,) = z w , ( F ,  - SPl2 (1.6) 
P 

What I shall call the ' traditional least-squares ' approach 
starts by equating to zero the first derivative of p with 
respect to each a,, leading to a set of Y simultaneous 
equations (17), the normal equations. Solution of these 

zwp(Fp - Sp)Fp1' = 0 (17) 
P 

(with suitable precautions to exclude saddle points and 
local minima of p) gives the ' best-fit ' values of the Y 

unknowns a,. (Note that we can, if we wish, assign 
fixed values to certain of the ai, by simply deleting the 
corresponding normal equations.) 

In almost all cases of interest the normal equations 
are non-linear in the ai and must be solved iteratively. 
Newtoiz's method depends on the fact that  if & are appro- 
ximate values of the ad, better approximations di + X ,  

are found by solving equations (18) for the first-order 
corrections xi (provided the non-linearity is not too 
severe), this process being repeated until the corrections 

P i P  

become negligible. The method requires a knowledge of 
both first and second derivatives of F (which may not 
be easy to calculate) and reasonably good initial guesses 
d j  (otherwise the iteration may fail to converge). 

Alternative methods exist for locating the minimum of 
p in the r-dimensional parameter space, e.g. Gauss- 
Newton and gradient methods, which require only first 
derivatives of I;, and direct-search methods, which 
require no When the initial guesses are 
poor, these methods are more dependable than Newton's 
method, but the latter is nearly always faster once the 
iteration starts to converge.* For this reason, some of 

On Ncwton's 
method: ' If i t  works at all, then i t  works extremely well . . . and, 
if a sufficiently good initial estimate of the solution can be deter- 
mined, i t  is probably the best available method.' (C. G. Broyden, 
ref. 8, p. 87). On the use of analytic derivatives: ' My experience 
has been that  this extra information (i.e. first derivatives) is 
usually extremely valuable, enabling methods to be used which 
give an order of magnitude improvement in the time taken to 
solve a problem . . . (second derivatives) will not give rise to 
anything like so significant an improvement. . . (but) I would 
recommend the evaluation of second derivatives if possible.' 
(R. Fletcher, ref. 8, p. 125);  ' (Second derivatives) almost cer- 
tainly should be used except when their computation time is 
extremely large compared with that  of the function and gradient.' 
(W. Murray, ref. 8, p. 71);  ' (When) analytic derivatives were 
introduced, the picture changed dramatically. The least-squares 
algorithm now ceased to  experience any difficulty , . .' (J.  J .  
McKeown, ref. 9, p. 256). 

z ( F p  - Sp)Fpc' + Exjz[Fpi'Fpj' + 
( F p  - S$JF,,Lj"] = 0 (18) 

* The following assessments are worth quoting. 
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2. 2 = a,%, + pl$(kL + 2S)eH. If the value of k 

is to be determined, we use the definitions (22), giving 

= kH, X 2  = p,L*H/H 
= H ,  H 3  = 2p,S*H/H (22) 

equations (23). 
and the value of k is recovered from a2 at the end. 

The fitting parameters are a, and a2, 

= a l Z l  + a 2 S 2  + a 3 S 3  
aEnjaH = (aZ/H)Enz' + En3' (23) 

3. 2 = k1L.S + pB(kL + 2S)eH. Again, k is to be 
determined. With the definitions (24) we have equations 

a2 = H, %, = 2pBS*H/H 
a, = k ,  Zl = 1L.S 

~ 1 2  = 1, &'It = p,L.H/H 

2 = a@, + a,%, + clza,@,%l2 

aE,jaH = Enz' ( 2 5 )  

(24) 

(%), the fitting parameter being a,. It is in problems 

like this one that the equations of Case B must be used. 
Examples.-Although the effectiveness of the least- 

squares method could be tested by the use of arbitrary 
matrices and a variety of functions F, it seemed more 
useful to study reasonably realistic models and their mag- 
netic susceptibilities. The examples below are typical 
of a number of real and hypothetical problems to which 
it has been applied. The calculations were done with a 
slightly modified version of FITIT, a program for multi- 
parameter, non-linear, least-squares fitting by Newton's 
method, which includes automatic reduction of the steps 
x i  whenever the iteration starts to  diverge.lOb This 
program requires the user to supply subroutines for the 
functions F ,  Fir ,  and Fbj", and in the present case these 
subroutines were based on the equations given above. 
For each test, the program was supplied with the para- 
meter-free matrices Si, the field strength H, trial values 
of the parameters, and a set of real or artificial data 
known to fit the model well for a particular set of para- 
meter values. In most cases the test was prec,eded by a 
rough contouring of the goodness of fit over a generous 
sample of parameter space, and this is recommended as a 
preliminary to any use of traditional least-squares 
methods such as this. 

1 .  C O ~ @ Y ( I I )  in a distorted tetrahedral cnviron.ment. 
The principal susceptibilities K:\ and IiL of the [CUCI,]~- 
ion in Cs,[CuCl,] have been determined by Gerloch and 
his co-workers, who also give the Hamiltonian matrix 
in a 2D basis.11,12$* The Hamiltonian has the form (26), 
with h and k to be determined by independent fits of 
Kli and K I  from 90 to 300 K. The program confirmed 

= s c n b i o  + 2 teCmg.  + 1L.S + (kL + 2S)'H (26) 

the general shape of the contours of fit in ref. 12, and 
located minima of p a t  h = -745, k = 0.70 and h = 

another diagonalisation, so as to obtain the En and %' of 
the revised matrix A?'. However, for the reason noted 
above, as long as the corrections x,  are fairly small, it is 
often possible to carry out several successive iterations 
(18) with the same eigenvector matrix %, provided we 
update the eigenvalues En and those derivatives that 
depend on them. Thus, for a linear Hamiltonian (Case 
A), the first-derivative matrices &), which depend only 
on +2 and the fixed matrices Hi, remain unchanged until 
a new diagonalisation is carried out, but the eigenvalues 
En and their second and third derivatives are calculated 
afresh at  each iteration, from equations (8)-(10). 
Experience with the method suggests that the optimum 
number of iterations before rediagonalisation is likely to 
be between one and ten, depending on the problem. 

In Case B, the fitting proceeds similarly, except that, 
since the matrices cW) depend on the a, for j > i ,  they 
must be recalculated a t  each iteration from equation 

(ii) Anisotropic case. Equation (20) represents a 
Hamiltonian matrix in which a r a S r a  is the Zeeman term, 

(15) 

r - 1  

i = 1  
M a  = &Hi + a,a#,a (20) 

with a an index distinguishing different directioiis of the 
applied field with respect to some internal co-ordinate 
system fixed by one or more of the &"d. (At  least one of 
the fitting parameters ai, i < Y ,  j s  here assumed not to 
depend on a, otherwise the data obtained with different 
field directions could be fitted independently, as in the 
example of Cs,[CuCI,J discussed below. Note that in a 
' complete ' Hamiltonian, a, would not depend on a, 
but most models are parametrised to the extent of using 
a g factor or orbital reduction factor, which is incor- 
porated in a,  and will not necessarily be isotropic.) In 
the case of axial symmetry, two calculations (a = 1 1 ,  L) 
are carried out to yield a,, En,, and &a(t), from which Fa 
and their derivatives are calculated. If single-crystal 
measurements have been made, equations (18) then 
include an additional summation over a, but if only 
powder measurements are available, the average F, F', 
and F" must be calculated and inserted into (18). 

(lii) Parameters in the Jield-depended term. The 
presence of aEn/aH in equation ( I )  causes a slight 
complication when the term representing the interaction 
with the applied field contains, besides H ,  a fitting 
parameter such as g. How we can deal with this is 
indicated below in three typical cases. For simplicity 
i t  is assumed here that the zero-field Hamiltonian 
contains only one parameter, a,. 

= 
p,S*H/H, we have equations (21). If g is fixed, the only 

1.  % = alS1 + gpgS-H. Letting u2 = gH 

least-squares parameter is a,, but i f  g is to be determined, 
both a, and a2 are least-squares parameters, and the 
value of g is recovered from a2 after solution of the normal 
equations. 

* The matrix in ref. 11 contains a misprint: the elements 
(+pPlhL*Sl+,a> and <+alhL*Sl+&> should be equal to A / 4 2 .  

http://dx.doi.org/10.1039/DT9810001041


1981 
-627, k = 0.78 for Z<,,, and a t  A ca. -590 cm-l, k ca. 

0.35 for KL. 
2. T w o  octahedrally co-ordinated nickel(I1) ions with 

axial distortions and a n  exchange interaction. The 
Hamiltonian (27) was assumed to act on a 3Aeg x 3A2g 
x =  

D(Szi2 + S e Z 2  - Q) - 2J(Si%) + gl*BS.H (27) 

basis, giving an axial susceptibility tensor. With tlie 
reasonable assumption that the parameters D ,  J ,  and g 
were themselves isotropic, values of and xz were 
calculated between 1.5 and 60 K for J / k  = D / k  = 
-2 K and g = 2.2, and the average susceptibilities were 
then used as ' data ' to be fitted. Rapid convergence 
to the correct parameter values was obtained from trial 
values deviating from the true ones by 20-3004. This 
is a difficult case because xav. is rather insensitive to D. 
-4 similar treatment of experimental average suscepti- 
bility data for the compound [Ni,(trien),j~NO,],.H,O 
(trien = triethylenetetra-amine) between 1.5 and 60 
K l3 gave a good fit with g = 2.02, J / k  = -1.27 K, 

3. Four s&in-lzalf ions coufiled by cqzinl an t i s ymmtr i c  
c.rchange intcmctions. This is a purely hypothetical 
example, in which the Hamiltonian is given by (28). If 
the ions lie at  alternate corners of a cube, symmetry 

D -0 .  

3 4  

1045 

rcquircs that the vectors d,j lie along the face diagonals 
connecting the vacant corncrs. \lie take the vectors to  
be of equal magnitude d and tlieir signs all positive, the 

1.5 

1 .o 
d 

0.5 

0 
Contour plot of the residual function p(d ,g)  of example 3. 'The 

straight lines show the progress of least-squares fits, starting 
from three different sets of trial parameter values, towards the 
solution (1.0, 2.0), with diagonalisation a.t each iteration (heavy 
lines) or everv fifth iteration (lighter lines). A few attempted 

magnetic properties then being independent of the field 
direction. With the parameters a1 = d ,  a2 = gpBH, the 
matrices X I  and X ,  were calculated in S,,S,,,S coupling, 
that  of ,)Y", being complex. The fitting procedure was 
then applied to ' data ' calculated for g = 2.0, d / k  = 1 
K, H = 104 G. In the 
first, the 16 calculated energy levels were fitted directly, 
rapid convergence being obtained from the trial values 
g = 2.5, djk = 0.5 K. In the second test, calculated 
susceptibilities from 1 to 100 K were used as data. The 
Figure shows the progress of three typical fits on a con- 
tour map of the residual function p. The path of 
convergence is seen to be relatively little affected by 
diagonalising only at  every fifth iteration. 

Two tests were carried out. 

CONCLUDING REMARKS 

The formulae given here for the derivatives of energy 
levels with respect to parameters of the Hamiltonian 
provide a general method for the calculation of properties 
such as the magnetic susceptibility and for the least- 
squares fitting of Hamiltonians to a variety of experi- 
mental data. Although such expressions are well 
known in the generalised perturbation theory of 
matrices,14 they do not seem to have been exploited 
previously in problems of this kind. The restrictive 
assumption that all degeneracies in the  energy are 
removed should be noted, but this assumption is often 
valid, and in particular it is true in experiments that 
involve a static magnetic field. 

When the secular equation for the energy does not 
readilly factorise (which is true in all but the siniplest 
magnetic problems), this method offers the advantages 
of exact susceptibility calculation, even a t  temperatures 
of the order of pj4H/k, and of enabling fast least-squares 
algorithms that require derivatives of the object func- 
tion to be used. In favourable cases the number of 
matrix diagonalisations needed in a least-squares fit 
can be significantly reduced, tliougli the calculation of the 
higher derivatives is somewhat time consuming. 

Even when the secular equation can be solved 
explicitly, so that algebraic clifferentiation of the energy 
expressions is possible, there iiiay be advantages in 
using the matrix nietliod, in that it allows us t u  replace 
the laborious and error-prone liand calculation and 
computer programming of expressions for tlie suscepti- 
bility and its derivatives for each individual problem hy a 
single set of expressions which, once programmed, can 
be applied to a wide range of different problems, only 
the matrices varying from one to another. 

The computations described above were performed a t  the 
Computer Centre of the University of Hull. 
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