Structural Studies of Group 5B-Halide-Dithio-ligand Complexes. Part 4.† Crystal Structures of Bis(tetraethylammonium) Di-µ-iodo-bis[(NN-diethyldithiocarbamato)di-iodobismuthate(|||)] and a Partially Brominated Analogue

By Colin L. Raston, Graham L. Rowbottom, and Allan H. White, Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Western Australia 6009

Crystallization of 1:1 stoicheiometric dimethylformamide solutions of $[Bi(S_2CNEt_2)I_2]$ and $[NEt_4]I$ yields a complex of stoicheiometry $[NEt_4][Bi(S_2CNEt_2)I_3]$. Single-crystal X-ray diffraction studies show it to be $[NEt_4]_2$ - $[I_2(Et_2NCS_2)BiI_2Bi(S_2CNEt_2)I_2]$, with a centrosymmetric anion containing iodine bridges. Use of $[NEt_4]Br$ instead, yields the isostructural monobromide; its structure has also been determined and the bromine found to occupy one of the non-bridging co-ordination positions about the bismuth atom. The unit cell is triclinic, with a ca. 13.0, b ca. 10.7, c ca. 9.6 Å, α ca. 68, β ca. 79, and γ ca. 75°.

The preceding papers ^{1,2} have been directed towards elucidating the structures of some of the members of the series $[Bi(S_2CNEt_2)_{3-n}X_n]$, n=1 or 2, X=Cl, Br, or I. We have found that evaporation of dimethylformamide solutions containing 1:1 stoicheiometric quantities of $[Bi(S_2CNEt_2)I_2]$ and $[NEt_4]I_0$, Br yields crystalline materials with the stoicheiometry $[NEt_4][Bi(S_2CNEt_2)I_3]$, (1), and $[NEt_4][Bi(S_2CNEt_2)I_2Br]$, (2). We have therefore extended the structural studies of the above series to encompass these complexes also (Found: C, 18.1; H, 3.2; I, 43.4; N, 3.2; S, 7.5. Calc. for $C_{13}H_{30}BiI_3-N_2S_2$: C, 18.0; H, 3.5; I, 43.9; N, 3.2; S, 7.4%).

Specimen size: $0.23 \times 0.47 \times 0.23$ mm, $2\theta_{\text{max.}} = 55^{\circ}$, n = 5447, $n_0 = 4264$. Values of R, R', S are 0.040, 0.051, 1.8 respectively.

(2). $C_{13}H_{30}BiBrI_2N_2S_2$, M=821.0, space group as above, a=12.962(6), b=10.644(5), c=9.571(3) Å, $\alpha=67.59(3)$, $\beta=78.34(3)$, $\gamma=75.30(3)^\circ$, U=1 172.6(8) Å³, $D_m=2.35(1)$, Z=2, $D_c=2.33$ g cm⁻³, F(000)=756, $\mu(Mo)=118$ cm⁻¹. Specimen size: $0.09\times0.28\times0.18$ mm, $2\theta_{max}=50^\circ$, n=4 162, $n_0=2$ 772. Values of R,R', S are 0.053, 0.066, 2.1 respectively.

Table 1 contains the non-hydrogen atom fractional cell co-ordinates; see Supplementary Publication No. SUP 22977 (31 pp.) ‡ for structure factor amplitudes, thermal

Table 1
Non-hydrogen atom fractional cell co-ordinates for (1) and (2)

Atom	(1)			(2)		
(a) Anion	x	<i>y</i>	z	x	у	z
Bi	$0.339\ 09(3)$	0.130 23(3)	0.080 38(4)	$0.338\ 50(5)$	0.125 88(7)	$0.080\ 46(7)$
I(1)	0.53382(5)	$-0.097\ 50(7)$	0.234 75(7)	0.530 49(12)	-0.09274(17)	$0.234\ 32(17)$
$\mathbf{I}(2)$	0.19479(5)	-0.08177(6)	0.229 48(8)	$0.195\ 44(12)$	$-0.083\ 06(16)$	$0.232\ 07(18)$
I(3)/Br	0.170 19(6)	0.333 93(7)	0.099 13(8)	$0.179\ 56(15)$	$0.322\ 17(18)$	-0.09286(20)
S(1)	$0.422 \ 9(2)$	$0.341 \ 4(3)$	0.079 7(3)	0.4198(4)	$0.344 \ 0(5)$	$0.077 \ 0(5)$
S(2)	$0.267 \ 8(2)$	$0.205\ 5(2)$	0.316 9(3)	$0.265\ 8(4)$	$0.199\ 7(5)$	$0.322 \ 8(5)$
C(1)	$0.343\ 7(7)$	0.330 9(9)	$0.244\ 4(9)$	$0.343\ 0(13)$	$0.326\ 1(16)$	$0.251\ 3(19)$
N`	$0.339\ 5(6)$	$0.413 \ 9(7)$	0.315 1(8)	$0.337 \ 8(12)$	$0.410\ 6(14)$	$0.323\ 7(14)$
C(2)	$0.395\ 3(9)$	$0.530\ 5(10)$	$0.254\ 6(12)$	$0.391\ 2(18)$	$0.531\ 6(22)$	$0.253\ 7(26)$
C(3)	$0.504\ 3(11)$	$0.492\ 3(13)$	$0.306\ 2(14)$	$0.500\ 6(25)$	$0.488\ 1(28)$	$0.308\ 7(29)$
C(4)	$0.273\ 7(9)$	0.403 3(10)	$0.461\ 2(10)$	$0.274 \ 8(16)$	$0.391\ 5(18)$	0.4724(20)
C(5)	0.160 8(10)	$0.480 \ 8(12)$	$0.445\ 3(12)$	0.1609(17)	$0.468\ 8(23)$	$0.462 \ 6(22)$
(b) Cation						
N	$0.832\ 6(6)$	$0.163\ 5(7)$	0.234 8(8)	$0.839\ 2(11)$	$0.174\ 6(13)$	0.2239(15)
C(1A)	$0.843 \ 6(8)$	$0.265\ 4(10)$	0.3029(11)	0.848 2(16)	$0.274\ 3(18)$	0.2979(20)
C(2A)	0.9579(10)	$0.271\ 2(12)$	0.310 8(13)	0.964 4(18)	$0.278\ 1(22)$	$0.303\ 2(24)$
C(1B)	$0.879\ 0(8)$	0.021 9(10)	0.334 1(11)	0.882 8(15)	$0.025\ 3(19)$	$0.320\ 3(23)$
C(2B)	0.870 8(10)	$-0.091\ 5(10)$	$0.285\ 0(14)$	$0.874\ 6(16)$	-0.0866(18)	$0.267 \ 4(24)$
C(IC)	$0.714\ 4(8)$	$0.179\ 1(11)$	$0.225\ 5(11)$	$0.722 \ 6(15)$	$0.192\ 4(20)$	0.210~0(21)
C(2C)	$0.646 \ 6(8)$	$0.138\ 5(12)$	$0.373\ 7(14)$	$0.653\ 1(17)$	$0.151\ 0(26)$	0.3649(25)
C(1D)	$0.892 \ 6(8)$	$0.189\ 1(10)$	$0.082\ 2(10)$	$0.906\ 4(16)$	$0.202 \ 0(20)$	$0.066\ 3(20)$
C(2D)	$0.860\ 4(9)$	$0.331\ 8(12)$	$-0.027\ 2(11)$	$0.871\ 0(18)$	$0.355 \ 8(23)$	-0.0448(22)

CRYSTALLOGRAPHY

Crystal Data.—(1). $C_{13}H_{30}BiI_3N_2S_2$, M=868.0, Triclinic, space group $P\bar{1}$ ($C_i{}^1$, no. 2), a=12.966(4), b=10.829(4), c=9.720(3) Å, $\alpha=68.02(2)$, $\beta=79.10(2)$, $\gamma=75.15(2)^\circ$, U=1 216.6(6) ų, $D_m=2.37(1)$, Z=2, $D_c=2.37$ g cm³, F(000)=792, $\mu(Mo)=103$ cm¹.

† Part 3 is ref. 2. Part 1 (ref. 1) contains general descriptive crystallographic and definitional detail.

parameters, hydrogen-atom parameters, and least-squares planes.

DISCUSSION

Complex (1).—The structure determination confirms the stoicheiometry as $[NEt_4][Bi(S_2CNEt_2)I_3]$. The

‡ For details see Notices to Authors No. 7, J. Chem. Soc., Dalton Trans., 1979, Index issue.

Figure 1 Unit-cell contents of (1) projected down b; the position of the bromine substituent in (2) is also indicated

anionic component of the structure, however, is found to be a centrosymmetric dimer with a pair of bismuth atoms bridged by an iodine atom and its centrosymmetric inverse, so that the structure is better described as $[\mathrm{NEt_4}]_2[\mathrm{I_2}(\mathrm{Et_2NCS_2})\mathrm{BiI_2Bi}(\mathrm{S_2CNEt_2})\mathrm{I_2}]$ with one-half of the latter formula unit comprising the asymmetric unit of the structure (Figure 1). The bismuth–bismuth separation is 4.755(2) Å, and the angle subtended at the iodine atom $94.38(3)^\circ$. The cation is well ordered and its

TABLE 2

Cation geometry in (1) and (2) The two values in each entry are for (1), (2) respectively

(a) Distances/Å						
N-C(1A)	1.53(2), 1.52(3)					
N-C(1B)	1.51(1), 1.53(2)					
N-C(1C)	1.52(1), 1.50(2)					
N-C(1D)	1.50(1), 1.54(2)					
C(1A)-C(2A)	1.52(2), 1.53(3)					
C(1B)-C(2B)	1.51(2), 1.49(3)					
C(1C)-C(2C)	1.51(1), 1.54(3)					
C(1D)-C(2D)	1.52(1), 1.58(3)					
(b) Angles/°						
C(1A)-N-C(1B)	108.5(8), 110.6(14)					
C(1A)-N-C(1C)	107.8(7), 107.7(14)					
C(1A)-N-C(1D)	111.0(7), 111.4(14)					
C(1B)-N-C(1C)	110.9(7), 110.2(14)					
C(1B)-N-C(1D)	108.8(7), 106.4(12)					
C(1C)-N-C(1D)	109.9(7), 110.6(14)					
N-C(1A)-C(2A)	115.2(9), 113.1(16)					
N-C(1B)-C(2B)	115.1(9), 117.4(17)					
N-C(1C)-C(2C)	115.4(9), 113.2(16)					
N-C(1D)-C(2D)	114.8(8), 111.7(15)					

geometry (Table 2) conventional, as is that of the dithio-carbamate ligand (Table 3).

Within the anion, the bismuth environment is found

TABLE 3

Dithiocarbamate non-hydrogen geometry in (1) and (2). The two values in each entry are for (1), (2) respectively

700/17)
E00/15)
.729(17)
1.728(19)
.958(4)
31(3)
4 8(3)
16(2)
51(4)
50(3)
85.9(7)
89.8(7)
118.0(12)
121.5(13)
120.3(12)
121.0(15)
120.6(16)
118.3(18)
107.5(17)

to be six-co-ordinate, each bismuth atom essentially having a pair of *cis* bidentate ligands attached and bridged by one of them from its inversion image (Table 4). As in the previous six-co-ordinate bismuth environment examined in this series, we find that one face of a

1981

TABLE 4

Bismuth co-ordination environment in (1) and (2): $r_{Bi}-x$ in Å; the remaining entries in the matrices are the angles (°) subtended by the relevant atoms at the bismuth. Primed atoms are generated by the inversion operation $(1-x, \bar{y}, \bar{z})$

(a) Complex (1)						
Atom	r _{Bi−X}	I(2)	I(3)	S(1)	S(2)	I(1')
I(1)	3.190(1)	88.01(4)	172.5(1)	93.36(6)	94.14(6)	85.62(4)
I(2)	3.091(1)		93.45(3)	150.92(6)	84.80(6)	110.32(4)
I(3)	2.965(1)			88.94(6)	93.30(5)	87.00(4)
S(1)	2.769(3)				66.12(8)	98.75(6)
$\mathbf{S}(2)$	2.649(3)					164.85(6)
I(1')	3.291(1)					
(b) Complex (2)						
Atom	r_{Bi-X}	I(2)	\mathbf{Br}	S(1)	S(2)	I(1')
I(1)	3.115(2)	89.81(6)	172.93(10)	92.37(10)	93.03(11)	85.18(5)
I(2)	3.006(2)	, ,	93.22(7)	150.12(12)	83.86(12)	111.31(7)
Br	2.813(2)			88.18(11)	93.65(11)	87.77(6)
S(1)	2.770(6)				66.27(15)	98.58(11)
S(2)	2.649(5)					164.69(12)
I(1')	3.244(2)					

Angle Bi-I-Bi' 94.38(3) for (1); 94.82(5)° for (2).

pseudo-octahedral co-ordination sphere is compactly occupied by the three most tightly bound ligand atoms, namely S(1,2), I(3), with S(1,2)-Bi-I(3), S(1)-Bi-S(2) being 88.94(6), 93.30(5), 66.12(8)° respectively (Figure 2). Opposed to these we find the three least tightly

FIGURE 2 (a) The co-ordination environment of the bismuth atom in (1), seen in projection down the I(1)—Bi bond; (b) idealized stereochemistry of the bismuth environment

bound ligands occupying a less compact face [I(1), $I(1')(1-x, \bar{y}, \bar{z})$, I(2)] with I(1), I(1')-Bi-I(2), I(1)-Bi-I(1') being 88.01(4), 110.32(4), 85.62(4)°. In spite of these considerations, the presence or otherwise of a lone pair in this vicinity is *not* obvious. There is an obvious axis to the co-ordination sphere comprising I(1,3) [I-Bi-I, 172.5(1)°]. The remaining ligating atoms may be seen to occupy a plane approximately normal to this axis I(2),

S(1,2), $I(1)(1-x, \bar{y}, \bar{z})$, the sum of the angles which they subtend at the bismuth atom being 360.0° and their deviations from a least-squares plane calculated through them being respectively 0.00, -0.01, 0.01, 0.00 Å, the bismuth deviation being -0.03 Å. Consideration of this angular geometry suggests that, in spite of the large angle observed between I(2) and $I(1)(1-x, \bar{y}, \bar{z})$ (110.3°), and the long associated bonds, this cannot be regarded as unequivocal evidence for the presence of such a lone pair, since the small 'bite' of the dithiocarbamate ligand opposite automatically imposes such a distortion within the plane.

Complex (2).—This complex is found to be of stoicheiometry [NEt₄][Bi(S₂CNEt₂)I₂Br]; it is isostructural with (1), with Br replacing I(3), so that the complex is [NEt₄]₂[BrI(Et₂NCS₂)BiI₂Bi(S₂CNEt₂)BrI]. The bismuth-bismuth separation is 4.683(2) Å, and Bi-I-Bi is 9.482(5)°. Apart from the bromine geometry, itself, the effect of the bromide substitution is trivial and does not warrant further discussion.

[0/1048 Received, 7th July, 1980]

REFERENCES

¹ Part 1, C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1352.

² Part 3, C. L. Raston, G. L. Rowbottom, and A. H. White, preceding paper.