1981 2049

Syntheses of Cationic Tri- and Di-carbonyl Complexes of Manganese(1) with Diphosphines from the Appropriate Neutral Bromocarbonyls

By Francisco Bombin, Gabino A. Carriedo, Jesus A. Miguel, and Victor Riera,* Department of Inorganic Chemistry, University of Valladolid, Spain

Reaction of the complexes fac-[MnBr(CO)₃(L-L)][L-L = Ph₂P(CH₂)_nPPh₂, n = 1 (dppm) or 2 (dppe)] with phosphorus-donor ligands, L, leads to the complexes cis, cis-[MnBr(CO)₂(L-L)L]. These neutral dicarbonyls are oxidized by NO₂ or [NO][PF₆] to the unstable cationic species trans-[MnBr(CO)₂(L-L)L]+ which may be isolated as hexafluorophosphate salts and which lead to the neutral trans-[MnBr(CO)₂(L-L)L] when reduced by hydrazine. Replacement of the bromo-ligand in either cis, cis- or trans-[MnBr(CO)₂(L-L)L], using Tl[PF₆] in the presence of another ligand L' (N or P donor), results in the formation of cis, cis- or trans-[Mn(CO)₂(L-L)LL'][PF₆] respectively, or of mer-[Mn(CO)₃(L-L)L][PF₆] if L' = CO. However, using Ag[ClO₄] as the halogen abstracter, the perchlorate salts of the cis, cis-cationic dicarbonyls (or the mer tricarbonyls) are obtained regardless of the neutral bromocarbonyl isomer used.

RECENTLY, we reported the syntheses of fac- and mer- $[Mn(CO)_3(L-L)L][ClO_4]$ and trans- $[Mn(CO)_2(L-L)L_2]$ - $[ClO_4]$ $[L-L,Ph_2P(CH_2)_nPPh_2 = dppm (n = 1), dppe (n = 2), dppp (n = 3), or dppb (n = 4) and <math>L = N$ -, O-, P-, or S-donor ligands in the fac tricarbonyls; L-L = dppm and L = phosphites or PPh_3 in the mer tricarbonyls; and L-L = dppm and L = phosphites in the trans dicarbonyls]. Isomerization processes in the cationic carbonyls of Mn^I , $[Mn(CO)_{6-n}L_n]^+$, are now well established but, as noted previously, only mer- $[Mn(CO)_3(dppm)L]$ - $[ClO_4]$ $[L = P(OR)_3$ or PPh_3 can be prepared from its fac isomers by heating since this treatment results in decomposition in all other cases. Furthermore, only the trans- $[Mn(CO)_2(dppm)L_2][ClO_4]$ $[L = P(OR)_3]$ complexes were obtained by treating the corresponding mer tricar-

bonyl {or, directly, fac-[Mn(OClO₃)(CO)₃(L-L)]} with L under u.v. irradiation.¹

In this paper we describe a more general procedure for synthesizing the species mer-[Mn(CO)₃(L-L)L]⁺, trans-[Mn(CO)₂(L-L)LL']⁺, and also the cis,cis isomers of the latter complexes, using the new neutral dicarbonyls trans- or cis,cis-[MnBr(CO)₂(L-L)L] under mild conditions. We also report the differences found between Ag[ClO₄] and Tl[PF₆] as halogen abstracters, our results being in agreement with recently reported studies on silver(I) salts as reagents in organometallic chemistry.³

RESULTS AND DISCUSSION

The compounds fac-[MnBr(CO)₃(L-L)]¹ (L-L = dppm or dppe) reacted with phosphorus-donor ligands, L, in

Scheme (i) L in refluxing toluene; (iia) NO₂ or [NO][PF₆] in CH₂Cl₂; (iib) spontaneously; (iiia) NH₂NH₂ in CH₂Cl₂; (iib) oxidation; (iv) CO (1 atm) and Ag[ClO₄] or Tl[PF₆] in CH₂Cl₂; (v) L' and Ag[ClO₄] or Tl[PF₆] in CH₂Cl₂; (vii) CO (1 atm) and Ag[ClO₄] or Tl[PF₆] in CH₂Cl₂; (viii) with L' and Tl[PF₆] in CH₂Cl₂

J.C.S. Dalton

refluxing toluene to give cis,cis-[MnBr(CO)₂(L-L)L] (1) [see (i) in the Scheme], the reaction being analogous to that reported by Reimann and Singleton ⁴ between L and fac- and mer,trans-[MnBr(CO)₃L₂]. The two strong bands of nearly the same intensity in the ν (CO) region of the i.r. spectra of the resulting complexes (1) (Table) clearly showed that the two CO groups are cis to each other. Moreover, (1) reacted with CO in the presence of either Tl[PF₆] or Ag[ClO₄] to give mer-[Mn(CO)₃(L-L)L]⁺ (see later). Therefore, assuming that in these latter reactions the CO enters at the position of the departing bromide,

as found in other cases,⁵ we have adopted the *cis,cis* structure for (1) shown in the Scheme. This structure is also consistent with the greater *cis*-labilization effect of bromine towards CO substitution than that of the phosphorus atoms of the diphosphines [see reaction (i)] as stated by Angelici's rule ⁶ and by Atwood and Brown's 'site preference model' ⁷ (see also ref. 8). Reaction (i) took place readily (0.5—2 h) in refluxing toluene, being faster for dppm than for dppe, although the change in rate, as well as the changes arising from the nature of the entering ligand L, were small under these conditions.

Analytical, conductivity, and i.r. data

Complex		Mna	Λ δ		Analysis (%)	c		~(OO) 41
cis,cis:[MnBr(CO) ₂ (dppe)[P(OPh) ₃]] 184 4 60.7 4.16 Canage 1 962s, cis,cis:[MnBr(CO) ₂ (dppe)[P(OPh) ₄]] 169 11 61.2 4.56 Canage 1 962s, cis,cis:[MnBr(CO) ₂ (dppe)[P(OMe) ₂]] 173 2 52.8 4.90 Canage 1 961s, cis,cis,cis:[MnBr(CO) ₂ (dppe)[P(OMe) ₂]] 155 10 64.4 5.50 Canage 1 961s, cis,cis,cis,cis,cis,cis,cis,cis,cis,cis,	Complex	$(\theta_c/^{\circ}C)$		\overline{c}	Ĥ	N	Colour	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cis, cis -[MnBr(CO) ₂ (dppm){P(OPh) ₃ }]		4					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cis cis-[MnBr(CO) (dnne)(D(OPh))]	160	11				Orongo	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis,cis-[MIBI(CO)2(appe){P(OPII)3}]	109	11				Orange	
cis,cis-[MinBr(CO) ₂ (dppe){P(PCH ₃)} 155 10 54.8 5.56 5.66 1 970 1 875	cis , cis -[MnBr(CO) ₂ (dppe){P(OMe) ₃ }]	173	2	52.8	4.90		Orange	1 951s,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cis cis-[MnBr(CO) (dppe)(P(OFt))]	155	10				Orongo	
cis,cis-[MnBr(CO] ₂ (dppe){PPh(OMe] ₂ }] 197	tis,tis-[MIDI(CO)2(uppe)(1 (OEt)3)]	100	10				Orange	
cis,cis-[MnBr(CO) ₂ (dppe)(PEt ₂)] 152 1 58.3 5.70 Crange 1 392s, trans-[MnBr(CO) ₂ (dppm)(P(OPh) ₂]] 145 2 61.5 4.15 Red 2 005vw, trans-[MnBr(CO) ₂ (dppe)(P(OPh) ₂)] 165 7 61.7 4.65 Red 2 005vw, trans-[MnBr(CO) ₂ (dppe)(P(OPh) ₂)] 145 6 54.8 5.46 Red 2 005vw, trans-[MnBr(CO) ₂ (dppe)(P(OPh) ₂)] 194 16 53.6 5.70 Red 1 898s * trans-[MnBr(CO) ₂ (dppe)(P(OPh) ₂)] 194 16 53.6 5.70 Red 1 895s * trans-[MnBr(CO) ₂ (dppe)(P(OPh) ₂)] 182 17 87.6 5.00 Red 1 897s * trans-[MnBr(CO) ₂ (dppe)(P(OPh) ₂)][Clo ₄] 175 123 39.4 4.20 White 2 065w, mer-[Mn(CO) ₂ (dppe)(P(OPh) ₂)][Clo ₄] 170 141 52.2 5.25 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(OPh) ₂)][Clo ₄] 170 141 52.2 5.25 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(ORb) ₃)][Clo ₄] 170 141 52.2 5.25 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(ORb) ₃)][Clo ₄] 170 141 52.2 5.25 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(ORb) ₃)][Clo ₄] 170 120 36.5 4.33 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Deb) ₃)][Clo ₄] 170 120 36.5 4.33 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 120 36.5 4.70 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 120 36.5 4.70 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 120 36.5 4.70 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 120 36.5 4.70 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 120 36.5 4.70 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 120 36.5 4.70 White 2 065w, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 180 3.70 4.30 White 1 978s, mer-[Mn(CO) ₃ (dppe)(P(Ph) ₃)][Clo ₄] 170 180 3.70 4.30 White 1 978s, mer-[Mn(CO) ₃ (dppe)(P(POPh) ₃)][Pr ₆] 191 180 18	cis, cis -[MnBr(CO) ₂ (dppe){PPh(OMe) ₂ }]	197	4				Orange	1 952s,
	cis cis-[MnBr(CO).(dnne)(PFt.)]	152	1				Orange	
$trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}] = 165 $		102			(5.55)		Orange	
$ \begin{aligned} & trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OEt)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OEt)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OEt)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}] \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}]](CIO_{4}) \\ & trans-[MnBr(CO)_{2}(dppe)\{P(OPh)_{3}]](CIO_{4}) \\ & trans-[Mn(CO)_{3}(dppe)\{P(OPh)_{3}]](CIO_{4}) \\ & trans-[Mn(CO)_{3}(dppe)\{P(OPh)_{3}]](CIO_{4}) \\ & trans-[Mn(CO)_{3}(dppe)(P(OPh)_{3})](CIO_{4}) \\ & trans-[Mn(CO)_{3}(dppe)(P(CPh)_{3})](CIO_{4}) \\ & tran$	$trans-[MnBr(CO)_2(dppm)\{P(OPh)_3\}]$	145	2				\mathbf{Red}	
$trans-[MnBr(CO)_2(dppe)\{P(OEt)_3\}] $	trans-[MnBr(CO) _o (dope){P(OPh) _o }]	165	7				Red	
				(61.4)	(4.35)			
$ \begin{aligned} & trans: [NnBr(CO)_{\mathfrak{g}}(dppe) \{P(OPr)_{\mathfrak{d}}\}] & 194 & 16 & 53.6 & 5.76 \\ & & & & & & & & & & & & \\ & & & & & $	$trans-[MnBr(CO)_2(dppe)\{P(OEt)_3\}]$	145	6				Red	
$trans-[\text{MnBr}(CO)_{2}(\text{dppe})\{\text{PPh}(\text{OMe})_{2}\}] \qquad 182 \qquad 17 \qquad 57.6 \qquad 5.00 \qquad \text{Red} \qquad 1 \ 897s \ \text{mer-}[\text{Mn}(\text{CO})_{3}(\text{dppp})\{\text{P}(\text{OMe})_{2}\}] \qquad 209 \qquad 140 \qquad 59.1 \qquad 3.95 \qquad \text{White} \qquad 2 \ 065w, \\ mer-[\text{Mn}(\text{CO})_{3}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}][\text{CIO}_{4}] \qquad 175 \qquad 123 \qquad 59.4 \qquad 4.20 \qquad \text{White} \qquad 2 \ 065w, \\ mer-[\text{Mn}(\text{CO})_{3}(\text{dppe})\{\text{P}(\text{OEL})_{3}\}][\text{CIO}_{4}] \qquad 170 \qquad 141 \qquad 52.2 \qquad 5.25 \qquad \text{White} \qquad 2 \ 057w, \\ mer-[\text{Mn}(\text{CO})_{3}(\text{dppe})\{\text{P}(\text{OMe})_{3}\}][\text{CIO}_{4}] \qquad 213 \qquad 143 \qquad 50.0 \qquad 4.35 \qquad \text{White} \qquad 2 \ 059w, \\ mer-[\text{Mn}(\text{CO})_{3}(\text{dppe})\{\text{P}(\text{OMe})_{3}\}][\text{CIO}_{4}] \qquad 218 \qquad 150 \qquad 64.0 \qquad 4.30 \qquad \text{White} \qquad 2 \ 055w, \\ mer-[\text{Mn}(\text{CO})_{3}(\text{dppe})\{\text{PPh}(\text{OMe})_{2}\}][\text{CIO}_{4}] \qquad 170 \qquad 120 \qquad 56.5 \qquad 4.70 \qquad \text{White} \qquad 2 \ 055w, \\ mer-[\text{Mn}(\text{CO})_{3}(\text{dppe})\{\text{PEt}_{3}\}][\text{CIO}_{4}] \qquad 170 \qquad 120 \qquad 56.5 \qquad 4.70 \qquad \text{White} \qquad 2 \ 055w, \\ mer-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 182 \qquad 140 \qquad 62.2 \qquad 4.25 \qquad \text{White} \qquad 2 \ 040w, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 120 \qquad 62.7 \qquad 4.45 \qquad \text{White} \qquad 1998s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 120 \qquad 62.5 \qquad 4.45 \qquad \text{White} \qquad 1998s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 120 \qquad 62.5 \qquad 4.45 \qquad \text{White} \qquad 1998s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 122 \qquad 61.7 \qquad 6.30 \qquad \text{Yellow} \qquad 1978s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 122 \qquad 61.7 \qquad 6.30 \qquad \text{Yellow} \qquad 1998s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 122 \qquad 51.7 \qquad 6.30 \qquad \text{Yellow} \qquad 1978s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}_{2}][\text{CIO}_{4}] \qquad 153 \qquad 152 \qquad 51.20 \qquad \text{Yellow} \qquad 1978s, \\ cis,cis-[\text{Mn}(\text{CO})_{2}(\text{dppe})\{\text{P}(\text{OPh})_{3}\}[\text{PF}_{6}] \qquad 190 \qquad 138 \qquad 51.7 \qquad 6.30 \qquad \text{Yellow} \qquad 2 \ 020vw, \\ cis,cis-[\text{Mn}(\text{CO}]_{2}(\text{dppm})\{\text{P}(\text{OPh})_{3}\}[\text{PF}_{6}] \qquad 190 \qquad 138 \qquad 51.7 \qquad 4.80 \qquad \text{Yellow} \qquad 2 \ $	trans-[MnBr(CO) _o (dppe){P(OPri) _o }]	194	16				Red	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$trans-[MnBr(CO)_2(dppe)\{PPh(OMe)_2\}]$	182	17				Red	1 897s *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$mer-[Mn(CO)_3(dppm)\{P(OPh)_3\}][ClO_4]$	209	140				White	2 065w,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			100					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mer -[Mn(CO) ₃ (dppe){P(OPh) ₃ }][ClO ₄]	175	123				White	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$mer-[Mn(CO)_3(dppe)\{P(OEt)_3\}][ClO_4]$	170	141		5.25		White	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		019	140				3371-14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mer -[MII(CO) ₃ (dppe){P(OMe) ₃ }][CIO ₄]	213	143				wnite	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$mer-[Mn(CO)_3(dppe)\{PPh(OMe)_2\}][ClO_4]$	218	150	54 .0	4.30		White	2 055w,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	may [Mn/CO) /dnno//DEt \llClO l	170	190				White	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mer-[MII(CO)3(uppe)(FEt3/)[CIO4]	170	120				Wille	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$cis, cis-[Mn(CO)_2(dppm)\{P(OPh)_3\}_2][ClO_4]$	182	140		4.25		White	1 993s,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis cis-[Mn/CO)./dnne\{P(OPh).\.][C]O.]	153	120				White	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		100	120				Wille	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis, cis -[Mn(CO) ₂ (dppe){P(OPh) ₃ }{P(OEt) ₃ }][ClO ₄]	125	140					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis.cis-[Mn(CO) _a (dppe){P(OEt) _a } _a][ClO ₄]	153	122					
$trans-[\mathrm{Mn}(\mathrm{CO})_2(\mathrm{dppm})\{\mathrm{P}(\mathrm{OPh})_3\}_2][\mathrm{PF}_6] \qquad 196 \qquad 122 \qquad 59.9 \qquad 4.40 \qquad \qquad Yellow \qquad 2 \ 020 \mathrm{vw}, \\ trans-[\mathrm{Mn}(\mathrm{CO})_2(\mathrm{dppm})\{\mathrm{P}(\mathrm{OPh})_3\}\{\mathrm{P}(\mathrm{OEt})_3\}][\mathrm{PF}_6] \qquad 190 \qquad 138 \qquad 54.7 \qquad 4.80 \qquad Yellow \qquad 2 \ 020 \mathrm{vw}, \\ (54.8) \qquad (4.65) \qquad \qquad (54.8) \qquad (4.65) \qquad \qquad 1938 \mathrm{s} \\ trans-[\mathrm{Mn}(\mathrm{CO})_2(\mathrm{dppm})\{\mathrm{P}(\mathrm{OPh})_3\}(\mathrm{PPh}_3)][\mathrm{PF}_6] \qquad 157 \qquad 124 \qquad 62.7 \qquad 4.30 \qquad Yellow \qquad 2 \ 000 \mathrm{vw}, \\ (62.3) \qquad (4.30) \qquad \qquad \qquad 1 \ 922 \mathrm{s} \\ trans-[\mathrm{Mn}(\mathrm{CO})_2(\mathrm{dppm})\{\mathrm{P}(\mathrm{OPh})_3\}(\mathrm{py})][\mathrm{PF}_6] \qquad 163 \qquad 137 \qquad 58.3 \qquad 3.80 \qquad 1.45 \qquad Yellow \qquad 2 \ 006 \mathrm{vw}, \\ trans-[\mathrm{Mn}(\mathrm{CO})_2(\mathrm{dppe})\{\mathrm{P}(\mathrm{OPh})_3\}(\mathrm{NCMe})][\mathrm{PF}_6] \qquad 153 \qquad 143 \qquad 57.4 \qquad 4.30 \qquad 1.40 \qquad Yellow \qquad 2 \ 025 \mathrm{vw}, \\ (57.3) \qquad (4.70) \qquad (1.40) \qquad 1 \ 935 \mathrm{s} \\ trans-[\mathrm{Mn}(\mathrm{CO})_2(\mathrm{dppe})\{\mathrm{P}(\mathrm{OEt})_3\}_2][\mathrm{PF}_6] \qquad 123 \qquad 135 \qquad 48.5 \qquad 5.70 \qquad Yellow \qquad 2 \ 019 \mathrm{vw}, \\ \end{cases}$				(51.1)	(5.80)			1 917s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis, cis -[Mn(CO) ₂ (dppe){P(OPh) ₃ }(NCMe)][PF ₆]	197	146				Yellow	
$trans-[\text{Mn(CO)}_2(\text{dppm)}\{P(\text{OPh)}_3\}\{P(\text{OEt)}_3\}][PF_6] 190 138 54.7 4.80 \qquad Yellow 2 020 \text{vw}, \\ (54.8) (4.65) \qquad & (54.8) (4.65) \qquad 1 938 \\ trans-[\text{Mn(CO)}_2(\text{dppm)}\{P(\text{OPh)}_3\}(PPh_3)][PF_6] 157 124 62.7 4.30 \qquad Yellow 2 000 \text{vw}, \\ (62.3) (4.30) \qquad & 1 922 \text{s} \\ trans-[\text{Mn(CO)}_2(\text{dppm)}\{P(\text{OPh)}_3\}(\text{py})][PF_6] 163 137 58.3 3.80 1.45 Yellow 2 006 \text{vw}, \\ (58.3) (4.10) (1.35) \qquad & 1 922 \text{s} \\ trans-[\text{Mn(CO)}_2(\text{dppe})\{P(\text{OPh)}_3\}(\text{NCMe})][PF_6] 153 143 57.4 4.30 1.40 Yellow 2 025 \text{vw}, \\ (57.3) (4.70) (1.40) & 1 935 \text{s} \\ trans-[\text{Mn(CO)}_2(\text{dppe})\{P(\text{OEt)}_3\}_2][PF_6] 123 135 48.5 5.70 Yellow 2 019 \text{vw}, \\ \end{cases}$	$trans-[Mn(CO)_2(dppm)\{P(OPh)_3\}_2][PF_6]$	196	122			(1.40)	Yellow	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- , , , , , , , , , , , , , , , , , , ,	100	100					1 947s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$trans-[Mn(CO)_2(dppm)\{P(OPh)_3\}\{P(OEt)_3\}][PF_6]$	190	138				Yellow	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$trans-[Mn(CO)_2(dppm){P(OPh)_3}(PPh_3)][PF_6]$	157	124		4.30		Yellow	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 [M-(CO) /d)(D/ODb))/)[[DE]	169	197			1.45	Waller.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$rans-[\min(OO)_2(appin)\{P(OPn)_3\}(py)][PF_6]$	103	137				r ellow	
$trans-[Mn(CO)_2(dppe)\{P(OEt)_3\}_2][PF_6]$ 123 135 48.5 5.70 Yellow 2019vw,	$trans-[Mn(CO)_2(dppe)\{P(OPh)_3\}(NCMe)][PF_6]$	153	143	57.4	4.30	1.40	Yellow	2 025vw,
	trans-[Mn/CO).(dnne){P(OFt).}.IIPF.1	193	135			(1.40)	Vellow	
(48.7) (5.45) 1 925s	www. [www/co/3/dbbo//r /opp/3/3/17 r 8]	120	100	(48.7)	(5.45)		1 0110 11	1 925s

^a All melted with decomposition. ^b In acetone. ^c Calculated values are given in parentheses. ^d I.r. spectra were recorded in dichloromethane. ^e \tilde{v} (CO) Values for the species trans-[MnBr(CO)₃(L-L)L]⁺ are 1 992, 1 987, 1 978, 1 970, and 1 975 cm⁻¹ for L-L=dppm, L = P(OPh)₃; dppe, P(OPh)₃; dppe, P(OEt)₃; dppe, P(OPrl)₃; and dppe, PPh(OMe)₂ respectively.

1981 2051

As might be expected, 9-11 treatment of cis, cis-[MnBr-(CO)₂(L-L)L] (orange) with NO₂ or [NO][PF₆] in dichloromethane [process (iia) in the Scheme] afforded deep red trans-[MnBr(CO)₂(L-L)L]+ (2), which could be isolated as rather unstable (solid and solution) hexafluorophosphate salts. In the decomposition process of these cationic manganese(II) bromocarbonyls (iib) in the Scheme, the neutral starting compounds (1) appeared as major products. The i.r. spectra of compounds (2) exhibited a strong v(CO) absorption near 1 970—1 990 cm-1 (Table) and, in some cases, a very weak one at higher frequency could be observed. This pattern is characteristic of an octahedral trans dicarbonyl, whilst the high frequency of the bands is in accord with the formation of manganese(II) cationic species.9-11 A band in the i.r. at 830 cm⁻¹ showed the presence of the anion PF₆, and the conductivity data were also consistent with a 1:1 electrolyte. 12 Thus, oxidation in reaction (iia) was accompanied by a cis to trans dicarbonyl rearrangement process. In fact, many reactions of octahedral metal carbonyls involving changes in the formal oxidation state of the metal also imply changes in the geometrical arrangement of the CO ligands.3,9-11,13-16 Interestingly, most of the chemical 9-11,14-16 and electrochemical 13-16 oxidations of manganese(I) to manganese-(II) carbonyl derivatives are accompanied by cis to trans rearrangement of CO groups. Therefore, on the basis of previous experimental 13,15,16 and theoretical 17 work it appears that the 17-electron species cis, cis-[MnBr(CO)₂-(L-L)L⁺ initially formed in (iia) easily isomerizes * (probably through an intramolecular twist mechanism) to the observed trans dicarbonyls, which might be favoured thermodynamically.

The manganese(II) species trans-[MnBr(CO)₂(L-L)L]⁺ $[L = P(OR)_3 \text{ or } PPh(OMe)_2]$ reacted rapidly with NH_2 -NH₂ [(iiia) in the Scheme] to yield trans-[MnBr(CO)₂-(L-L)L] (3), in accord with results of other reactions of this kind.9-11 The i.r. spectra of (3) showed the characteristic pattern of a trans dicarbonyl, with the strong band at frequencies 70-80 cm⁻¹ lower than the corresponding band of compounds (2) and the conductivity data suggestive of a non-electrolyte. Accordingly, reduction of (2) by hydrazine took place with complete retention of configuration. Conversely, the reduction of $trans-[MnBr(CO)_2(L-L)L]^+$ (L = PEt₃ or PMePh₂) resulted in the formation of cis, cis-[MnBr(CO)₂(L-L)L], due to the isomerization of the initially formed neutral trans isomer, as clearly seen by monitoring the reaction by i.r. in the $\nu(CO)$ region. No isomerization was observed in the case of complexes (3) even over a period of several days under similar conditions, but when trans-[MnBr-(CO)₂(dppe){P(OPh)₃}] was heated in toluene, a rapid reaction took place and its isomer cis, cis-[MnBr(CO)₂- $(dppe)\{P(OPh)_3\}\]$, together with trans- $[Mn(CO)_2(dppe)_2]$ -Br and fac-[MnBr(CO)₂(dppe)] were found among the products [on the basis of their $\nu(CO)$ bands only]. Thus,

it is apparent that for the manganese(I) species, the cis dicarbonyl derivatives are favoured when the ligands are poorer π acceptors.

Lately, the neutral halogeno-carbonyls have been widely used for synthesizing cationic species. This suggested that (1) or (3) could be useful precursors to a variety of cationic cis, cis and trans-[Mn(CO)₂(L-L)LL']⁺ complexes, and prompted us to investigate the reactions discussed below.

A mixture of cis, cis-[MnBr(CO)₂(L-L)L] and Ag[ClO₄] in dichloromethane reacted with CO at normal pressure in the absence of light to give mer-[Mn(CO)₃(L-L)L]-[ClO₄] (4) in good yield [process (iv) in the Scheme]. The i.r. spectra of the compounds obtained showed one weak band and another strong one at lower frequency in the ν (CO) region; this pattern is consistent with a mer tricarbonyl stereochemistry ¹ and thus, we have adopted for (4) the structure depicted in the Scheme. The dppm-containing mer tricarbonyls were identical to those obtained from their fac isomers. ¹ The bands at 1 080s, br and 630m cm⁻¹ in the i.r. (characteristic of the anion ClO_4^-) and the conductivity data also supported the formulation proposed for (4). Analogous results were obtained using $Tl[PF_6]$ as bromide abstracter.

The addition of Ag[ClO₄] to a dichloromethane solution of pure (1) in the absence of light also resulted in the rapid formation of (4), presumably through a decomposition process in which the cation Ag⁺ plays a part, as suggested by the dark precipitate formed. We have observed similar results in the formation of [Mn(CO)₄-(L-L)[ClO₄] by treating fac-[MnBr(CO)₃(L-L)] with Ag[ClO₄] in dichloromethane. Nevertheless, treatment of a mixture of (1) and the ligand $L' = P(OPh)_3$, $P(OEt)_3$, pyridine (py), or MeCN (in excess of the stoicheiometric amount) with Ag[ClO₄] in dichloromethane, in the absence of light gave the salts cis,cis-[Mn(CO)2(L-L)LL']-[ClO₄] (5) in high yield [reaction (v) in the Scheme]. The two characteristic strong bands of nearly the same intensity in the v(CO) region at higher frequencies than those of the starting neutral dicarbonyls (Table), the conductivity data, and the assumption that the ligand L' entered at the position of the departing bromide, allowed us to propose the cis,cis structure of the Scheme for the compounds (5). If $L' = PEt_3$ or PBu_3 , reaction (v) led to slower and more complex processes, probably due to the formation of silver-phosphine complexes.¹⁹ On the other hand, the reaction of cis, cis-[MnBr(CO)₂(dppe)-{P(OPh)₃}] with Ag[ClO₄] and P(OEt)₃ resulted, rather surprisingly, in the formation of a mixture of cis, cis- $[Mn(CO)_2(dppe)\{P(OEt)_3\}_2][ClO_4]$ and the expected cis, $cis-[Mn(CO)_2(dppe)\{P(OPh)_3\}\{P(OEt)_3\}][ClO_4].$ suggested substitution of P(OPh)₃ by P(OEt)₃ in the neutral starting dicarbonyl, as was demonstrated by treating cis,cis-[MnBr(CO)₂(dppe){P(OPh)₃}] and P(OEt)₃ in dichloromethane at room temperature. The ligand PBun₃ also replaced P(OPh)₃ from the bromocarbonyl derivative while py and MeCN failed to produce the same effect. Using Tl[PF₆] as bromide abstracter in reaction (v) (L-L = dppe), the cis, cis cationic dicarbonyls

^{*} It is apparent ¹⁵⁻¹⁷ that the barrier to intramolecular interconversion of the possible isomers is lower in the 17-electron carbonyl complexes than in the 18-electron complexes.

were obtained for all ligands used, except for $L' = PPh_a$ which seemed to lead to mer-[Mn(CO)₃(dppe)(PPh₃)]-[PF₆], according to the i.r. spectrum of the reaction mixture.

Reactions between complexes (3) and Ag[ClO₄] in the presence of ligand L' were found to be more complex than the corresponding ones of the cis,cis isomers. Furthermore, complete retention of configuration was not observed. Instead, mixtures of cis, cis and trans cationic species were formed. For example, treatment of $trans-[MnBr(CO)_2(dppe)\{P(OEt)_3\}]$ with $L'=P(OEt)_3$ or P(OPh)₃ and an excess of Ag[ClO₄] in dichloromethane led mainly to $cis, cis-[Mn(CO)_2(dppe)\{P(OEt)_3\}L'][ClO_4]$ rather than to the expected trans isomer [reaction (vi) in the Scheme]. Using L' = CO (1 atm *) under similar conditions the compound $mer-[Mn(CO)_3(dppe)\{P(OEt)_3\}] [ClO_A]$ was formed [(vii) in the Scheme]. In both cases, examination of the reaction mixture by i.r. revealed initial formation of trans-[MnBr(CO)₂(dppe){P(OEt)₃}]+, according to the strong band at 1 978 cm⁻¹. Therefore, we are tempted to conclude that in reaction (vi) the starting complex was oxidized,† probably by the cation Ag+ [(iiib) in the Scheme] which has been found to be a one-electron oxidant for organometallic species.^{3,20} The resulting complex, trans-[MnBr(CO)₂(dppe){P(OEt)₃}]+, could be the source of cis, cis-[MnBr(CO)₂(dppe){P(OEt)₃}] (see below) and thus, this latter complex reacted with Ag[ClO₄] to give the observed cis, cis cationic carbonyl derivative. Several other reactions were carried out to investigate this result further. Thus, it was found that Ag[ClO₄] oxidized the complex trans-[MnBr(CO)₂(dppe)-{P(OPh)₃}] to the 17-electron manganese(II) trans dicarbonyl. Treatment of trans-[MnBr(CO)₂(dppm)- $\{P(OPh)_3\}[PF_6]$ with $P(OEt)_3$ in dichloromethane resulted in cis, cis-[MnBr(CO)₂(dppm){P(OPh)₃}] [no substitution of P(OPh)₃ for P(OEt)₃ was observed during the time required for the reduction]. This result, which seems to be analogous to the reduction of mer,trans- $[MnBr(CO)_2L_3]^+$ by L to mer, cis- $[MnB_1(CO)_2L_3]$ (L = PMe₂Ph), may account for the formation of cis, cis- $[MnBr(CO)_2(dppe)\{P(OEt)_3\}]$ from trans- $[MnBr(CO)_2$ - $(dppe)\{P(OEt)_3\}\}^+$ and $P(OEt)_3$ as commented above. Finally, the reaction of trans-[MnBr(CO)₂(dppe){P-(OEt)₃}][PF₆] and P(OEt)₃ with the non-oxidizing Tl[PF₆] resulted in the formation of cis,cis-[Mn(CO)₂- $(dppe)\{P(OEt)_3\}_2$ [PF₆]. The i.r. examination of this reaction revealed the initial formation of cis,cis-[MnBr- $(CO)_{\mathfrak{o}}(dppe)\{P(OEt)_{\mathfrak{o}}\}$].

The failure to produce the cationic trans dicarbonyls using Ag[ClO₄] led us to investigate the effect of utilizing the non-oxidizing Tl[PF₆]. In this way, the complexes $trans-[Mn(CO)_2(L-L)LL'][PF_6]$ (6) $[L = P(OPh)_3 \text{ or } P (OEt)_3$; $L' = P(OPh)_3$, $P(OEt)_3$, PPh_3 , MeCN, or pywere synthesised from (3), L', and Tl[PF₆] in dichloromethane [reaction (viii) in the Scheme]. The i.r. of the complexes obtained showed only one strong band in the

v(CO) region at higher frequency than the ones corresponding to the neutral complex (3), and a band at 830 cm⁻¹ characteristic of the anion PF₆. Moreover, as in the other classes of compounds hitherto discussed, the trends observed for the v(CO) frequency values clearly reflected the expected changes in the π -acceptor abilities of the ligands (Table). In some cases, however, the complexes trans-[Mn(CO)₂(L-L)LL'][PF₆] were formed together with smaller amounts of the cis,cis isomer; this was observed for example, in reaction (viii) for L = L' =P(OPh)₃ or P(OEt)₃. No bands in the i.r. indicating oxidation to manganese(II) species were observed, therefore the effects discussed above using Ag[ClO₄] do not operate here. In these cases an accurate explanation would require a more detailed examination of the problem.

EXPERIMENTAL

Infrared spectra were recorded on a Perkin-Elmer 599 spectrophotometer, and were calibrated against the polystyrene absorption at 1 602 cm⁻¹. Analyses were performed with a Perkin-Elmer 240 microanalyzer. All reactions were carried out under N2. The compounds fac-[MnBr-(CO)₃(L-L)] were prepared as described in ref. 1.

Melting points, conductivity, analytical, and spectroscopic data for new compounds are given in the Table.

Syntheses.—cis,cis-[MnBr(CO)₂(L-L)L], (1). The following preparation is representative of that for all complexes (1).

The complex fac-[MnBr(CO)₃(dppm)] (0.40 g, 0.66 mmol) and P(OPh)₃ (1.03 g, 3.32 mmol) were heated under reflux (0.5 h) in toluene (10 cm³). The solvent was removed under reduced pressure and hexane was added to give the yellow solid $cis, cis-[MnBr(CO)_2(dppm)\{P(OPh)_3\}]$ (0.46 g, 78%). The product was recrystallized from dichloromethane-ethanol (4:1) to give orange crystals.

trans-[MnBr(CO)₂(L-L)L][PF₆], (2). The following preparation is representative of that for all compounds (2).

The complex cis, cis-[MnBr(CO)₂(dppe){P(OPh)₃}] (0.30 g, 0.33 mmol) and [NO][PF₆] (0.07 g, 0.40 mmol) were stirred in dichloromethane (10 cm³) for 30 min. The resulting deep red solution was filtered and the solvent removed in vacuo to give a red residue which was stirred with diethyl ether until a solid was formed (0.25 g, 75%). Attempts to recrystallize resulted in decomposition to the cis, cis-[MnBr- $(CO)_2(dppe)\{P(OPh)_3\}$].

Alternatively NO2(g) may be used to prepare dichloromethane solutions of (2).

trans-[MnBr(CO)₂(L-L)L], (3). The following preparation is representative of that for all complexes (3).

Dried NO₂ was bubbled through a solution of the complex $cis, cis-[MnBr(CO)_2(dppm)\{P(OPh)_3\}]$ (1.1 g, 1.24 mmol) in dichloromethane (30 cm³) until the i.r. spectrum of the solution showed only one strong band at 1 992 cm⁻¹. Excess of NO₂ was removed from the solution by bubbling through N₂ and addition of a commercial solution of 80% hydrazine monohydrate (0.50 cm³). The resulting solution was filtered over Kieselguhr and evaporated to dryness to give a red powder. The latter was washed with hexane and recrystallized (dichloromethane-hexane) affording crystals of trans- $[MnBr(CO)_2(dppm)\{P(OPh)_3\}]\ (0.75\ g,\ 68\%).$

The compound [NO][PF₆] can be used instead of NO₂ with

the same result.

Throughout this paper: 1 atm = 101 325 Pa.

[†] It appears that oxidation of the trans species is easier than that of the corresponding cis ones.

2053 1981

mer-[Mn(CO)₃(L-L)L][ClO₄], (4). Carbon monoxide (1 atm) was bubbled through a magnetically stirred solution of cis, cis-[MnBr(CO)₂(dppe){P(OEt)₃}] (0.30 g, 0.38 mmol) and Ag[ClO₄] (0.123 g, 0.60 mmol) in dichloromethane (20 cm³) for 30 min. The mixture was filtered, the solvent removed under reduced pressure, and the residue washed with diethyl ether to give mer-[Mn(CO)3(dppe){P(OEt)3}]-[ClO₄] (0.26 g, 81%). Recrystallization was from dichloromethane-ethanol.

The other complexes (4) were similarly prepared.

cis,cis-[Mn(CO)₂(L-L)LL'][ClO₄], (5). The complex cis,cis-[MnBr(CO)₂(dppm){P(OPh)₃}] (0.30 g, 0.34 mmol) and P(OPh)₃ (0.54 g, 1.75 mmol) were stirred at room temperature in the absence of light with Ag[ClO₄] (0.11 g, 0.53 mmol) in dichloromethane (20 cm³) for 3.5 h. The mixture was filtered, the solvent evaporated under reduced pressure, and the resulting oil was washed several times with diethyl ether to give the white solid cis, cis-[Mn(CO)2(dppm){P- $(OPh)_3$ ₂][ClO₄] (0.29 g, 71%). The compound was recrystallized by slow evaporation of an ethanolic solution.

The other complexes (5) were similarly prepared but the reaction time varies from $0.5 \text{ h} [L-L = \text{dppe}, L = P(OEt)_3,$ $L' = P(OPh)_3$ to 50 h [L-L = dppe, L = L' = $P(OEt)_3$]. Using Tl[PF₆] instead of Ag[ClO₄] led to analogous

results.

trans-[Mn(CO)₂(L-L)LL'][PF₆], (6).—The complex trans- $[MnBr(CO)_2(dppm)\{P(OPh)_3\}]$ (0.20 g, 0.23 mmol), $P(OEt)_3$ (0.19 g, 1.13 mmol), and $Tl[PF_6]$ (0.16 g, 0.45 mmol) were stirred at room temperature for 4 h in dichloromethane (10 cm³). The mixture was filtered and the solvent removed in vacuo. The resulting oil was washed with diethyl ether to give the white solid trans-[Mn(CO)₂(dppm){P(OPh)₃}{P- $(OEt)_3$ [PF₆] (0.18 g, 64%). Recrystallization was from dichloromethane-ethanol.

The other complexes (6) were similarly prepared in times

varying from 2 h [L-L = dppm, L = P(OPh), L' = MeCN] to 3 d [L-L = dppm, L = $P(OPh)_3$, L' = PPh_3].

[1/309 Received, 23rd February, 1981]

REFERENCES

- ¹ G. A. Carriedo and V. Riera, J. Organomet. Chem., 1981, 205,
- 371.

 ² R. Uson, V. Riera, J. Jimeno, M. Laguna, and M. P. Gamasa, J. Chem. Soc., Dalton Trans., 1979, 996.
- ³ J. A. Connor and P. I. Riley, J. Chem. Soc., Dalton Trans., 1979, 1231.
- 4 R. H. Reimann and E. Singleton, J. Chem. Soc., Dalton Trans., 1973, 841.
- ⁵ P. M. Treichel and D. W. Firsich, J. Organomet. Chem., 1979,
- ⁶ R. J. Angelici and J. R. Graham, J. Am. Chem. Soc., 1965, 87, 5586.
- J. D. Atwood and T. L. Brown, J. Am. Chem. Soc., 1976, 98, 3169.
- ⁸ G. R. Dobson, Inorg. Chem., 1980, 19, 1413.
- 9 R. H. Reimann and E. Singleton, J. Chem. Soc., Dalton Trans., 1973, 2658.
- 10 R. H. Reimann and E. Singleton, J. Organomet. Chem., 1973,
- 57, C75.

 11 R. H. Reimann and E. Singleton, J. Chem. Soc., Dalton
 - 12 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 13 F. L. Wimmer, M. R. Snow, and A. M. Bond, Inorg. Chem., 1974, 13, 1617
- 14 A. M. Bond, R. Colton, and M. J. McCormick, Inorg. Chem.,
- 1977, 16, 155. 15 A. M. Bond, B. S. Grabaric, and Z. Grabaric, Inorg. Chem.,
- 1978, 17, 1013. 16 A. M. Bond, R. Colton, and M. E. McDonald, Inorg. Chem., 1978, 17, 2842
- ¹⁷ D. M. P. Mingos, J. Organomet. Chem., 1979, 179, C29.
- 18 See ref. in ref. 1.
- 19 T. G. M. H. Dikhoff and R. G. Goel, Inorg. Chim. Acta, 1980,
- 44, L72.
 P. K. Baker, K. Broadley, N. G. Connelly, B. A. Kelly,
 M. D. Kitchen, and P. Woodward, J. Chem. Soc., Dallon Trans., 1980, 1710.