Addition of Dimethylphenylphosphine to μ - and μ_3 -Alkynyl and μ_3 -Allenyl Ligands in Triosmium Clusters : X-Ray Crystal Structures of Three Zwitterionic Adducts

By Kim Henrick* and Mary McPartlin, Department of Chemistry, The Polytechnic of North London, London N7 8DB

Antony J. Deeming,* Sundus Hasso, and Peter Manning, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ

The μ_3 -alkynyl complexes $[Os_3H(CO)_9(C\equiv CR)]$ (R = H, Me, Ph, or CMe_2OH), the μ -alkynyl complex $[Os_3H(CO)_{10}(C\equiv CPh)]$, and the μ_3 -allenyl complex $[Os_3H(CO)_9(MeC=C\equiv CH_2)]$ all form 1:1 adducts with PMe_2Ph. The tertiary phosphine molecules add at carbon atoms to give zwitterionic complexes containing phosphonium centres and negative charges formally on the metal atoms. To confirm structures based on 1H n.m.r. and i.r. data, single-crystal X-ray structures of three rather different adducts have been determined. Crystals of $[Os_3H(CO)_9$ -(HC=CPMe_2Ph)] are monoclinic, space group $P2_1/c$, with a=14.579(6), b=8.301(3), c=19.523(9) Å, $\beta=93.45(2)^\circ$, Z=4, and final R=0.053. Crystals of $[Os_3H(CO)_9(MeC=CCH_2PMe_2Ph)]$ are monoclinic, space group C_c , with a=15.990(5), b=11.974(4), c=13.480(4) Å, $\beta=98.11(2)^\circ$, Z=4, and final R=0.037. Crystals of $[Os_3H(CO)_{10}(C=CPhPMe_2Ph)]$ are triclinic, space group P1, with a=14.075(3), b=12.210(3), c=8.724(2) Å, $\alpha=100.86(3)$, $\beta=95.41(2)$, $\gamma=101.51(3)^\circ$, Z=2, and final R=0.040. The two nonacarbonyl complexes are structurally very similar, both containing μ_3 -alkyne ligands with phosphonium centres positioned β and γ respectively to the metal atoms. The different relative positions of the phosphonium centres have no detectable effect on structural parameters but lead to different creation frequencies. The fluxional behaviour of the μ_3 -alkyne complexes is described. Whereas PMe_2Ph attack is at the 1-position of the μ_3 -alkynyl ligands, it is at the 2-position of the μ -alkynyl ligand to give $[Os_3H(CO)_{10}(C=CPhPMe_2Ph)]$ which is structurally characterised as containing a μ -alkylidene ligand with a phosphonium substituent.

TERTIARY phosphines add readily to unsaturated hydrocarbon ligands in cationic complexes such as the cyclohexadienyl complex $[Fe(CO)_3(C_6H_7)][BF_4]$, the alkene complex $[Fe(C_5H_5)(CO)_2(C_2H_4)][BF_4]$, and the arene complex $[Fe(C_6H_6)_2][PF_6]_2$ to give adducts in which the positive charge becomes localised at a phosphonium substituent of the hydrocarbon ligand. The electronwithdrawing properties of the metal atoms in the cation render ligand carbon atoms electrophilic, reversing the normal reactivity of the free organic ligand. Such behaviour is rare in neutral complexes where metal-toligand π donation allows the carbon atoms to retain their nucleophilic character. For triosmium and other related clusters, electrophilic attack, such as protonation, normally gives a metal-bonded product,4 although it is quite likely that attack at carbonyl oxygen precedes a types of hydrocarbon ligand in triosmium clusters also undergo PMe₂Ph attack as judged by the shift of $\nu(CO)$ absorptions to lower frequencies on forming zwitterionic adducts. We now describe in detail PMe₂Ph adducts of μ - and μ_3 -alkynyl and μ_3 -allenyl clusters and the X-ray crystal structures of three of these.

RESULTS AND DISCUSSION

Synthesis and Simple Characterisation of PMe_2Ph Adducts.—The clusters $[Os_3H(CO)_9(RC=CPMe_2Ph)]$, (1) $(R=H, Me, Ph, or CMe_2OH)$, are readily and rapidly formed on addition of PMe_2Ph to the μ_3 -alkynyl complexes $[Os_3H(CO)_9(C=CR)]$, (4), in chloroform, toluene, or hexane solution at room temperature. The clusters $[Os_3H(CO)_9(MeC=CCH_2PMe_2Ph)]$, (2), and $[Os_3H(CO)_{10}-(C=CRPMe_2Ph)]$, (3) $(R=H \ or \ Ph)$, were prepared

$$(OC)_{4}Os \xrightarrow{-Os(CO)_{3}} + PMe_{2}Ph \xrightarrow{-Os(CO)_{3}} (OC)_{4}Os \xrightarrow{-Os(CO)_{4}Os(CO)_{3}} (OC)_{4}Os \xrightarrow{-Os(CO)_{4}Os(CO)_$$

transfer of the electrophile to the metal. Exceptionally, products of addition at carbonyl oxygen atoms have been isolated.^{5,6} On the other hand, nucleophilic attack at neutral clusters may occur at a carbon atom of a carbonyl ligand ^{7,8} or at a hydrocarbon ligand.^{9,10} Addition of PMe₂Ph to $[Os_3H(CO)_{10}(\mu\text{-CHCH}_2PMe_2Ph)]$, the structure of which in solution ^{9,10} and in the crystal ¹⁰ is consistent with a zwitterionic formulation with a substituted ethylidene ligand, equation (1). We noted that various other

similarly from compounds (5)—(7) as shown in the Scheme. Spectroscopic data were used for characterisation of (1)—(3) (Table 1). Although the additions were carried out under nitrogen, this was hardly necessary since the clusters (1)—(7) are all thermally and air-stable and the adducts form more rapidly than PMe₂Ph is oxidised in air.

Although compounds (3) were described earlier, we did not know from n.m.r. spectra whether they contained the RC=CPMe₂Ph or C=CRPMe₂Ph arrangements of atoms,

Table 1
Spectroscopic data for compounds (1)—(3)

		¹H N.m.r.		
Compound	ỹ(CO)/cm⁻¹	δ		J/Hz
(1a) $[Os_3H^y(CO)_9(H^wC=CPMe^x_9Ph)]^q$	2 081m, 2 052s, 2 023vs.	9.28 (dd)	CHw /(Hw	(P) = 17.8
. ,	2 002s, 1 985m, 1 973s,	7.7 (m)		$(H^{y}) = 1.7$
	1 965 (sh), 1 941w	2.91 (d)		$(e^{x}P)' = 12.5$
		2.76 (d)	J \	(P)' = 1.7
		-19.49 (dd)	Ну	-,
(1b) $[Os_3H^y(CO)_9(Me^wC=CPMe^x_2Ph)]^b$	2 078m, 2 049s, 2 022vs,	7.7 (m)		$e^{x}P) = 12.9$
() [3 () [4 ()]	2 000s, 1 983m, 1 970s,	2.05 (d)		(P)' = 3.8
	1 962 (sh), 1 939w	1.92 (d)	Me ^x	1) - 0.0
	1 002 (011), 1 000	2.48 (s)	Me*	
		-18.84 (d)	Ну	
(1c) $[Os_3H^y(CO)_9(PhC=CPMe^x_9Ph)]^c$	2 080s, 2 053vs, 2 021vs,	7.37 (m)		(P) = 2.6
(10) [Objit (OO)g(1 no Of the gin)]	2 003vs, 1 987m, 1 973s.	6.95 (m)		$(2^{x}P) = 12.5$
	1 963 (sh), 1 939w	1.77 (d)	Me ^x	-1) = 12.0
	1 303 (SII), 1 333W	1.77 (d) 1.70 (d)	Me ^x	
		-19.24 (d)	Ме- Ну	
(1d) $[Os_3H^z(CO)_9(H^wOMex_2CC=CPMey_2Ph)]^d$	2 077s, 2 047s, 2 019vs.	- 19.24 (d) 7.7 (m)		vD\ 11.0 11.7
(1d) [OS311 (CO)g(11 ONIC 2CC CF Mes21 II)]	1 997s, 1 981m, 1 969s,	1.82 (d)		(P) = 11.0, 11.7
			Mey J(H.	(P) = 3.4
	1 960 (sh), 1 936w	2.20 (d)	Mex	
		0.99 (s)		
		1.35 (s)	Me ^x OH	
		1.24 (s)		
(ii) [O., 117/(**(*) /M-vC-(**C11 m. **1)M-v. 1)]- (*)	0.000 0.000 0.010	-18.44 (s)	Hz	
(2) $[Os_3H^z(CO)_9(Me^vC=CCH_2^{w,z}PMe^y_2Ph)] e$	2 066m, 2 036s, 2 010s,	7.7 (m)		$^{\text{vH}^{\text{x}}}$) = 14.5
	1 982s, 1 967m, 1 942m (br),	3.96 (m)		(P) = 11.4
	1 922 (sh)	3.33 (m)		(P) = ca. 14
		2.44 (s)		$e^{y}P) = 13.5$
		2.22 (d)	Mey	
		2.11 (d)	Mey	
		-19.89 (s)	Hz	
(3a) $[Os_3H^z(CO)_{10}(C=CH^xPMey_2Ph)]^f$	2 090m, 2 044vs, 2 037s,	7.6 (m)		$(H^z) = 1.3$
	2 007vs, 1 992s, 1 983m,	$6.60 \; (dd)$		(P) = 40.7
	1 975m, 1 966m, 1 947w	2.08 (d)		$e^{y}P) = 13.5$
		1.95 (d)		(P) = 2.5
		-16.04 (dd)	Hz	
(3b) $[Os_3H^y(CO)_{10}(C=CPhPMe_2Ph)]^f$	2 089m, 2 046vs, 2 037s,	7.8 (m)		$e^{x}P) = 12.3, 12.5$
	2 008vs, 1 990 (sh), 1 986s,	7.3 (m)		(P) = 3.2
	1 979m, 1 973m, 1 967s,	2.49 (d)	Mex	
	1 949m	1.76 (d)	Mex	
		-16.35 (d)	Ну	

 $-16.35\ \text{(d)} \qquad H\text{y}$ * I.r. in C₆H₁₂; n.m.r. in CD₂Cl₂ at $-18\ ^{\circ}\text{C}$. * I.r. in n-hexane; n.m.r. in CD₂Cl₂ at $-21\ ^{\circ}\text{C}$. * I.r. in n-hexane; n.m.r. in CD₂Cl₂ at $-18\ ^{\circ}\text{C}$. * I.r. in CHCl₃; n.m.r. in CD₂Cl₂ at $-18\ ^{\circ}\text{C}$. * I.r. in C₆H₁₂; n.m.r. in CDCl₃ at $-18\ ^{\circ}\text{C}$.

TABLE 2
Summary of crystal data

Compound	(la)	(2)	(3b)
Formula	$C_{19}H_{13}O_{9}Os_{3}P$	$C_{21}H_{17}O_{9}Os_{3}P$	$C_{26}H_{17}O_{10}Os_3P$
M	986.8	1 014.9	1 090.9
Crystal system	Monoclinic	Monoclinic	Triclinic
$a/ ext{A}$	14.579(6)	15.990(5)	14.075(3)
b/Å	8.301(3)	11.974(4)	12.210(3)
c/Å	19.523(9)	13.480(4)	8.724(2)
α̈́/°	(90)	(90)	100.86(3)
β/°	93.45(2)	98.11(2)	95.41(2)
Υ/°	(90)	(90)	101.51(3)
Space group	$P2_1/c$	C_c	P $\overline{1}$
$U/ m \mathring{A}^3$ Z	2 358.4	2 555.1	1 429.2
Z	4	4	2
$D_{\rm c}/{ m g~cm^{-3}}$	2.778	2.637	2.534
F(000)	1 744	1 832	932
$\mu(Mo-K_{\alpha})/cm^{-1}$	1 5 5.93	143.95	128.71
Crystal size/mm	$0.22\times0.20\times0.12$	$0.18\times0.10\times0.10$	$0.12\times0.25\times0.10$
Unique data, $F \geqslant 6\sigma(F)$	2 828	2 344	4 630
No. of variables	296	306	362
Final R	0.053	0.037	0.040
Final R' [$w = 1/\sigma^2(F)$]	0.052	0.038	0.041

$$(OC)_{3}Os \xrightarrow{OS(CO)_{3}} + PMe_{2}Ph$$

$$(OC)_{3}Os \xrightarrow{OS(CO)_{3}} + PMe_{2}Ph$$

$$(OC)_{3}Os \xrightarrow{OS(CO)_{3}} + PMe_{2}Ph$$

$$(1a; R = H)$$

$$(1a; R = H)$$

$$(1b; R = Me)$$

$$(1c; R = Ph)$$

$$(1d; R = CMe_{2}OH)$$

$$(1d; R = CMe_{2}OH)$$

$$(OC)_{3}Os \xrightarrow{OS(CO)_{3}} + PMe_{2}Ph$$

$$(OC)_{3}Os = C \\ Os(CO)_{3} \\ Os(CO)_{3} \\ Os(CO)_{3} \\ Os(CO)_{3} \\ Os(CO)_{4} \\ Os(CO)_{4} \\ Os(CO)_{4} \\ Os(CO)_{3} \\ Os(CO)_{4} \\ Os(CO)_{4} \\ Os(CO)_{5} \\ Os(CO)_{5} \\ Os(CO)_{6} \\ Os(CO)_{7} \\ Os(CO)_{8} \\ Os(CO)_{8} \\ Os(CO)_{8} \\ Os(CO)_{9} \\$$

that is whether the PMe_2Ph molecule had added at the α - or β -carbon atoms. Complexes (3a) and (3b) are isostructural, although formed from non-isostructural starting compounds, (6) and (7). We have now confirmed from a single-crystal X-ray study of compound (3b) that PMe_2Ph attack is at the β -carbon atom.

Attack of PMe₂Ph on compounds (4) gave the series of compounds (1) which are isostructural on the basis of their extremely similar v(CO) spectra, around 2 000 cm⁻¹. Furthermore, it seemed from their ¹H n.m.r. spectra that attack had occurred at the a-carbon atoms in all cases. In particular there is no coupling observed between the CH₃ protons and the ³¹P nucleus in (1b) as would be expected in the alternative arrangement μ₃-C=CMePMe₂Ph. Compounds (1) and (2) are closely related except that the phosphonium centre is β to the metal in (1) but γ to the metal in (2). On forming the PMe₂Ph adducts there is a lowering of the $\nu(CO)$ frequencies consistent with the zwitterionic formulation with negative charge accumulating at the metal atoms. In forming compounds (1) the $\nu(CO)$ frequencies are lowered by around 24-35 cm⁻¹ relative to the neutral parent compounds. However, in forming compound (2) the lowering is rather greater (37—50 cm⁻¹). Typically, deprotonation of a hydrido-triosmium cluster to give a full negative charge lowers the $\nu(CO)$ frequencies by a little more than 50 cm^{-1} . Thus in (1) there is roughly 0.5of an electronic charge at the metal atoms but around 0.8 in (2). One view is that the extra CH₂ group in (2) insulates the charged centres of the zwitterion which makes the alkyne ligand a poorer π acceptor and allows the greater accumulation of negative charge at the metal atoms. The order of atoms within the organic ligands of (1) and (2) was clear from ¹H n.m.r. data (Table 1) but details of the mode of attachment at the metal cluster and the possible differences between (1) and (2) in this respect justified single-crystal X-ray studies. Furthermore, interpretation of the observed fluxionality of complexes (1) and (2) (see later) would be assisted by detailed knowledge of their structures. Compounds (1a) and (2) gave good quality crystals and were chosen for study.

Table 3
Fractional atomic co-ordinates for [Os₃H(CO)₉-(HC=CPMe₂Ph)], (1a)

Atom	x	y .	z
Os(1)	0.18492(5)	0.088 17(10)	0.10873(4)
Os(2)	$0.321\ 01(5)$	0.316 89(9)	$0.132\ 81(4)$
Os(3)	$0.383\ 75(5)$	$0.003\ 64(10)$	$0.111\ 64(4)$
P	$0.210 \ 6(3)$	$0.322 \ 8(\hat{6})$	$-0.035\ 1(3)$
C(1)	$0.256\ 6(11)$	$0.219\ 5(22)$	$0.035\ 2(8)$
C(2)	$0.350\ 3(12)$	0.175 8(23)	$0.038\ 0(8)$
C(111)	$0.167\ 3(12)$	$0.189\ 2(24)$	-0.0992(10)
C(112)	$0.097\ 0(15)$	0.230 8(33)	-0.1483(12)
C(113)	$0.070\ 3(18)$	$0.122\ 7(35)$	-0.1979(12)
C(114)	$0.112\ 4(19)$	$-0.024\ 1(36)$	$-0.202\ 3(15)$
C(115)	$0.181\ 8(20)$	$-0.062 \ 1(32)$	-0.1582(16)
C(116)	$0.211\ 3(14)$	$0.041\ 6(28)$	-0.1036(13)
C(117)	$0.113\ 1(15)$	$0.455 \ 9(25)$	-0.0167(11)
C(118)	$0.289\ 9(15)$	$0.461\ 6(36)$	-0.0728(13)
C(11)	$0.088\ 0(14)$	$0.239\ 2(27)$	0.1194(8)
O(11)	$0.028 \ 9(10)$	$0.326\ 2(20)$	$0.129\ 4(9)$
C(12)	$0.109\ 2(12)$	-0.0504(24)	$0.050 \ 8(11)$
O(12)	0.064~8(11)	-0.1438(19)	$0.021\ 2(9)$
C(13)	$0.172 \ 4(13)$	-0.0069(26)	$0.197\ 7(13)$
O(13)	$0.163\ 0(12)$	-0.0536(22)	0.2504(9)
C(21)	$0.246\ 2(17)$	0.5069(34)	0.1374(11)
O(21)	$0.200\ 1(13)$	$0.616\ 1(19)$	0.147~6(11)
C(22)	$0.432\ 1(14)$	$0.434 \ 8(24)$	$0.125\ 4(10)$
O(22)	$0.501 \ 0(12)$	$0.503\ 2(21)$	0.1264(10)
C(23)	0.3389(13)	$0.277\ 2(26)$	$0.230\ 2(10)$
O(23)	$0.346\ 7(13)$	$0.247\ 5(26)$	$0.285 \ 6(8)$
C(31)	$0.408\ 6(13)$	$-0.168\ 2(27)$	$0.055\ 0(12)$
O(31)	$0.426\ 0(14)$	-0.2704(22)	0.0149(11)
C(32)	$0.509 \ 4(16)$	$0.069\ 4(27)$	0.1224(12)
O(32)	$0.584\ 1(11)$	$0.106\ 3(25)$	0.1284(11)
C(33)	$0.389\ 3(18)$	-0.1088(32)	$0.195\ 7(15)$
O(33)	$0.385 \ 9(17)$	$-0.176\ 3(28)$	$0.249\ 7(12)$

X-Ray Crystal Structures of Compounds (1a), (2), and (3b).—Crystal data for these three compounds are given in Table 2 and the fractional atomic co-ordinates for (1a), (2), and (3b) in Tables 3, 4, and 5 respectively. Since compounds (1a) and (2) are closely related in structure, the atoms have been labelled correspondingly and selected interatomic distances (Table 6) and intramolecular angles (Table 7) tabulated together for easy comparison. The appropriate interatomic distances and angles for compound (3) are presented in Tables 8 and 9. The mole-

cular structures of (1a) and (2) are shown in Figures 1 and 2 respectively.

The similar structures of (1a) and (2) may be represented simply as shown in the Scheme. Each molecule has an approximate isosceles triangle of metal atoms with the Os(1)-Os(3) bonds longer by around 0.2 Å than

Table 4
Fractional atomic co-ordinates for [Os₂H(CO)₉(MeC=CCH₂PMe₂Ph)], (2)

$[Os_3H(CO)_9(MeC=CCH_2PMe_2Ph)], (2)$						
Atom	x	у	z			
Os(1)	0	0.130 41(17)	0			
Os(2)	-0.10567(7)	0.139 13(7)	-0.18042(7)			
Os(3)	$-0.183\ 52(7)$	0.073 46(6)	-0.02072(9)			
P ` ´	-0.0324(4)	0.480 3(5)	$0.020\ 5(5)$			
C(1)	$-0.077\ 5(13)$	$0.266\ 8(17)$	-0.0581(14)			
C(2)	-0.1650(13)	0.241 3(16)	$-0.064\ 5(14)$			
C(3)	-0.2373(15)	$0.322\ 6(19)$	-0.0887(17)			
C(111)	-0.1148(14)	$0.473\ 1(16)$	0.097 8(16)			
C(112)	-0.1774(15)	$0.554\ 5(15)$	$0.090\ 6(22)$			
C(113)	$-0.243\ 2(17)$	$0.542\ 0(26)$	$0.144\ 3(22)$			
C(114)	$-0.247\ 7(19)$	$0.450\ 5(22)$	$0.205\ 3(25)$			
C(115)	-0.1879(19)	$0.370 \ 4(25)$	$0.216\ 1(18)$			
C(116)	-0.1224(19)	0.382~8(20)	$0.154\ 3(23)$			
C(117)	$0.068\ 5(16)$	$0.454\ 0(21)$	$0.094\ 4(21)$			
C(118)	$-0.028 \ 0(17)$	$0.615\ 8(18)$	-0.0336(25)			
C(119)	$-0.048\ 2(16)$	0.382 8(14)	-0.0799(19)			
C(11)	$0.094\ 5(17)$	$0.186\ 6(27)$	-0.0560(16)			
O(11)	$0.152\ 1(12)$	$0.210 \ 8(20)$	-0.0904(16)			
C(12)	$0.045 \ 8(14)$	$0.163 \ 8(19)$	$0.133\ 8(17)$			
O(12)	0.0769(11)	$0.186\ 0(18)$	$0.214\ 6(13)$			
C(13)	$0.040\ 5(17)$	-0.0248(21)	$0.001\ 8(22)$			
O(13)	$0.057\ 7(18)$	-0.1144(16)	-0.0057(22)			
C(21)	-0.0298(14)	$0.206\ 2(26)$	$-0.256\ 1(17)$			
O(21)	$0.016\ 6(15)$	0.249 6(25)	$-0.306\ 3(14)$			
C(22)	$-0.201\ 7(19)$	$0.201\ 7(19)$	-0.2759(15)			
O(22)	$-0.263\ 1(11)$	$0.177 \ 5(16)$	-0.3339(13)			
C(23)	-0.0925(16)	-0.0140(21)	-0.2104(17)			
O(23)	-0.0827(14)	-0.1104(16)	$-0.216\ 2(7)$			
C(31)	-0.2348(13)	$0.108\ 2(18)$	0.082 3(16)			
O(31)	-0.2604(16)	0.1156(14)	$0.157\ 5(25)$			
C(32)	-0.2882(17)	$0.054 \ 6(24)$	-0.1057(17)			
O(32)	$-0.352\ 5(12)$	0.044 4(18)	-0.1540(16)			
C(33)	-0.1713(13)	-0.0839(16)	-0.0170(20)			
O(33)	$-0.151\ 1(14)$	$-0.176\ 5(17)$	$-0.015 \ 0(16)$			

the other two Os-Os bonds in each compound. The nine carbonyl groups are distributed in two equatorial and one axial positions at each metal atom. The μ_3 ligands are attached with σ -Os-C bonds, Os(1)-C(1) and Os(3)-C(2), with lengths in the range 2.064—2.132 Å for the two compounds with the third point of attachment of these ligands, a η^2 -linkage to Os(2), with rather longer Os-C distances in the range 2.226—2.293 Å. For this description of (1a), a hydrogen atom, corresponding to the methyl group, C(3), in (2) must be bonded to C(2). This hydrogen atom was not located in the X-ray study, but a doublet of doublets in the ¹H n.m.r. spectrum at 8 9.28 (coupled to the ³¹P and hydride nuclei) is consistent with the low-field signal expected for a μ_3 -terminal alkyne hydrogen atom.¹¹

The metal hydride atom in either structure was not located. The CO groups around the Os(1)-Os(3) bond in (1a) and (2) are clearly splayed out relative to those around the other metal-metal bonds consistent with a hydride ligand bridging the Os(1) and Os(3) atoms in both structures. For instance, in (1a) the Os-Os-C(equatorial) angles for CO groups adjacent to each Os-Os

TABLE 5
Fractional atomic co-ordinates for [Os₃H(CO)₁₀(C=CPhPMe₂Ph)], (3b)

Atom	x	y	z
Os(1)	0.15967(3)	$0.259 \ 02(3)$	0.17664(5)
Os(2)	0.306 43(3)	$0.200\ 24(4)$	$-0.011\ 28(5)$
Os(3)	$0.169\ 20(3)$	$0.325\ 78(3)$	-0.11273(5)
P	$0.270\ 7(2)$	$0.593\ 3(2)$	$0.390\ 0(3)$
C(1)	$0.207 \ 3(6)$	$0.419\ 0(8)$	$0.121\ 1(12)$
$\tilde{C}(\tilde{2})$	0.242 8(7)	$0.532\ 3(9)$	0.1816(11)
$\widetilde{C}(3)$	0.2628(7)	0.620 3(8)	$0.083\ 2(12)$
C(4)	0.3566(8)	0.657 9(10)	$0.049\ 0(15)$
C(5)	0.3729(9)	$0.740\ 1(11)$	-0.0444(17)
C(6)	0.2997(10)	$0.790\ 3(11)$	-0.0913(16)
$\widetilde{C}(7)$	0.2066(10)	$0.754\ 4(11)$	-0.0574(17)
Č(8)	0.188 7(9)	0.668 6(10)	$0.031\ 2(16)$
C(111)	$0.269 \ 6(8)$	0.743 0(9)	$0.425 \ 8(12)$
C(112)	0.1779(8)	0.7748(9)	0.424 8(15)
C(113)	$0.178\ 5(10)$	0.889 4(11)	0.452 7(16)
C(114)	$0.261 \ 6(11)$	0.970~4(11)	0.4736(18)
C(115)	$0.350\ 3(11)$	0.941 4(11)	0.475 2(24)
C(116)	$0.354 \ 6(9)$	$0.826\ 6(10)$	$0.449\ 5(17)$
C(117)	$0.185\ 4(8)$	0.531 8(9)	0.5116(13)
C(118)	0.393 1(8)	0.5828(11)	0.4696(14)
C(11)'	0.0579(9)	$0.301\ 4(10)$	0.285 8(14)
O(11)	-0.0048(6)	0.322 7(9)	$0.353\ 1(12)$
C(12)	$0.252\ 2(9)$	$0.272\ 5(9)$	0.3536(14)
O(12)	0.3108(7)	0.2787(8)	$0.456\ 7(10)$
C(13)	$0.104 \ 6(8)$	$0.095\ 1(9)$	$0.163\ 5(14)$
O(13)	$0.073\ 2(7)$	$0.002\ 2(7)$	0.1586(13)
C(21)	$0.205\ 8(9)$	$0.066\ 0(11)$	-0.1177(15)
O(21)	0.1479(7)	$-0.012\ 3(7)$	-0.1739(12)
C(22)	0.3779(8)	$0.193\ 6(11)$	-0.1867(14)
O(22)	0.426 2(6)	$0.196\ 6(9)$	-0.2837(10)
C(23)	$0.371\ 1(9)$	$0.118\ 7(11)$	$0.114\ 2(17)$
O(23)	$0.415\ 0(8)$	$0.075\ 0(10)$	$0.190\ 3(15)$
C(24)	0.389 8(8)	$0.349\ 3(12)$	0.096 6(18)
O(24)	0.440 5(6)	$0.431\ 7(8)$	$0.158\ 3(13)$
C(31)	$0.277\ 3(7)$	$0.409\ 0(9)$	$-0.191\ 1(13)$
O(31)	0.341 5(6)	$0.454\ 5(8)$	$-0.238 \ 8(10)$
C(32)	0.074 7(8)	$0.409 \ 6(9)$	-0.1589(14)
O(32)	0.019 1(6)	0.4589(7)	-0.2024(12)
C(33)	0.121 9(8)	0.2069(9)	-0.3060(13)
O(33)	$0.092 \ 8(7)$	$0.144\ 0(8)$	-0.4190(10)

TABLE 6

Selected interatomic distances (Å) for (la) and (2)

Selected interate	omic distances (A) for $(1a)$ and (2)
	(la)	(2)
(a) Metal-metal bon	ds	
Os(1)-Os(2)	2.766(1)	2.761(1)
Os(1)-Os(3)		2.987(1)
Os(2)-Os(3)	2.795(1)	2.749(1)
(b) Metal-carbon dis	tances	
Os(1)-C(1)	2.127(18)	2.132(19)
Os(2)-C(1)	2.226(15)	2.247(20)
Os(2)-C(2)	2.252(16)	2.293(19)
Os(3)-C(2)	2.064(17)	2.127(19)
$Os(1) \cdot \cdot \cdot C(2)$	2.941(19)	2.973(20)
$Os(3) \cdots C(1)$	2.922(17)	2.954(20)
(c) Os-C (carbonyl)		
Range 1.85	5-1.93(2) 1	1.76-1.97(2)
Mean	1.91	1.88
(d) Ligand distances		
C(1)-C(2)	1.411(23)	1.423(28)
C(2)-C(3)	,	1.511(29)
C(1)-C(119)		1.508(25)
P-C(1)	1.763(17)	
P-C(111)	1.814(21)	1.793(23)
P-C(117)	1.767(23)	1.801(26)
P-C(118)	1.804(20)	1.784(25)
P-C(119)		1.779(22)
(e) C—O (carbonyl)		
Range 1.1		1.11-1.19(3)

1.15

1.15

Mean

	Table 7		Table 7	(continued)	
Selected intramolecu		(la) and (2)	C(119)-P-C(111)	(112(1)
	(1a)	(2)	C(119)PC(117) C(119)PC(118)		109(1) 107(1)
(a) Angles at osmium $Os(2)-Os(1)-Os(3)$	58.1(1)	57.0(1)	C(1)-P-C(111) C(1)-P-C(117)	107(1) 115(1)	` ,
C(1) - Os(1) - Os(2)	52.1(4)	52.8(5)	C(1)-P-C(118)	115(1)	
C(1)-Os(1)-Os(3) C(1)-Os(1)-C(11)	$67.4(4) \\ 97.7(7)$	$68.1(6) \\ 92.1(11)$	C(1)-C(119)-P P-C(111)-C(112)	121(2)	$118(2) \\ 120(2)$
C(1)-Os(1)-C(12)	101.4(8)	108.4(9)	P-C(111)-C(116)	119(2)	120(2)
C(1)-Os(1)-C(13) C(11)-Os(1)-Os(2)	$153.6(8) \\ 93.4(6)$	$154.4(11) \\ 93.4(7)$			
C(11)-Os(1)-Os(3) C(11)-Os(1)-C(12)	$151.4(6) \\ 93.1(8)$	$150.2(7) \\ 94.6(9)$			
C(11) - Os(1) - C(13)	93.4(8)	93.5(12)			
C(12)-Os(1)-Os(2) C(12)-Os(1)-Os(3)	$153.4(6) \\ 113.3(6)$	$159.8(7) \\ 112.4(7)$		ABLE 8	
C(12)-Os(1)-C(13)	101.8(9) 103.5(7)	96.0(12) 101.9(9)	Selected interatom	ic distances (A) for	r (3b)
C(13)-Os(1)-Os(2) C(13)-Os(1)-Os(3)	91.8(6)	95.9(8)	(a) Metal-metal bonds $Os(1)-Os(2)$ 2.873(1)	Os(1)-Os(3)	9 909/1)
Os(1)-Os(2)-Os(3) C(1)-Os(2)-Os(1)	$64.8(1) \\ 49.0(5)$	65.7(1) $49.1(5)$	$ \begin{array}{ccc} Os(1) - Os(2) & 2.873(1) \\ Os(2) - Os(3) & 2.870(1) \end{array} $	Os(1)—Os(3)	2.802(1)
C(1)-Os (2) -Os (3)	70.1(4)	71.7(5)	(b) Metal-carbon distance	S	
C(2)-Os (2) -Os $(1)C(2)$ -Os (2) -Os (3)	$70.9(5) \\ 46.8(4)$	71.4(5) 48.9(5)	Os(1)-C(1) 2.096(10)	Os(3)-C(1)	2.103(10)
C(1)-Os(2)-C(2) C(1)-Os(2)-C(21)	36.7(6) 97.3(8)	36.5(7) 91.7(10)	(c) Os-C (carbonyl)		
C(1)- $Os(2)$ - $C(22)$	116.0(8)	117.1(8)	Range 1.884—1.97	4(11) Mean 1.	925
C(1)-Os(2)-C(23) C(2)-Os(2)-C(21)	$143.7(8) \\ 126.9(8)$	$142.9(8) \\ 120.3(11)$	(d) Ligand distances		
C(2)-Os(2)-C(22)	90.1(8)	90.4(8)	C(1)-C(2) 1.356(13) P-C(2) 1.804(10)	C(2)-C(3) P-C(111)	$1.498(13) \\ 1.799(11)$
C(2)-Os (2) -C $(23)C(21)$ -Os (2) -Os (1)	$134.3(7) \\ 99.7(6)$	136.9(9) 97.7(7)	P-C(117) 1.820(10)	P-C(118)	1.834(11)
$\begin{array}{c} C(21)-Os(2)-Os(3) \\ C(21)-Os(2)-C(22) \end{array}$	$164.0(6) \\ 94.0(9)$	$161.6(8) \\ 95.1(11)$	(e) C—O (carbonyl)		
C(21) - Os(2) - C(23)	97.9(9)	101.5(12)	Range 1.115—1.157	(12) Mean I	.132
$C(22)-Os(2)-Os(1) \ C(22)-Os(2)-Os(3)$	160.8(7) 100.3(7)	$161.3(7) \\ 99.5(8)$			
C(22)-Os(2)-C(23) C(23)-Os(2)-Os(1)	95.5(9) 95.9(7)	96.3(10) 94.5(7)			
C(23)-Os (2) -Os (3)	87.8(6)	88.1(7)	T	0	
Os(1)-Os(3)-Os(2) $ C(2)-Os(3)-Os(1)$	57.1(1) 68.6(5)	57.4(1) 68.7(6)		ABLE 9	(01.)
C(2)-Os (3) -Os (2)	52.6(5) 99.4(8)	54.3(5)	Selected intramole (a) Angles at osmium	cular angles (*) for	(30)
C(2)-Os(3)-C(31) C(2)-Os(3)-C(32)	93.7(9)	$95.4(7) \\ 95.2(10)$	Os(2)-Os(1)-Os(3) 60.7(1)	C(1)-Os(1)-Os	(2) 82.3(2)
C(2)-Os(3)-C(33) C(31)-Os(3)-Os(1)	$160.8(8) \\ 113.2(6)$	158.4(8) 115.7(10)	C(1) - Os(1) - Os(3) 48.2(3) C(1) - Os(1) - C(12) 99.8(4)	C(1)-Os(1)-C(C(1)-Os(1)-C(11) 95.1(4)
C(31)-Os (3) -Os (2)	151.8(7)	149.7(11)	C(11)-Os(1)-Os(2) 175.2(4)	C(1)-Os(1)-C(C(11)-C(C(11)-C(11)-C(C(11)-C(11)-C(C(11)-C(11)-C(C(11)-C(11)-C(11)-C(C(11)-C(11)-C(11)-C(C(11)-C(11)-C(11)-C(11)-C(C(11)-	
C(31)-Os(3)-C(32) C(31)-Os(3)-C(33)	$93.7(9) \\ 98.0(10)$	$92.0(11) \\ 105.8(12)$	C(11)-Os(1)-C(12) 97.8(5) C(12)-Os(1)-Os(2) 86.6(3)	C(11)-Os(1)-C C(12)-Os(1)-C	
C(32)-Os(3)-Os(1) C(32)-Os(3)-Os(2)	$149.3(7) \\ 92.2(7)$	148.4(8) 91.1(8)	C(12)-Os(1)-C(13) 94.0(5)	C(13)-Os(1)-C	98(2) 89.9(3)
C(32)-Os(3)-C(33)	93.2(11)	88.6(11)	C(13)-Os(1)-Os(3) 115.5(3) C(21)-Os(2)-Os(1) 85.6(3)	Os(1)-Os(2)-C C(21)-Os(2)-C	
C(33)-Os(3)-Os(1) C(33)-Os(3)-Os(2)	$97.1(8) \\ 109.2(7)$	$97.4(6) \\ 104.4(7)$	C(21)-Os (2) -C (22) 92.6(5) C(21)-Os (2) -C (24) 170.3(4)	C(21)-Os(2)-C C(22)-Os(2)-C	
(b) Os-C-O	, ,	, ,	C(22)-Os(2)-Os(3) 98.6(4)	C(22)– $Os(2)$ – C	(23) 101.3(5)
Range 172—1	179(2) 168—1	78(2)	C(22)-Os (2) -C (24) 92.1(5) C(23)-Os (2) -Os (3) 160.1(4)	C(23)-Os(2)-C C(23)-Os(2)-C	
Mean 17	75 17	4	C(24)-Os(2)-Os(1) 86.8(3) Os(1)-Os(3)-Os(2) 60.9(1)	C(24)—Os(2)—O C(1)—Os(3)—Os	86.6(3)
(c) Angles within the organ	• • •		C(1) - Os(3) - Os(2) 82.3(3)	C(1)-Os(3)-C(31) 95.4(4)
Os(1)-C(1)-Os(2) C(2)-C(1)-Os(1)	$79(1) \\ 111(1)$	$78(1) \\ 112(1)$	C(1)-Os(3)-C(32) 93.0(4) C(31)-Os(3)-Os(1) 130.0(3)	C(1)—Os(3)—C(C(31)—Os(3)—C	$ \begin{array}{ccc} 33) & 165.7(4) \\ 9s(2) & 85.0(3) \end{array} $
C(2)-C(1)-Os(2)	73(1)	73(1)	C(31)-Os(3)-C(32) 99.0(4)	C(31)- $Os(3)$ - C	(33) 96.5(5)
C(119)-C(1)-Os(1) C(119)-C(1)-Os(2)		$127(1) \\ 121(1)$	C(32)-Os(3)-Os(1) 113.3(3) C(32)-Os(3)-C(33) 93.0(5)	C(32)-Os(3)-C C(33)-Os(3)-C	
C(119)-C(1)-C(2) P-C(1)-Os(1)	128(1)	121(1)	C(33)-Os(3)-Os(2) 90.8(3)		
P-C(1)-Os(2)	126(1)		(b) Os-C-O	35 300	
$P-C(1)-C(2) \\ Os(2)-C(2)-Os(3)$	$119(1) \\ 81(1)$	77(1)	Range 173—179(1)	Mean 177	
$C(1)$ $\stackrel{\frown}{-}C(2)$ $\stackrel{\frown}{-}Os(2)$ $C(1)$ $\stackrel{\frown}{-}C(2)$ $\stackrel{\frown}{-}Os(3)$	71(1) 113(1)	$70(1) \\ 111(1)$	(c) Angles within the organo C(2)-P-C(111) 109.9(5)	ophosphine ligand $C(2)-P-C(117)$	115.4(5)
C(3)-C(2)-Os(2)	110(1)	125(1)	C(2)-P-C(118) 111.7(5)	C(111)-P-C(1	17) 105.4(5)
C(3)- $C(2)$ - $C(3)C(3)$ - $C(2)$ - $C(1)$		$123(1) \\ 126(2)$	C(111)-P- $C(118)$ 106.9(5) Os(1)- $C(1)$ - $Os(3)$ 83.7(4)	C(117)-P-C(1) C(2)-C(1)-Os(
C(111)-P-C(117)	109(1)	110(1)	C(2)-C(1)-Os(3) 131.5(7)	C(1)-C(2)-P	123.5(8)
C(111)-P-C(118) C(117)-P-C(118)	105(1) 107(1)	111(1) 108(1)	C(1)-C(2)-C(3) 123.9(9) P-C(111)-C(112) 119(1)	P-C(2)-C(3) P-C(111)-C(1	112.6(7) 16) 122(1)

FIGURE 1 Molecular structure of $[Os_3H(CO)_9(HC=CPMe_2Ph)]$, (1a)

bond are 113.3 and 113.2° for Os(1)-Os(3); 93.4 and 99.7° for Os(1)-Os(2); and 92.2 and 100.3° for Os(2)-Os(3). The greater length of the Os(1)-Os(3) bond in both compounds is also consistent with a hydride bridge.

Tables 6 and 7 show that compounds (1a) and (2) are remarkably similar structurally. Within each structure, atoms C(1) and C(2) of the μ_3 -alkyne ligands are almost equivalent in their positions with respect to the metal triangles, such that the geometries of the Os₃-(CO)₉C₂ units are nearly identical. There is no discernable distortion of the bonding of the μ_3 ligands which could be ascribed to the presence of an α -phosphonium centre of C(1) in (1a) or a β -phosphonium centre in (2).

class of compounds of type $[Os_3H(CO)_{10}(\mu-X)]$ and belongs to the same sub-class as the PMe_2Ph adduct shown in equation (1), having a formally two-electron donating group X with a negative charge at the cluster and

FIGURE 2 Molecular structure of [Os₃H(CO)₉(MeC=CCH₂PMe₂Ph)], (2)

positive charge at the phosphonium centre of the ligand. The bridged Os(1)–Os(3) distance (2.802 Å) is less than the non-bridged ones (2.873 and 2.870 Å) by approximately the same amount as found with related clusters where the metal atoms are bridged by a single N, O, or C atom.¹² The C(1)–C(2) distance of 1.356(13) Å indicates a double bond and the planarity of these two atoms with the substituents at them [P, C(3), Os(1), and Os(3)] is consistent

TABLE 10

Metal-carbon bond lengths (Å) in selected μ₃-alkyne complexes (8)—(10) with related lengths in compounds (1a) and (2) ^a

Compound	a	b	С	d	Ref.
(8) $[Os_3(CO)_{10}(Ph_2C_2)]$	2.182(8)	2.070(9)	2.188(8)	2.293(9)	\boldsymbol{b}
(9) $\left[\operatorname{Os_3(CO)_7(Ph_4C_4)(Ph_2C_2)}\right]$	2.16(2)	2.08(2)	2.22(2)	2.28(2)	c
(10) $[Ru_3H(CO)_9(C_8H_{12})]$	2.13	2.08	2.23	2.28	d
(la)	2.127(18)	2.064(17)	2.226(15)	2.252(16)	This work
(2)	2.132(19)	2.127(19)	2.247(20)	2.293(19)	This work

a and b are σ-Os-C bond lengths while c and d are the Os-C lengths in the η²-linkage.
M. Tachikawa, J. R. Shapley, and C. G. Pierpont, J. Am. Chem. Soc., 1975, 97, 7172.
G. Ferraris and G. Gervasio, J. Chem. Soc., Dalton Trans., 1973, 1933.
Anson and K. M. Thomas, Ann. N.Y. Acad. Sci., 1974, 239, 225.

In (1a) and (2) the asymmetry of the unsymmetrically substituted alkynes does not produce a pronounced asymmetry in the alkyne to cluster bonding. In certain related complexes with symmetrically substituted μ_3 -alkyne ligands, there is a significant twist of the alkyne out of a symmetrical arrangement. For example, in the clusters (8)—(10) (Table 10) one σ -M-C bond is longer than the other (a > b) and the shorter is associated with a longer M-C bond in the η^2 -linkage (d > c). The data given in Table 10 suggest that the distortion present in (8)—(10) may be barely significant in (1a).

Compound (3b) (Figure 3) is a member of the large

with these atoms being sp^2 hybridised. The Os(1)-C(1)-Os(3) angle of 83.7°, however, is small for a simple substituted ethene but this is dictated by the Os-Os bond length.

Dynamic Behaviour of Compounds (1)—(3).—Compounds (3) are asymmetric and consequently the two methyl groups are diastereotopic and give sharp doublets at room temperature in their 1 H n.m.r. spectra. Therefore there is no rotation about the C(1)—C(2) bond which would interconvert enantiomers, or at least such rotation is too slow to give any n.m.r. line broadening at room temperature. The methyl groups in the PMe₂Ph groups

of compounds (1) and (2) are similarly diastereotopic but here two sharp methyl doublets for each compound are found only below room temperature. For example, Figure 4 shows that the two methyl doublets for the

FIGURE 3 Molecular structure of [Os₃H(CO)₁₀(C=CPhPMe₂Ph)], (3b)

PMe₂Ph group in compound (1b) (overlapping to give a triplet) are only sharp at 0 °C but broaden and coalesce at higher temperatures. The same effect is observed for other compounds (1) and (2). To interchange the methyl groups, the co-ordination of the μ_3 -alkyne to the Os₃ triangle cannot be rigid. Flipping of the alkyne ligand as it rotates from one configuration to the next is presumably occurring as proposed for other μ_3 -alkyne ^{13,14} and μ_3 -aryne ^{15,16} ligands.

EXPERIMENTAL

 $\label{eq:compounds} Synthesis \quad of \quad Compounds. \\ --- \text{Compounds} \quad [\text{Os}_3\text{H}(\text{CO})_{\theta}\text{-}(\text{C\Xi}\text{CH})], \\ ^{17} \quad [\text{Os}_3\text{H}(\text{CO})_{\theta}(\text{C\Xi}\text{CMe})], \\ ^{17} \quad [\text{Os}_3\text{H}(\text{CO})_{\theta}(\text{MeC=C\Xi}\text{CH}_2)], \\ ^{17} \quad [\text{Os}_3(\text{CO})_{10}(\text{C}_2\text{H}_2)], \\ ^{17} \quad \text{and} \quad [\text{Os}_3\text{H}(\text{CO})_{10}(\text{C\Xi}\text{CPh})] \\ ^{17} \quad \text{were} \quad \text{prepared} \quad \text{as} \quad \text{described} \\ \text{previously}.$

 $[{\rm Os_3H(CO)_9(HC=CPMe_2Ph)}]$, (1a). Dimethylphenylphosphine (3 mol per Os₃) was added to a solution of $[{\rm Os_3H-(CO)_9(C=CH)}]$ (0.030 g) in chloroform (5 cm³) under nitrogen. The solvent and excess of phosphine were removed under vacuum and the solid residue was washed with pentane to give compound (1a) quantitatively as an off-white solid. Recrystallisation by dissolving in CHCl₃ and precipitating by adding pentane gave white crystals in good yield (Found: C, 24.05; H, 1.60; P, 3.30. $C_{19}H_{13}O_9Os_3P$ requires C, 23.1; H, 1.35; P, 3.15%).

By similar routes the following PMe₂Ph adducts of μ_3 -alkynyl complexes were prepared: $[Os_3H(CO)_9(MeC=CP-Me_2Ph)]$ (1b) (Found: C, 24.0; H, 1.45; P, 2.95. $C_{20}H_{15}-O_9Os_3P$ requires C, 24.0; H, 1.50; P, 3.10%); $[Os_3H(CO)_9-(PhC=CPMe_2Ph)]$ (1c) (Found: C, 28.25; H, 1.70; P, 2.75. $C_{25}H_{17}O_9Os_3P$ requires C, 28.25; H, 1.60; P, 2.90%); $[Os_3H(CO)_9(HOCMe_2C=CPMe_2Ph)]$ (1d) (Found: C, 25.95; H, 2.00; P, 3.00. $C_{22}H_{19}O_{10}Os_3P$ requires C, 25.3; H, 1.85; P, 2.95%).

FIGURE 4 Proton n.m.r. spectra of the methyl groups of compound (1b), [Os₃H(CO)₉(MeC=CPMe₂Ph)], in CD₂Cl₂ solution at 0 (a), 28 (b), 37 (c), 41 (d), and 52 °C (e)

 $[Os_3H(CO)_9(MeC=CCH_2PMe_2Ph)]$, (2). The addition of stoicheiometric quantities of PMe₂Ph to a solution of $[Os_3H(CO)_9(MeC=C=CH_2)]$ in n-hexane gave a colourless precipitate of compound (2) in good yield (Found: C, 25.3; H, 1.90; P, 3.00. $C_{21}H_{17}O_9Os_3P$ requires C, 24.85; H, 1.70; P, 3.05%).

 $[\mathrm{Os_3H(CO)_{10}(C=CHPMe_2Ph)}],~(3a).$ A slight excess of PMe₂Ph (0.013 cm³, 9.5 \times 10^{-5} mol) was added to a solution of $[\mathrm{Os_3(CO)_{10}(C_2H_2)}]$ (0.068 g, 7.8×10^{-5} mol) in CDCl₃ (0.5 cm³) and the solution allowed to stand at room temperature for 16 h. Removal of solvent and chromatography of the residue on silica (t.l.c.) gave some starting cluster (0.001 g) eluting with pentane, while elution with a chloroform–pentane mixture (1:2 v/v) gave a band which gave compound (3a) as yellow crystals (0.047 g, 60%) (Found: C, 24.9; H, 1.65; P, 3.00. $\mathrm{C_{20}H_{13}O_{10}Os_3P}$ requires C, 23.65; H, 1.30; P, 3.05%).

X-Ray Crystallographic Determinations.—Data for each compound were collected using a Philips PW1100 four-circle diffractometer and graphite-monochromatized $Mo-K_{\alpha}$ radi-

ation (λ 0.710 69 Å) in the range 3 $< \theta < 25^{\circ}$. The method of data collection was similar to that described previously. 18 Intensities I and $\sigma(I)$ were corrected for Lorentz and polarisation factors and semi-empirical absorption corrections based on a pseudo-ellipsoid mode 19 were applied. Totals of 415, 472, and 486 azimuthal scan data from 14, 12, and 14 independent reflections were used for (1a), (2), and (3b) respectively; relative transmission factors for the full data ranged from 1.0 to 0.311 for (1a), 1.0 to 0.444 for (2), and 1.0 to 0.594 for (3b). The crystal data for each sample are summarised in Table 2.

Structure solution and refinement. The Os atoms in each case were located from a Patterson map. For each complex a subsequent difference-Fourier synthesis revealed the positions of all the non-hydrogen atoms. All three structures were refined by full-matrix least squares. The sp2 C-H phenyl H atoms and the sp3 C-H methylene H atoms were included at calculated positions in the refinement, riding on the respective C atoms with C-H of 1.08 Å. The methyl H, hydridic H, and the vinylic H in (la) were not located. Complex neutral-atom 20 scattering factors and weights $w = 1/\sigma^2(F)$ were used with $R' = \sum w^{\frac{1}{2}} \Delta/\sum w^{\frac{1}{2}} |F_0|$. The refined parameters in each case included anisotropic thermal parameters for all the non-hydrogen atoms and a common hydrogen isotropic thermal parameter fixed at 0.10 Å², and an empirical extinction parameter, x, which refined to $0.000 \ 18(5) \ (1a), \ 0.000 \ 15(2) \ (2), \ 0.000 \ 91(5) \ (3b); \ F_c$ is multiplied by $(1 - 0.0001 xF_e^2/\sin\theta)$.

The SHELX 21 and ORTEP 22 programs were used for calculations. The refined atomic positional parameters and principal bond lengths and angles for (1a), (2), and (3b) are presented in Tables 3-8. Hydrogen-atom co-ordinates, additional bond lengths and angles, thermal parameters, equations of least-squares planes, and observed and calculated structure factors are deposited in Supplementary Publication No. SUP 23240 (71 pp.).*

[1/1387 Received, 3rd September, 1981]

* For details see Notices to Authors No. 7, J. Chem. Soc., Dalton Trans., 1981, Index issue.

REFERENCES

- ¹ G. R. John and L. A. P. Kane-Maguire, J. Chem. Soc., Dalton Trans., 1979, 873.
- ² P. Lennon, M. Madhavarao, A. Rosan, and M. Rosenblum, J. Organomet. Chem., 1976, 108, 93; W. H. Noth, Inorg. Chem., 1975, 14, 1566; L. Cosslett and L. A. P. Kane-Maguire, J. Organomet. Chem., 1979, 178, C17.
- ³ S. G. Davis, L. G. Gelfaud, and D. A. Sweigart, J. Chem. Soc., Chem. Commun., 1979, 762; D. J. Domaille, S. D. Ittel, J. P. Jesson, and D. A. Sweigart, J. Organomet. Chem., 1980, 202, 191.
- ⁴ E. G. Bryan, W. G. Jackson, B. F. G. Johnson, J. W. Kelland, J. Lewis, and K. T. Schorpp, J. Organomet. Chem., 1976, **108**, 385.
- ⁵ P. D. Gavens and M. J. Mays, J. Organomet. Chem., 1978, 162, 389.
- J. B. Keister, J. Organomet. Chem., 1980, 190, C36.
- A. J. Arce and A. J. Deeming, J. Chem. Soc., Chem. Commun., 1980, 1102.
- ⁸ G. R. Steinmetz and G. L. Geoffroy, J. Am. Chem. Soc., 1981, 103, 1278.
- A. J. Deeming and S. Hasso, J. Organomet. Chem., 1976, 112, C39.
- M. R. Churchill, B. G. DeBoer, J. R. Shapley, and J. B. Keister, J. Am. Chem. Soc., 1976, 98, 2357; M. R. Churchill and B. G. DeBoer, Inorg. Chem., 1977, 16, 1141.
- ¹¹ See, for example A. J. Deeming, J. Organomet. Chem., 1977, 128, 63 and refs. 14 and 17.
- 12 M. R. Churchill and H. J. Wasserman, Inorg. Chem., 1981, **20**, 1580.
- A. J. Deeming, J. Organomet. Chem., 1978, 150, 123.
 S. Aime and A. J. Deeming, J. Chem. Soc., Dalton Trans., 1981, 828.
- ¹⁶ A. J. Deeming, R. E. Kimber, and M. Underhill, J. Chem.
- Soc., Dalton Trans., 1973, 2589.

 16 A. J. Deeming, I. P. Rothwell, M. B. Hursthouse, and J. D. J.
- Backer-Dirks, J. Chem. Soc., Dalton Trans., 1981, 1879.

 17 A. J. Deeming, S. Hasso, and M. Underhill, J. Chem. Soc., Dalton Trans., 1975, 1614.
- 18 K. R. Adam, G. Anderegg, L. F. Lindoy, H. C. Lip, M. McPartlin, J. H. Rea, R. J. Smith, and P. A. Tasker, Inorg. Chem., 1980, **19**, 2956.
- 19 G. M. Sheldrick, EMPABS Program, University of Cambridge, 1976.
- International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1965.
- ²¹ G. M. Sheldrick, SHELX 76 Program System, University of Cambridge, 1976.
- ²² C. K. Johnson, ORTEP2 Program, Oak Ridge National Laboratory, Report ORNL-3794, 1965.